Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.099
Filtrer
1.
BMC Complement Med Ther ; 24(1): 296, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39095777

RÉSUMÉ

BACKGROUND: The fruit of Phyllanthus emblica L., a traditional medicine in China and India, is used to treat diabetes mellitus. Its water extract (WEPE) has demonstrated hypoglycemic effects in diabetic rats, but its mechanisms on glucose utilization and insulin resistance in skeletal muscle remain unclear. Therefore, this study aims to investigate the effects and underlying mechanisms of WEPE on glucose utilization and insulin resistance using C2C12 myotubes. METHODS: Effects of WEPE on glucose uptake, GLUT4 translocation, and AMPK and AKT phosphorylation were investigated in C2C12 myotubes and palmitate-treated myotubes. An AMPK inhibitor and siRNA were used to explore the mechanisms of WEPE. Glucose uptake was determined using a 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) uptake assay, and protein expression and GLUT4 translocation were assessed via western blotting. RESULTS: In normal myotubes, WEPE significantly stimulated glucose uptake and GLUT4 translocation to the plasma membrane at concentrations of 125 and 250 µg/mL. This was accompanied by an increase in the phosphorylation of AMPK and its downstream targets. However, both compound C and AMPK siRNA blocked the WEPE-induced GLUT4 translocation and glucose uptake. Moreover, pretreatment with STO-609, a calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß) inhibitor, inhibited WEPE-induced AMPK phosphorylation and attenuated the WEPE-stimulated glucose uptake and GLUT4 translocation. In myotubes treated with palmitate, WEPE prevented palmitate-induced insulin resistance by enhancing insulin-mediated glucose uptake and AKT phosphorylation. It also restored the insulin-mediated translocation of GLUT4 from cytoplasm to membrane. However, these effects of WEPE on glucose uptake and GLUT4 translocation were blocked by pretreatment with compound C. CONCLUSIONS: WEPE significantly stimulated basal glucose uptake though CaMKKß/AMPK pathway and markedly ameliorated palmitate-induced insulin resistance by activating the AMPK pathway in C2C12 myotubes.


Sujet(s)
AMP-Activated Protein Kinases , Glucose , Insulinorésistance , Fibres musculaires squelettiques , Phyllanthus emblica , Extraits de plantes , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/métabolisme , Animaux , Souris , Glucose/métabolisme , Extraits de plantes/pharmacologie , AMP-Activated Protein Kinases/métabolisme , Fruit , Transporteur de glucose de type 4/métabolisme , Lignée cellulaire , Palmitates/pharmacologie , Acide palmitique/pharmacologie
2.
Life Sci Alliance ; 7(11)2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39122555

RÉSUMÉ

Reduction in muscle contractile force associated with many clinical conditions incurs serious morbidity and increased mortality. Here, we report the first evidence that JAK inhibition impacts contractile force in normal human muscle. Muscle biopsies were taken from patients who were randomized to receive tofacitinib (n = 16) or placebo (n = 17) for 48 h. Single-fiber contractile force and molecular studies were carried out. The contractile force of individual diaphragm myofibers pooled from the tofacitinib group (n = 248 fibers) was significantly higher than those from the placebo group (n = 238 fibers), with a 15.7% greater mean maximum specific force (P = 0.0016). Tofacitinib treatment similarly increased fiber force in the serratus anterior muscle. The increased force was associated with reduced muscle protein oxidation and FoxO-ubiquitination-proteasome signaling, and increased levels of smooth muscle MYLK. Inhibition of MYLK attenuated the tofacitinib-dependent increase in fiber force. These data demonstrate that tofacitinib increases the contractile force of skeletal muscle and offers several underlying mechanisms. Inhibition of the JAK-STAT pathway is thus a potential new therapy for the muscle dysfunction that occurs in many clinical conditions.


Sujet(s)
Inhibiteurs des Janus kinases , Contraction musculaire , Muscles squelettiques , Pipéridines , Pyrimidines , Humains , Pipéridines/pharmacologie , Pyrimidines/pharmacologie , Contraction musculaire/effets des médicaments et des substances chimiques , Muscles squelettiques/effets des médicaments et des substances chimiques , Muscles squelettiques/métabolisme , Inhibiteurs des Janus kinases/pharmacologie , Mâle , Pyrroles/pharmacologie , Femelle , Adulte , Transduction du signal/effets des médicaments et des substances chimiques , Adulte d'âge moyen , Janus kinases/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/métabolisme
3.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39125678

RÉSUMÉ

Moringa oleifera is widely grown throughout the tropics and increasingly used for its therapeutic and nutraceutical properties. These properties are attributed to potent antioxidant and metabolism regulators, including glucosinolates/isothiocyanates as well as flavonoids, polyphenols, and phenolic acids. Research to date largely consists of geographically limited studies that only examine material available locally. These practices make it unclear as to whether moringa samples from one area are superior to another, which would require identifying superior variants and distributing them globally. Alternatively, the finding that globally cultivated moringa material is essentially functionally equivalent means that users can easily sample material available locally. We brought together accessions of Moringa oleifera from four continents and nine countries and grew them together in a common garden. We performed a metabolomic analysis of leaf extracts (MOLE) using an LC-MSMS ZenoTOF 7600 mass spectrometry system. The antioxidant capacity of leaf samples evaluated using the Total Antioxidant Capacity assay did not show any significant difference between extracts. MOLE samples were then tested for their antioxidant activity on C2C12 myotubes challenged with an oxidative insult. Hydrogen peroxide (H2O2) was added to the myotubes after pretreatment with different extracts. H2O2 exposure caused an increase in cell death that was diminished in all samples pretreated with moringa extracts. Our results show that Moringa oleifera leaf extract is effective in reducing the damaging effect of H2O2 in C2C12 myotubes irrespective of geographical origin. These results are encouraging because they suggest that the use of moringa for its therapeutic benefits can proceed without the need for the lengthy and complex global exchange of materials between regions.


Sujet(s)
Antioxydants , Métabolomique , Moringa oleifera , Fibres musculaires squelettiques , Extraits de plantes , Feuilles de plante , Moringa oleifera/composition chimique , Moringa oleifera/métabolisme , Feuilles de plante/composition chimique , Feuilles de plante/métabolisme , Antioxydants/pharmacologie , Antioxydants/métabolisme , Extraits de plantes/pharmacologie , Extraits de plantes/composition chimique , Métabolomique/méthodes , Animaux , Souris , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Lignée cellulaire , Peroxyde d'hydrogène/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Métabolome/effets des médicaments et des substances chimiques
4.
Physiol Rep ; 12(13): e16103, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38946587

RÉSUMÉ

Cancer cachexia is a multifactorial syndrome associated with advanced cancer that contributes to mortality. Cachexia is characterized by loss of body weight and muscle atrophy. Increased skeletal muscle mitochondrial reactive oxygen species (ROS) is a contributing factor to loss of muscle mass in cachectic patients. Mice inoculated with Lewis lung carcinoma (LLC) cells lose weight, muscle mass, and have lower muscle sirtuin-1 (sirt1) expression. Nicotinic acid (NA) is a precursor to nicotinamide dinucleotide (NAD+) which is exhausted in cachectic muscle and is a direct activator of sirt1. Mice lost body and muscle weight and exhibited reduced skeletal muscle sirt1 expression after inoculation with LLC cells. C2C12 myotubes treated with LLC-conditioned media (LCM) had lower myotube diameter. We treated C2C12 myotubes with LCM for 24 h with or without NA for 24 h. C2C12 myotubes treated with NA maintained myotube diameter, sirt1 expression, and had lower mitochondrial superoxide. We then used a sirt1-specific small molecule activator SRT1720 to increase sirt1 activity. C2C12 myotubes treated with SRT1720 maintained myotube diameter, prevented loss of sirt1 expression, and attenuated mitochondrial superoxide production. Our data provides evidence that NA may be beneficial in combating cancer cachexia by maintaining sirt1 expression and decreasing mitochondrial superoxide production.


Sujet(s)
Cachexie , Fibres musculaires squelettiques , Stress oxydatif , Sirtuine-1 , Animaux , Cachexie/étiologie , Cachexie/métabolisme , Cachexie/anatomopathologie , Cachexie/prévention et contrôle , Sirtuine-1/métabolisme , Sirtuine-1/génétique , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/anatomopathologie , Souris , Stress oxydatif/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Carcinome pulmonaire de Lewis/métabolisme , Carcinome pulmonaire de Lewis/anatomopathologie , Carcinome pulmonaire de Lewis/complications , Mâle , Composés hétérocycliques avec 4 noyaux ou plus/pharmacologie , Mitochondries du muscle/métabolisme , Mitochondries du muscle/effets des médicaments et des substances chimiques , Mitochondries du muscle/anatomopathologie , Lignée cellulaire , Acide nicotinique/pharmacologie , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme
5.
Nutrients ; 16(14)2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39064738

RÉSUMÉ

Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic morbidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical absorption and metabolism. We explored the anti-inflammatory/antioxidant effects of ashwagandha and Andrographis in ex vivo human models of skeletal muscle and adipose tissue. Healthy participants supplemented with 2000 mg/day Andrographis (n = 10) or 1100 mg/day ashwagandha (n = 10) for 28 days. Sera collected pre (D0) and post (D28) supplementation were pooled by timepoint and added to adipose explant (AT) and primary human myotube (SKMC) culture media (15% v/v) for treatment. A Taqman panel of 56 genes was used to quantify these. In AT, treatment with ashwagandha sera decreased the expression of genes involved in antioxidant defence and inflammatory response (CCL5, CD36, IL6, IL10, ADIPOQ, NFEL2, UCP2, GPX3, GPX4; geometric 95% CI for fold change > 1) and altered the expression of genes involved in fatty acid metabolism. In SKMC, ashwagandha sera altered FOXO1 and SREBF1 expression. Andrographis sera decreased IL18 and SERPINEA3 expression in AT. This physiologically relevant in vitro screening characterises the effects of ashwagandha in AT to guide future clinical trials.


Sujet(s)
Tissu adipeux , Andrographis , Antioxydants , Muscles squelettiques , Extraits de plantes , Humains , Muscles squelettiques/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques , Tissu adipeux/métabolisme , Tissu adipeux/effets des médicaments et des substances chimiques , Extraits de plantes/pharmacologie , Antioxydants/pharmacologie , Andrographis/composition chimique , Mâle , Adulte , Femelle , Anti-inflammatoires/pharmacologie , Inflammation/métabolisme , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Jeune adulte , Compléments alimentaires
6.
Sci Rep ; 14(1): 16878, 2024 07 23.
Article de Anglais | MEDLINE | ID: mdl-39043740

RÉSUMÉ

Lipid peroxidation and mitochondrial damage impair insulin sensitivity in skeletal muscle. Sirtuin-1 (SIRT1) protects mitochondria and activates under energy restriction. Dapagliflozin (Dapa) is an antihyperglycaemic agent that belongs to the sodium-glucose cotransporter-2 (SGLT2) inhibitors. Evidence shows that Dapa can induce nutrient deprivation effects, providing additional metabolic benefits. This study investigates whether Dapa can trigger nutrient deprivation to activate SIRT1 and enhance insulin sensitivity in skeletal muscle. We treated diet-induced obese (DIO) mice with Dapa and measured metabolic parameters, lipid accumulation, oxidative stress, mitochondrial function, and glucose utilization in skeletal muscle. ß-hydroxybutyric acid (ß-HB) was intervened in C2C12 myotubes. The role of SIRT1 was verified by RNA interference. We found that Dapa treatment induced nutrient deprivation state and reduced lipid deposition and oxidative stress, improved mitochondrial function and glucose tolerance in skeletal muscle. The same positive effects were observed after ß-HB intervening for C2C12 myotubes, and the promoting effects on glucose utilization were diminished by SIRT1 RNA interference. Thus, Dapa promotes a nutrient deprivation state and enhances skeletal muscle insulin sensitivity via SIRT1 activation. In this study, we identified a novel hypoglycemic mechanism of Dapa and the potential mechanistic targets.


Sujet(s)
Composés benzhydryliques , Glucosides , Insulinorésistance , Muscles squelettiques , Stress oxydatif , Sirtuine-1 , Animaux , Sirtuine-1/métabolisme , Sirtuine-1/génétique , Glucosides/pharmacologie , Muscles squelettiques/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques , Souris , Composés benzhydryliques/pharmacologie , Stress oxydatif/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Mâle , Glucose/métabolisme , Lignée cellulaire , Obésité/métabolisme , Obésité/traitement médicamenteux , Souris de lignée C57BL , Acide 3-hydroxy-butyrique/pharmacologie , Acide 3-hydroxy-butyrique/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Hypoglycémiants/pharmacologie
7.
J Agric Food Chem ; 72(30): 16687-16699, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-38990695

RÉSUMÉ

Slow oxidative myofibers play an important role in improving muscle endurance performance and maintaining body energy homeostasis. However, the targets and means to regulate slow oxidative myofibers proportion remain unknown. Here, we show that tangeretin (TG), a natural polymethoxylated flavone, significantly activates slow oxidative myofibers-related gene expression and increases type I myofibers proportion, resulting in improved endurance performance and aerobic metabolism in mice. Proteomics, molecular dynamics, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) investigations revealed that TG can directly bind to adiponectin receptor 1 (AdipoR1). Using AdipoR1-knockdown C2C12 cells and muscle-specific AdipoR1-knockout mice, we found that the positive effect of TG on regulating slow oxidative myofiber related markers expression is mediated by AdipoR1 and its downstream AMPK/PGC-1α pathway. Together, our data uncover TG as a natural compound that regulates the identity of slow oxidative myofibers via targeting the AdipoR1 signaling pathway. These findings further unveil the new function of TG in increasing the proportion of slow oxidative myofibers and enhancing skeletal muscle performance.


Sujet(s)
Flavones , Souris knockout , Muscles squelettiques , Récepteurs à l'adiponectine , Animaux , Récepteurs à l'adiponectine/métabolisme , Récepteurs à l'adiponectine/génétique , Souris , Mâle , Muscles squelettiques/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques , Flavones/métabolisme , Souris de lignée C57BL , Humains , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Oxydoréduction , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Endurance physique/effets des médicaments et des substances chimiques
8.
J Med Chem ; 67(14): 11957-11974, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39013034

RÉSUMÉ

In the quest for the discovery of antidiabetic compounds, a series of 27 1,4-dihydropyridine-indole derivatives were synthesized using a diversity approach. These compounds were systematically evaluated for their antidiabetic activity, starting with an in vitro assessment for GLUT4 translocation stimulation in L6-GLUT4myc myotubes, followed by in vivo antihyperglycemic activity evaluation in a streptozotocin (STZ)-induced diabetic rat model. Among the synthesized compounds, 12, 14, 15, 16, 19, 27, and 35 demonstrated significant potential to stimulate GLUT4 translocation in skeletal muscle cells. Compound 19 exhibited the highest potency and was selected for in vivo evaluation. A notable reduction of 21.6% (p < 0.01) in blood glucose levels was observed after 5 h of treatment with compound 19 in STZ-induced diabetic rats. Furthermore, pharmacokinetic studies affirmed that compound 19 was favorable to oral exposure with suitable pharmacological parameters. Overall, compound 19 emerged as a promising lead compound for further structural modification and optimization.


Sujet(s)
Diabète expérimental , Dihydropyridines , Conception de médicament , Transporteur de glucose de type 4 , Hypoglycémiants , Indoles , Animaux , Transporteur de glucose de type 4/métabolisme , Indoles/pharmacologie , Indoles/composition chimique , Indoles/synthèse chimique , Indoles/pharmacocinétique , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Hypoglycémiants/synthèse chimique , Hypoglycémiants/pharmacologie , Hypoglycémiants/pharmacocinétique , Hypoglycémiants/usage thérapeutique , Hypoglycémiants/composition chimique , Dihydropyridines/pharmacologie , Dihydropyridines/synthèse chimique , Dihydropyridines/composition chimique , Dihydropyridines/usage thérapeutique , Dihydropyridines/pharmacocinétique , Rats , Mâle , Relation structure-activité , Glycémie/analyse , Glycémie/métabolisme , Glycémie/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/métabolisme , Lignée cellulaire , Rat Sprague-Dawley
9.
Nutrients ; 16(13)2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38999834

RÉSUMÉ

In obesity, circulating saturated fatty acids (SFAs) and inflammatory cytokines interfere with skeletal muscle insulin signaling, leading to whole body insulin resistance. Further, obese skeletal muscle is characterized by macrophage infiltration and polarization to the inflammatory M1 phenotype, which is central to the development of local inflammation and insulin resistance. While skeletal muscle-infiltrated macrophage-myocyte crosstalk is exacerbated by SFA, the effects of other fatty acids, such as n-3 and n-6 polyunsaturated fatty acids (PUFAs), are less studied. Thus, the objective of this study was to determine the effects of long-chain n-3 and n-6 PUFAs on macrophage M1 polarization and subsequent effects on myocyte inflammation and metabolic function compared to SFA. Using an in vitro model recapitulating obese skeletal muscle cells, differentiated L6 myocytes were cultured for 24 h with RAW 264.7 macrophage-conditioned media (MCM), followed by insulin stimulation (100 nM, 20 min). MCM was generated by pre-treating macrophages for 24 h with 100 µM palmitic acid (16:0, PA-control), arachidonic acid (20:4n-6, AA), or docosahexaenoic acid (22:6n-3, DHA). Next, macrophage cultures were stimulated with a physiological dose (10 ng/mL) of lipopolysaccharide for an additional 12 h to mimic in vivo obese endotoxin levels. Compared to PA, both AA and DHA reduced mRNA expression and/or secreted protein levels of markers for M1 (TNFα, IL-6, iNOS; p < 0.05) and increased those for M2 (IL-10, TGF-ß; p < 0.05) macrophage polarization. In turn, AA- and DHA-derived MCM reduced L6 myocyte-secreted cytokines (TNFα, IL-6; p < 0.05) and chemokines (MCP-1, MIP-1ß; p < 0.05). Only AA-derived MCM increased L6-myocyte phosphorylation of Akt (p < 0.05), yet this was inconsistent with improved insulin signaling, as only DHA-derived MCM improved L6 myocyte glucose uptake (p < 0.05). In conclusion, dietary n-3 and n-6 PUFAs may be a useful strategy to modulate macrophage-myocyte inflammatory crosstalk and improve myocyte insulin sensitivity in obesity.


Sujet(s)
Acides gras omega-3 , Inflammation , Insulinorésistance , Macrophages , Animaux , Macrophages/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Souris , Acides gras omega-3/pharmacologie , Inflammation/métabolisme , Cellules RAW 264.7 , Acides gras omega-6/pharmacologie , Insuline/métabolisme , Cytokines/métabolisme , Obésité/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Rats , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques
10.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38999929

RÉSUMÉ

The mechanistic target of rapamycin complex (mTORC) regulates protein synthesis and can be activated by branched-chain amino acids (BCAAs). mTORC has also been implicated in the regulation of mitochondrial metabolism and BCAA catabolism. Some speculate that mTORC overactivation by BCAAs may contribute to insulin resistance. The present experiments assessed the effect of mTORC activation on myotube metabolism and insulin sensitivity using the mTORC agonist MHY1485, which does not share structural similarities with BCAAs. METHODS: C2C12 myotubes were treated with MHY1485 or DMSO control both with and without rapamycin. Gene expression was assessed using qRT-PCR and insulin sensitivity and protein expression by western blot. Glycolytic and mitochondrial metabolism were measured by extracellular acidification rate and oxygen consumption. Mitochondrial and lipid content were analyzed by fluorescent staining. Liquid chromatography-mass spectrometry was used to assess extracellular BCAAs. RESULTS: Rapamycin reduced p-mTORC expression, mitochondrial content, and mitochondrial function. Surprisingly, MHY1485 did not alter p-mTORC expression or cell metabolism. Neither treatment altered indicators of BCAA metabolism or extracellular BCAA content. CONCLUSION: Collectively, inhibition of mTORC via rapamycin reduces myotube metabolism and mitochondrial content but not BCAA metabolism. The lack of p-mTORC activation by MHY1485 is a limitation of these experiments and warrants additional investigation.


Sujet(s)
Mitochondries , Fibres musculaires squelettiques , Sirolimus , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Animaux , Souris , Sirolimus/pharmacologie , Lignée cellulaire , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Acides aminés à chaine ramifiée/métabolisme , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Insulinorésistance , Sérine-thréonine kinases TOR/métabolisme , Naphtyridines
11.
J Muscle Res Cell Motil ; 45(3): 155-169, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39080182

RÉSUMÉ

Pyruvate dehydrogenase kinase (PDK), which phosphorylates the pyruvate dehydrogenase complex, regulates glucose metabolism in skeletal muscle. PDK1, an isozyme whose expression is controlled by hypoxia-inducible factor-1α (HIF-1α), is thought to play a role in muscle adaptation to hypoxia. While transcriptional upregulation of PDK1 by HIF-1α is well characterised, mechanisms controlling proteolysis of PDK1 in skeletal muscle have not been thoroughly investigated. Proteasome inhibitor MG132 paradoxically reduced the abundance of PDK1 in human cancer cells and rat L6 myotubes, suggesting that MG132 might direct PDK1 towards autophagic degradation. The objectives of our current study were to determine (1) whether MG132 suppresses PDK1 levels in primary human myotubes, (2) whether chloroquine, an inhibitor of autophagy, prevents MG132-induced suppression of PDK1 in L6 myotubes, and (3) whether PYR-41, an inhibitor of ubiquitination, suppresses PDK1 in L6 myotubes. Using qPCR and/or immunoblotting, we found that despite markedly upregulating HIF-1α protein, MG132 did not alter the PDK1 expression in cultured primary human myotubes, while it suppressed both PDK1 mRNA and protein in L6 myotubes. The PDK1 levels in L6 myotubes were suppressed also during co-treatment with chloroquine and MG132. PYR-41 markedly increased the abundance of HIF-1α in primary human and L6 myotubes, while reducing the abundance of PDK1. In L6 myotubes treated with PYR-41, chloroquine increased the abundance of the epidermal growth factor receptor, but did not prevent the suppression of PDK1. Collectively, our results suggest that cultured myotubes degrade PDK1 via a pathway that cannot be inhibited by MG132, PYR-41, and/or chloroquine.


Sujet(s)
Fibres musculaires squelettiques , Pyruvate dehydrogenase acetyl-transferring kinase , Animaux , Humains , Rats , Cellules cultivées , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Leupeptines/pharmacologie , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Proteasome endopeptidase complex/métabolisme , Inhibiteurs du protéasome/pharmacologie , Protein-Serine-Threonine Kinases/métabolisme , Pyruvate dehydrogenase acetyl-transferring kinase/métabolisme , Ubiquitine/métabolisme
12.
Eur J Pharmacol ; 979: 176854, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39059568

RÉSUMÉ

Obesity-induced muscle atrophy leads to physical impairment and metabolic dysfunction, which are risky for older adults. The activity of pyruvate dehydrogenase (PDH), a critical regulator of glucose metabolism, is reduced in obesity. Additionally, PDH activator dichloroacetate (DCA) improves metabolic dysfunction. However, the effects of PDH activation on skeletal muscles in obesity remain unclear. Thus, this study aimed to evaluate the effects of PDH activation by DCA treatment on obesity-induced muscle atrophy in vitro and in vivo and elucidate the possible underlying mechanisms. Results showed that PDH activation by DCA treatment ameliorated muscle loss, decreased the cross-sectional area, and reduced grip strength in C57BL/6 mice fed a high-fat diet (HFD). Elevation of muscle atrophic factors atrogin-1 and muscle RING-finger protein-1 (MuRF-1) and autophagy factors LC3BII and p62 were abrogated by DCA treatment in palmitate-treated C2C12 myotubes and in the skeletal muscles of HFD-fed mice. Moreover, p-Akt, p-FoxO1, and p-FoxO3 protein levels were reduced and p-NF-κB p65 and p-p38 MAPK protein levels were elevated in palmitate-treated C2C12 myotubes, which were restored by DCA treatment. However, the protective effects of DCA treatment against myotube atrophy were reversed by treatment with Akt inhibitor MK2206. Taken together, our study demonstrated that PDH activation by DCA treatment can alleviate obesity-induced muscle atrophy. It may serve as a basis for developing novel strategies to prevent obesity-associated muscle loss.


Sujet(s)
Acide dichloro-acétique , Alimentation riche en graisse , Souris de lignée C57BL , Amyotrophie , Obésité , Animaux , Acide dichloro-acétique/pharmacologie , Acide dichloro-acétique/usage thérapeutique , Amyotrophie/prévention et contrôle , Amyotrophie/étiologie , Amyotrophie/traitement médicamenteux , Amyotrophie/métabolisme , Amyotrophie/anatomopathologie , Obésité/complications , Obésité/traitement médicamenteux , Souris , Mâle , Alimentation riche en graisse/effets indésirables , Muscles squelettiques/effets des médicaments et des substances chimiques , Muscles squelettiques/anatomopathologie , Muscles squelettiques/métabolisme , Complexe du pyruvate déshydrogénase/métabolisme , Lignée cellulaire , Activation enzymatique/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/anatomopathologie , Fibres musculaires squelettiques/métabolisme , Autophagie/effets des médicaments et des substances chimiques
13.
FASEB J ; 38(13): e23784, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38953567

RÉSUMÉ

To investigate the effects of heavy-load strength training during (neo-)adjuvant chemotherapy in women with breast cancer on muscle strength, body composition, muscle fiber size, satellite cells, and myonuclei. Women with stage I-III breast cancer were randomly assigned to a strength training group (ST, n = 23) performing supervised heavy-load strength training twice a week during chemotherapy, or a usual care control group (CON, n = 17). Muscle strength and body composition were measured and biopsies from m. vastus lateralis collected before the first cycle of chemotherapy (T0) and after chemotherapy and training (T1). Muscle strength increased significantly more in ST than in CON in chest-press (ST: +10 ± 8%, p < .001, CON: -3 ± 5%, p = .023) and leg-press (ST: +11 ± 8%, p < .001, CON: +3 ± 6%, p = .137). Both groups reduced fat-free mass (ST: -4.9 ± 4.0%, p < .001, CON: -5.2 ± 4.9%, p = .004), and increased fat mass (ST: +15.3 ± 16.5%, p < .001, CON: +16.3 ± 19.8%, p = .015) with no significant differences between groups. No significant changes from T0 to T1 and no significant differences between groups were observed in muscle fiber size. For myonuclei per fiber a non-statistically significant increase in CON and a non-statistically significant decrease in ST in type I fibers tended (p = .053) to be different between groups. Satellite cells tended to decrease in ST (type I: -14 ± 36%, p = .097, type II: -9 ± 55%, p = .084), with no changes in CON and no differences between groups. Strength training during chemotherapy improved muscle strength but did not significantly affect body composition, muscle fiber size, numbers of satellite cells, and myonuclei compared to usual care.


Sujet(s)
Tumeurs du sein , Force musculaire , Entraînement en résistance , Cellules satellites du muscle squelettique , Humains , Femelle , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/anatomopathologie , Entraînement en résistance/méthodes , Cellules satellites du muscle squelettique/effets des médicaments et des substances chimiques , Adulte d'âge moyen , Adulte , Traitement médicamenteux adjuvant , Composition corporelle , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/anatomopathologie , Fibres musculaires squelettiques/physiologie , Traitement néoadjuvant , Sujet âgé
14.
Elife ; 122024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38913071

RÉSUMÉ

Metabolic disorders are highly prevalent in modern society. Exercise mimetics are defined as pharmacological compounds that can produce the beneficial effects of fitness. Recently, there has been increased interest in the role of eugenol and transient receptor potential vanilloid 1 (TRPV1) in improving metabolic health. The aim of this study was to investigate whether eugenol acts as an exercise mimetic by activating TRPV1. Here, we showed that eugenol improved endurance capacity, caused the conversion of fast-to-slow muscle fibers, and promoted white fat browning and lipolysis in mice. Mechanistically, eugenol promoted muscle fiber-type transformation by activating TRPV1-mediated CaN signaling pathway. Subsequently, we identified IL-15 as a myokine that is regulated by the CaN/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Moreover, we found that TRPV1-mediated CaN/NFATc1 signaling, activated by eugenol, controlled IL-15 levels in C2C12 myotubes. Our results suggest that eugenol may act as an exercise mimetic to improve metabolic health via activating the TRPV1-mediated CaN signaling pathway.


Sujet(s)
Eugénol , Interleukine-15 , Fibres musculaires squelettiques , Facteurs de transcription NFATC , Conditionnement physique d'animal , Canaux cationiques TRPV , Canaux cationiques TRPV/métabolisme , Canaux cationiques TRPV/génétique , Animaux , Interleukine-15/métabolisme , Eugénol/pharmacologie , Eugénol/métabolisme , Souris , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Facteurs de transcription NFATC/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Mâle , Souris de lignée C57BL ,
15.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38928510

RÉSUMÉ

The decline in the function and mass of skeletal muscle during aging or other pathological conditions increases the incidence of aging-related secondary diseases, ultimately contributing to a decreased lifespan and quality of life. Much effort has been made to surmise the molecular mechanisms underlying muscle atrophy and develop tools for improving muscle function. Enhancing mitochondrial function is considered critical for increasing muscle function and health. This study is aimed at evaluating the effect of an aqueous extract of Gloiopeltis tenax (GTAE) on myogenesis and muscle atrophy caused by dexamethasone (DEX). The GTAE promoted myogenic differentiation, accompanied by an increase in peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) expression and mitochondrial content in myoblast cell culture. In addition, the GTAE alleviated the DEX-mediated myotube atrophy that is attributable to the Akt-mediated inhibition of the Atrogin/MuRF1 pathway. Furthermore, an in vivo study using a DEX-induced muscle atrophy mouse model demonstrated the efficacy of GTAE in protecting muscles from atrophy and enhancing mitochondrial biogenesis and function, even under conditions of atrophy. Taken together, this study suggests that the GTAE shows propitious potential as a nutraceutical for enhancing muscle function and preventing muscle wasting.


Sujet(s)
Dexaméthasone , Développement musculaire , Amyotrophie , Extraits de plantes , Animaux , Amyotrophie/induit chimiquement , Amyotrophie/métabolisme , Amyotrophie/traitement médicamenteux , Amyotrophie/anatomopathologie , Dexaméthasone/effets indésirables , Dexaméthasone/pharmacologie , Développement musculaire/effets des médicaments et des substances chimiques , Souris , Extraits de plantes/pharmacologie , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/génétique , Différenciation cellulaire/effets des médicaments et des substances chimiques , Myoblastes/effets des médicaments et des substances chimiques , Myoblastes/métabolisme , Lignée cellulaire , Protéines du muscle/métabolisme , Mâle , Muscles squelettiques/effets des médicaments et des substances chimiques , Muscles squelettiques/métabolisme , Muscles squelettiques/anatomopathologie , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/anatomopathologie , Souris de lignée C57BL , Protéines à motif tripartite/métabolisme , Protéines à motif tripartite/génétique , Rhodophyta
16.
Sci Rep ; 14(1): 13282, 2024 06 10.
Article de Anglais | MEDLINE | ID: mdl-38858416

RÉSUMÉ

Recent research has emphasized the role of macrophage-secreted factors on skeletal muscle metabolism. We studied Sargassum Serratifolium ethanol extract (ESS) in countering lipopolysaccharide (LPS)-induced changes in the macrophage transcriptome and their impact on skeletal muscle. Macrophage-conditioned medium (MCM) from LPS-treated macrophages (LPS-MCM) and ESS-treated macrophages (ESS-MCM) affected C2C12 myotube cells. LPS-MCM upregulated muscle atrophy genes and reduced glucose uptake, while ESS-MCM reversed these effects. RNA sequencing revealed changes in the immune system and cytokine transport pathways in ESS-treated macrophages. Protein analysis in ESS-MCM showed reduced levels of key muscle atrophy-related proteins, TNF-α, IL-6, IL-1, and GDF-15. These proteins play crucial roles in muscle function. These findings highlight the intricate relationship between the macrophage transcriptome and their secreted factors in either impairing or enhancing skeletal muscle function. ESS treatment has the potential to reduce macrophage-derived cytokines, preserving skeletal muscle function.


Sujet(s)
Macrophages , Amyotrophie , Extraits de plantes , Sargassum , Sargassum/composition chimique , Macrophages/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Animaux , Extraits de plantes/pharmacologie , Extraits de plantes/composition chimique , Souris , Amyotrophie/métabolisme , Amyotrophie/traitement médicamenteux , Amyotrophie/anatomopathologie , Transcriptome , Lipopolysaccharides , Cytokines/métabolisme , Muscles squelettiques/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques , Muscles squelettiques/anatomopathologie , Lignée cellulaire , Milieux de culture conditionnés/pharmacologie , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques
17.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38892371

RÉSUMÉ

The composition of skeletal muscle fiber types affects the quality of livestock meat and human athletic performance and health. L-arginine (Arg), a semi-essential amino acid, has been observed to promote the formation of slow-twitch muscle fibers in animal models. However, the precise molecular mechanisms are still unclear. This study investigates the role of Arg in skeletal muscle fiber composition and mitochondrial function through the mTOR signaling pathway. In vivo, 4-week C56BL/6J male mice were divided into three treatment groups and fed a basal diet supplemented with different concentrations of Arg in their drinking water. The trial lasted 7 weeks. The results show that Arg supplementation significantly improved endurance exercise performance, along with increased SDH enzyme activity and upregulated expression of the MyHC I, MyHC IIA, PGC-1α, and NRF1 genes in the gastrocnemius (GAS) and quadriceps (QUA) muscles compared to the control group. In addition, Arg activated the mTOR signaling pathway in the skeletal muscle of mice. In vitro experiments using cultured C2C12 myotubes demonstrated that Arg elevated the expression of slow-fiber genes (MyHC I and Tnnt1) as well as mitochondrial genes (PGC-1α, TFAM, MEF2C, and NRF1), whereas the effects of Arg were inhibited by the mTOR inhibitor rapamycin. In conclusion, these findings suggest that Arg modulates skeletal muscle fiber type towards slow-twitch fibers and enhances mitochondrial functions by upregulating gene expression through the mTOR signaling pathway.


Sujet(s)
Arginine , Fibres musculaires squelettiques , Transduction du signal , Sérine-thréonine kinases TOR , Animaux , Sérine-thréonine kinases TOR/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Souris , Arginine/métabolisme , Arginine/pharmacologie , Mâle , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Fibres musculaires à contraction lente/métabolisme , Fibres musculaires à contraction lente/effets des médicaments et des substances chimiques , Muscles squelettiques/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques , Lignée cellulaire
18.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 219-227, 2024.
Article de Anglais | MEDLINE | ID: mdl-38945887

RÉSUMÉ

This study investigated the protective effect of carnosine and its components (L-histidine and ß-alanine [HA]) against dexamethasone (Dex)-induced muscle atrophy in C2C12 myotubes. Myotubes were treated with Dex (10 µM) to induce muscle atrophy manifested by decreased myotube diameter, low myosin heavy chain content, and increased expression of muscle atrophy-associated ubiquitin ligases (Atrogin-1, MuRF-1, and Cbl-b). Carnosine (20 mM) treatment significantly improved the myotube diameter and MyHC protein expression level in Dex-treated C2C12 myotubes. It also downregulated the expression of Atrogin-1, MuRF-1, and Cbl-b and suppressed the expression of forkhead box O3 (FoxO3a) mediated by Dex. Furthermore, reactive oxygen species production was increased by Dex but was ameliorated by carnosine treatment. However, HA (20 mM), the component of carnosine, treatment was found ineffective in preventing Dex-induced protein damage. Therefore, based on above results it can be suggested that carnosine could be a potential therapeutic agent to prevent Dex-induced muscle atrophy compared to its components HA.


Sujet(s)
Carnosine , Dexaméthasone , Fibres musculaires squelettiques , Protéines du muscle , Amyotrophie , Espèces réactives de l'oxygène , SKP cullin F-box protein ligases , Carnosine/pharmacologie , Dexaméthasone/pharmacologie , Amyotrophie/induit chimiquement , Amyotrophie/prévention et contrôle , Amyotrophie/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/métabolisme , Animaux , Souris , Protéines du muscle/métabolisme , Lignée cellulaire , Espèces réactives de l'oxygène/métabolisme , SKP cullin F-box protein ligases/métabolisme , Ubiquitin-protein ligases/métabolisme , Protéine O3 à motif en tête de fourche/métabolisme , Protéines à motif tripartite/métabolisme , Chaînes lourdes de myosine/métabolisme
19.
Int J Mol Sci ; 25(11)2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38892252

RÉSUMÉ

Muscular atrophy is a complex catabolic condition that develops due to several inflammatory-related disorders, resulting in muscle loss. Tumor necrosis factor alpha (TNF-α) is believed to be one of the leading factors that drive inflammatory response and its progression. Until now, the link between inflammation and muscle wasting has been thoroughly investigated, and the non-coding RNA machinery is a potential connection between the candidates. This study aimed to identify specific miRNAs for muscular atrophy induced by TNF-α in the C2C12 murine myotube model. The difference in expression of fourteen known miRNAs and two newly identified miRNAs was recorded by next-generation sequencing between normal muscle cells and treated myotubes. After validation, we confirmed the difference in the expression of one novel murine miRNA (nov-mmu-miRNA-1) under different TNF-α-inducing conditions. Functional bioinformatic analyses of nov-mmu-miRNA-1 revealed the potential association with inflammation and muscle atrophy. Our results suggest that nov-mmu-miRNA-1 may trigger inflammation and muscle wasting by the downregulation of LIN28A/B, an anti-inflammatory factor in the let-7 family. Therefore, TNF-α is involved in muscle atrophy through the modulation of the miRNA cellular machinery. Here, we describe for the first time and propose a mechanism for the newly discovered miRNA, nov-mmu-miRNA-1, which may regulate inflammation and promote muscle atrophy.


Sujet(s)
microARN , Amyotrophie , Facteur de nécrose tumorale alpha , Animaux , microARN/génétique , microARN/métabolisme , Souris , Facteur de nécrose tumorale alpha/métabolisme , Facteur de nécrose tumorale alpha/génétique , Amyotrophie/génétique , Amyotrophie/métabolisme , Amyotrophie/anatomopathologie , Amyotrophie/induit chimiquement , Lignée cellulaire , Muscles squelettiques/métabolisme , Muscles squelettiques/anatomopathologie , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/anatomopathologie , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Séquençage nucléotidique à haut débit
20.
Tissue Cell ; 89: 102423, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38875923

RÉSUMÉ

Skeletal muscle function is highly dependent on the energy supply provided by mitochondria. Besides ATP production, mitochondria have several other roles, such as calcium storage, heat production, cell death signaling, autophagy regulation and redox state modulation. Mitochondrial function is crucial for skeletal muscle fiber formation. Disorders that affect mitochondria have a major impact in muscle development and function. Here we studied the role of mitochondria during chick skeletal myogenesis. We analyzed the intracellular distribution of mitochondria in myoblasts, fibroblasts and myotubes using Mitotracker labeling. Mitochondrial respiration was investigated in chick muscle cells. Our results show that (i) myoblasts and myotubes have more mitochondria than muscle fibroblasts; (ii) mitochondria are organized in long lines within the whole cytoplasm and around the nuclei of myotubes, while in myoblasts they are dispersed in the cytoplasm; (iii) the area of mitochondria in myotubes increases during myogenesis, while in myoblasts and fibroblasts there is a slight decrease; (iv) mitochondrial length increases in the three cell types (myoblasts, fibroblasts and myotubes) during myogenesis; (v) the distance of mitochondria to the nucleus increases in myoblasts and myotubes during myogenesis; (vi) Rotenone inhibits muscle fiber formation, while FCCP increases the size of myotubes; (vii) N-acetyl cysteine (NAC), an inhibitor of ROS formation, rescues the effects of Rotenone on muscle fiber size; and (viii) Rotenone induces the production of ROS in chick myogenic cells. The collection of our results suggests a role of ROS signaling in mitochondrial function during chick myogenesis.


Sujet(s)
Développement musculaire , Fibres musculaires squelettiques , Myoblastes , Espèces réactives de l'oxygène , Roténone , Animaux , Espèces réactives de l'oxygène/métabolisme , Développement musculaire/effets des médicaments et des substances chimiques , Embryon de poulet , Roténone/pharmacologie , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires squelettiques/cytologie , Myoblastes/métabolisme , Myoblastes/effets des médicaments et des substances chimiques , Myoblastes/cytologie , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE