Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 871
Filtrer
1.
Sci Rep ; 14(1): 18470, 2024 08 09.
Article de Anglais | MEDLINE | ID: mdl-39122799

RÉSUMÉ

The microbial communities residing in the mosquito midgut play a key role in determining the outcome of mosquito pathogen infection. Elizabethkingia anophelis, originally isolated from the midgut of Anopheles gambiae possess a broad-spectrum antiviral phenotype, yet a gap in knowledge regarding the mechanistic basis of its interaction with viruses exists. The current study aims to identify pathways and genetic factors linked to E. anophelis antiviral activity. The understanding of E. anophelis antiviral mechanism could lead to novel transmission barrier tools to prevent arboviral outbreaks. We utilized a non-targeted multi-omics approach, analyzing extracellular lipids, proteins, metabolites of culture supernatants coinfected with ZIKV and E. anophelis. We observed a significant decrease in arginine and phenylalanine levels, metabolites that are essential for viral replication and progression of viral infection. This study provides insights into the molecular basis of E. anophelis antiviral phenotype. The findings lay a foundation for in-depth mechanistic studies.


Sujet(s)
Flavobacteriaceae , Virus Zika , Virus Zika/physiologie , Animaux , Flavobacteriaceae/métabolisme , Flavobacteriaceae/génétique , Anopheles/virologie , Anopheles/microbiologie , Infection par le virus Zika/virologie , Antiviraux/pharmacologie , Antiviraux/métabolisme , Réplication virale , Phénylalanine/métabolisme , Arginine/métabolisme , Multi-omique
2.
J Trop Pediatr ; 70(5)2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39164190

RÉSUMÉ

The objective of this study was to determine the risk factors associated with Elizabethkingia anophelis infection in neonates admitted to a tertiary care neonatal intensive care unit (NICU). A case-control study was undertaken as part of the outbreak investigation for E. anophelis sepsis in a tertiary care NICU in South India. Thirty-eight neonates with E. anophelis bloodstream infection (BSI) between January 2021 and February 2022 were enrolled as cases, and 38 neonates symptomatic with other BSIs, were selected as controls, and risk factors analysed. The 38 cases were relatively stable neonates, likely to be admitted to level 1 and level 2 NICU, unlike the controls, who were sicker and required level 3 NICU care. Only a third of neonates with Elizabethkingia sepsis had traditional risk factors like central lines, need for respiratory support or perinatal risk factors. Multiple logistic regression analysis revealed that neonates with E. anophelis infection were more likely to be stable and on only enteral feeds, cared in level 1 or 2 of the NICU. This observation, combined with isolation of Elizabethkingia meningosepticum from breast pumps earlier, led us to autoclave the feeding vessels and milk containers along with provision of hot water for cleaning breast pumps, and adoption of general infection control measures, after which incident cases declined. Sanger sequencing of 10 representative isolates obtained from the neonates showed 100% sequence identity to E. anophelis. Infection due to E. anophelis affects relatively stable neonates without traditional risk factors for sepsis. Adherence to asepsis routines and housekeeping protocols helps to prevent the spread of infection.


Elizabethkingia anophelis is an emerging pathogen causing infection in neonates. In the present case­control study, we found that E. anophelis was more likely to infect otherwise healthy neonates, on enteral nutrition, without the traditional risk factors for sepsis. Mortality was 23.7% (9/38). About 55.3% (21/38) had meningitis and 23.8% (9/38) had hydrocephalus. Additionally, 76% isolates were multi-drug resistant, with the isolates showing highest susceptibility to minocycline (100%) and levofloxacin (97.8%). Source identification was not possible even after multiple rounds of extensive environmental testing, but it is possibly related to contamination of water and/or milk sources. Interventions addressing the same led to a dramatic decline in the infection rates, though occasional infection without clustering continues to occur. Sanger sequencing of 10 representative isolates confirmed sequence identity to E. anophelis.


Sujet(s)
Épidémies de maladies , Infections à Flavobacteriaceae , Flavobacteriaceae , Unités de soins intensifs néonatals , Centres de soins tertiaires , Humains , Nouveau-né , Études cas-témoins , Flavobacteriaceae/isolement et purification , Flavobacteriaceae/génétique , Facteurs de risque , Mâle , Femelle , Infections à Flavobacteriaceae/épidémiologie , Infections à Flavobacteriaceae/microbiologie , Inde/épidémiologie , Infection croisée/épidémiologie , Infection croisée/microbiologie , Sepsie/épidémiologie , Sepsie/microbiologie
3.
Article de Anglais | MEDLINE | ID: mdl-38995174

RÉSUMÉ

A novel facultatively anaerobic and Gram-stain-negative bacterium, designated FJH33T, was isolated from mangrove sediment sampled in Zhangzhou, PR China. Cells of strain FJH33T were rod-shaped or slightly curved-shaped, with widths of 0.3-0.5 µm and lengths of 1.0-3.0 µm. Optimum growth of strain FJH33T occurred in the presence of 3 % NaCl (w/v), at 33 °C and at pH 7.0. Oxidase activity was negative, while catalase activity was positive. Its iron-reducing ability was determined. Based on 16S rRNA gene sequence similarity, strain FJH33T was most closely related to Maribellus luteus XSD2T (95.1 %), followed by Maribellus sediminis Y2-1-60T (95.0 %) and Maribellus maritimus 5E3T (94.9 %). Genome analysis of strains FJH33T and M. luteus XSD2T revealed low genome relatedness, with an average nucleotide identity value of 73.8% and a digital DNA-DNA hybridization value of 19.0%. Phylogenetic trees built from 16S rRNA genes and genome sequences showed that strain FJH33T represents a relatively independent phylogenetic lineage within the genus Maribellus. The major cellular fatty acids (≥10 %) were iso-C15 : 0 and C18 : 1 ω9c. The sole respiratory quinone was MK-7. The polar lipids consisted of phosphatidylethanolamine, diphosphatidylcholine, diphosphatidyglycerol and one unidentified lipid. The DNA G+C content was 41.4 mol%. Based on the integrated results of phylogenetic, physiological, biochemical and chemotaxonomic characterizations, we propose that strain FJH33T represents a novel species of the genus Maribellus, for which the name Maribellus mangrovi sp. nov. is proposed. The type strain is FJH33T (=KCTC 102210T=MCCC 1H01459T).


Sujet(s)
Techniques de typage bactérien , Composition en bases nucléiques , ADN bactérien , Acides gras , Sédiments géologiques , Hybridation d'acides nucléiques , Phylogenèse , ARN ribosomique 16S , Analyse de séquence d'ADN , Vitamine K2 , Sédiments géologiques/microbiologie , ARN ribosomique 16S/génétique , ADN bactérien/génétique , Chine , Vitamine K2/analogues et dérivés , Vitamine K2/analyse , Fer/métabolisme , Flavobacteriaceae/classification , Flavobacteriaceae/génétique , Flavobacteriaceae/isolement et purification , Zones humides
4.
Appl Environ Microbiol ; 90(7): e0036724, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-38953371

RÉSUMÉ

Flavobacteriia are the dominant and active bacteria during algal blooms and play an important role in polysaccharide degradation. However, little is known about phages infecting Flavobacteriia, especially during green tide. In this study, a novel virus, vB_TgeS_JQ, infecting Flavobacteriia was isolated from the surface water of the Golden Beach of Qingdao, China. Transmission electron microscopy demonstrated that vB_TgeS_JQ had the morphology of siphovirus. The experiments showed that it was stable from -20°C to 45°C and pH 5 to pH 8, with latent and burst periods both lasting for 20 min. Genomic analysis showed that the phage vB_TgeS_JQ contained a 40,712-bp dsDNA genome with a GC content of 30.70%, encoding 74 open-reading frames. Four putative auxiliary metabolic genes were identified, encoding electron transfer-flavoprotein dehydrogenase, calcineurin-like phosphoesterase, phosphoribosyl-ATP pyrophosphohydrolase, and TOPRIM nucleotidyl hydrolase. The abundance of phage vB_TgeS_JQ was higher during Ulva prolifera (U. prolifera) blooms compared with other marine environments. The phylogenetic and comparative genomic analyses revealed that vB_TgeS_JQ exhibited significant differences from all other phage isolates in the databases and therefore was classified as an undiscovered viral family, named Zblingviridae. In summary, this study expands the knowledge about the genomic, phylogenetic diversity and distribution of flavobacterial phages (flavophages), especially their roles during U. prolifera blooms. IMPORTANCE: The phage vB_TgeS_JQ was the first flavobacterial phage isolated during green tide, representing a new family in Caudoviricetes and named Zblingviridae. The abundance of phage vB_TgeS_JQ was higher during the Ulva prolifera blooms. This study provides insights into the genomic, phylogenetic diversity, and distribution of flavophages, especially their roles during U. prolifera blooms.


Sujet(s)
Bactériophages , Génome viral , Phylogenèse , Bactériophages/génétique , Bactériophages/isolement et purification , Bactériophages/classification , Chine , Flavobacteriaceae/virologie , Flavobacteriaceae/génétique , Eutrophisation , Eau de mer/virologie , Eau de mer/microbiologie , ADN viral/génétique , Ulva/virologie , Siphoviridae/génétique , Siphoviridae/classification , Siphoviridae/isolement et purification , Siphoviridae/ultrastructure
5.
Mar Genomics ; 76: 101125, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39009496

RÉSUMÉ

Salinimicrobium sp. 3283s is an aerobic, golden-yellow pigment-producing, Flavobacteriaceae bacterium isolated from the sediments at the depth of 1751 m in the South China Sea. In this study, we present the complete genome sequence of strain 3283s, which only have a single circular chromosome comprising 3,702,683 bp with 41.41% G + C content and no circular plasmid. In total, 3257 protein coding genes, 45 tRNA, 9 rRNA, and 13 sRNA genes were obtained. In terms of the function of gene annotation, strain 3283s was more different from Salinimicrobium oceani J15B91, which was isolated from the South China Sea at a similar depth, and more similar to a Mariana Trench-derived strain Salinimicrobium profundisediminis MT39, which was closer in phylogenetic taxonomic status, suggesting that strain 3283s possesses a stronger potential to adapt to the deep-sea environment. Furthermore, the high- pressure simulations also confirmed that strain 3283s can grow in both 30 MPa and 60 MPa hydrostatic pressure environments, and that it grows better in 30 MPa hydrostatic pressure environments than in 60 MPa hydrostatic pressure environments. In addition, we found a large number of genes in strain 3283s that can promote better adaptation of the bacteria to the low oxygen and high hydrostatic pressure (HHP) environment of the deep sea, such as biosynthetic enzymes of antioxidant pigments, genes encoding cytochromes with enhanced affinity for oxygen, proteins for adaptation to HHP, and genes encoding TonB-dependent transporters in the absence of flagella.


Sujet(s)
Flavobacteriaceae , Génome bactérien , Sédiments géologiques , Sédiments géologiques/microbiologie , Chine , Flavobacteriaceae/génétique , Phylogenèse , Séquençage du génome entier , Eau de mer/microbiologie
6.
mSphere ; 9(7): e0019824, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-38940599

RÉSUMÉ

Skeletonema costatum, a cosmopolitan diatom primarily inhabiting coastal ecosystems, exhibits a typically close yet variable relationship with heterotrophic bacteria. The increasing temperature of surface seawater is expected to substantially affect the viability and ecological dynamics of S. costatum, potentially altering its relationship with bacteria. However, it remains unclear to what extent the elevated temperature could change these relationships. Here, the relationship between axenic S. costatum and natural seawater bacteria underwent a dramatic shift from mutualism to antagonism as the co-culture temperature increased from 20°C to 25°C. The co-occurrence network indicated significantly increased complexity of interaction between S. costatum and bacteria community after temperature elevation, especially with Flavobacteriaceae, implying their potential role in eliminating S. costatum under higher temperatures. Additionally, a Flavobacteriaceae isolate, namely MS1 identified as Tamlana genus, was isolated from the co-culture system at 25°C. MS1 had a remarkable ability to eliminate S. costatum, with the mortality rate at 25°C steadily rising from 30.2% at 48 h to 92.4% at 120 h. However, it promoted algal growth to some extent at 20°C. These results demonstrated that increased temperature promotes MS1 shifts from mutualism to antagonism with S. costatum. According to the comparative genomics analysis, changes in the lifestyle of MS1 were attributed to the increased gliding motility and attachment of MS1 under elevated temperature, enabling it to exert an algicidal effect through direct contact with alga. This investigation provided an advanced understanding of interactions between phytoplankton and bacteria in future warming oceanic ecosystems. IMPORTANCE: Ocean warming profoundly influences the growth and metabolism of phytoplankton and bacteria, thereby significantly reshaping their interactions. Previous studies have shown that warming can change bacterial lifestyle from mutualism to antagonism with phytoplankton, but the underlying mechanism remains unclear. In this study, we found that high temperature promotes Tamlana sp. MS1 adhesion to Skeletonema costatum, leading to algal lysis through direct contact, demonstrating a transition in lifestyle from mutualism to antagonism with increasing temperature. Furthermore, the gliding motility of MS1 appears to be pivotal in mediating the transition of its lifestyle. These findings not only advance our understanding of the phytoplankton-bacteria relationship under ocean warming but also offer valuable insights for predicting the impact of warming on phytoplankton carbon sequestration.


Sujet(s)
Antibiose , Diatomées , Flavobacteriaceae , Eau de mer , Symbiose , Eau de mer/microbiologie , Flavobacteriaceae/génétique , Flavobacteriaceae/physiologie , Diatomées/physiologie , Diatomées/génétique , Bactéries/classification , Bactéries/génétique , Température , Phylogenèse , Température élevée , Techniques de coculture , Microbiote
7.
Am J Case Rep ; 25: e943920, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38881048

RÉSUMÉ

BACKGROUND Flavonifractor plautii belongs to the clostridium family, which can lead to local infections as well as the bloodstream infections. Flavonifractor plautii caused infection is rarely few in the clinic. To understand better Flavonifractor plautii, we investigated the drug sensitivity and perform genome sequencing of Flavonifractor plautii isolated from blood samples in China and explored the drug resistance and pathogenic mechanism of the bacteria. CASE REPORT The Epsilometer test method was used to detect the sensitivity of flavonoid bacteria to antimicrobial agents. PacBio sequencing technology was employed to sequence the whole genome of Flavonifractor plautii, and gene prediction and functional annotation were also analyzed. Flavonifractor plautii displayed sensitivity to most drugs but resistance to fluoroquinolones and tetracycline, potentially mediated by tet (W/N/W). The total genome size of Flavonifractor plautii was 4,573,303 bp, and the GC content was 59.78%. Genome prediction identified 4,506 open reading frames, including 9 ribosomal RNAs and 66 transfer RNAs. It was detected that the main virulence factor-coding genes of the bacteria were the capsule, polar flagella and FbpABC, which may be associated with bacterial movement, adhesion, and biofilm formation. CONCLUSIONS The results of whole-genome sequencing could provide relevant information about the drug resistance mechanism and pathogenic mechanism of bacteria and offer a basis for clinical diagnosis and treatment.


Sujet(s)
Bactériémie , Humains , Bactériémie/microbiologie , Bactériémie/traitement médicamenteux , Génome bactérien , Séquençage du génome entier , Antibactériens/usage thérapeutique , Mâle , Tests de sensibilité microbienne , Flavobacteriaceae/génétique , Flavobacteriaceae/isolement et purification
8.
BMC Microbiol ; 24(1): 214, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38886642

RÉSUMÉ

BACKGROUND: Bergeyella porcorum is a newly identified bacterium that has an ambiguous relationship with pneumonia in pigs. However, few studies have adequately characterized this species. RESULTS: In this study, we analyzed the morphological, physiological, and genomic characteristics of the newly identified B. porcorum sp. nov. strain QD2021 isolated from pigs. The complete genome sequence of the B. porcorum QD2021 strain consists of a single circular chromosome (2,271,736 bp, 38.51% G + C content), which encodes 2,578 genes. One plasmid with a size of 70,040 bp was detected. A total of 121 scattered repeat sequences, 319 tandem repeat sequences, 4 genomic islands, 5 prophages, 3 CRISPR sequences, and 51 ncRNAs were predicted. The coding genes of the B. porcorum genome were successfully annotated across eight databases (NR, GO, KEGG, COG, TCDB, Pfam, Swiss-Prot and CAZy) and four pathogenicity-related databases (PHI, CARD, VFDB and ARDB). In addition, a comparative genome analysis was performed to explore the evolutionary relationships of B. porcorum QD2021. CONCLUSIONS: To our knowledge, this is the first study to provide fundamental phenotypic and whole-genome sequences for B. porcorum. Our results extensively expand the current knowledge and could serve as a valuable genomic resource for future research on B. porcorum.


Sujet(s)
Composition en bases nucléiques , Génome bactérien , Phylogenèse , Séquençage du génome entier , Animaux , Chine , Génome bactérien/génétique , Suidae , Flavobacteriaceae/génétique , Flavobacteriaceae/isolement et purification , Flavobacteriaceae/classification , Maladies des porcs/microbiologie , ADN bactérien/génétique , Ilots génomiques , Plasmides/génétique , Infections à Flavobacteriaceae/microbiologie , Infections à Flavobacteriaceae/médecine vétérinaire , Analyse de séquence d'ADN , Annotation de séquence moléculaire
9.
Article de Anglais | MEDLINE | ID: mdl-38885037

RÉSUMÉ

Strain I65T (=KACC 22647T=JCM 35315T), a novel Gram-stain-negative, strictly aerobic, non-motile, non-spore-forming, rod-shaped, and orange-pigmented bacterium was isolated from influent water of a wastewater treatment system after treatment with several antibiotics, such as meropenem, gentamicin, and macrolide. The newly identified bacterial strain I65T exhibits significant multi-drug and heavy metal resistance characteristics. Strain I65T was grown in Reasoner's 2A medium [0 %-2 % (w/v) NaCl (optimum, 0 %), pH 5.0-10.0 (optimum, pH 7.0), and 20-45°C (optimum, 30 °C)]. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that strain I65T was closely related to Niabella yanshanensis CCBAU 05354T (99.56 % sequence similarity), Niabella hibiscisoli THG-DN5.5T (97.51 %), and Niabella ginsengisoli GR10-1T (97.09 %). Further analysis of the whole-genome sequence confirmed that the digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between strain I65T and N. yanshanensis CCBAU 05354T were 23.4, 80.7, and 85.0 %, respectively, suggesting that strain I65T is distinct from N. yanshanensis. The genome size of strain I65T was 6.1 Mbp, as assessed using the Oxford Nanopore platform, and its genomic DNA G+C content was 43.0 mol%. The major fatty acids of strain I65T were iso-C15 : 0 and iso-C15 : 1 G, and the major respiratory quinone was MK-7. Moreover, the major polar lipid of strain I65T was phosphatidylethanolamine. Based on genotypic, chemotaxonomic, and phenotype data, strain I65T represents a novel species belonging to the genus Niabella, for which the name Niabella defluvii sp. nov. is proposed. The type strain is I65T (=KACC 22647T=JCM 35315T).


Sujet(s)
Techniques de typage bactérien , Composition en bases nucléiques , ADN bactérien , Acides gras , Hybridation d'acides nucléiques , Phylogenèse , ARN ribosomique 16S , Analyse de séquence d'ADN , Eaux usées , Eaux usées/microbiologie , ARN ribosomique 16S/génétique , ADN bactérien/génétique , Acides gras/analyse , Flavobacteriaceae/génétique , Flavobacteriaceae/isolement et purification , Flavobacteriaceae/classification , Antibactériens/pharmacologie , Vitamine K2/analogues et dérivés , Vitamine K2/analyse , Phospholipides/analyse , Microbiologie de l'eau , Séquençage du génome entier
10.
J Antimicrob Chemother ; 79(7): 1577-1580, 2024 07 01.
Article de Anglais | MEDLINE | ID: mdl-38742706

RÉSUMÉ

BACKGROUND: The blaB, blaGOB and blaCME genes are thought to confer ß-lactam resistance to Elizabethkingia anophelis, based on experiments conducted primarily on Escherichia coli. OBJECTIVES: To determine the individual contributions of ß-lactamase genes to increased MICs in E. anophelis and to assess their impact on the in vivo efficacy of carbapenem therapy. METHODS: Scarless gene deletion of one or more ß-lactamase gene(s) was performed in three clinical E. anophelis isolates. MICs were determined by broth microdilution. Hydrolytic activity and expressions of ß-lactamase genes were measured by an enzymatic assay and quantitative RT-PCR, respectively. In vivo efficacy was determined using Galleria mellonella and murine thigh infection models. RESULTS: The presence of blaB resulted in >16-fold increases, while blaGOB caused 4-16-fold increases of carbapenem MICs. Hydrolysis of carbapenems was highest in lysates of blaB-positive strains, possibly due to the constitutionally higher expression of blaB. Imipenem was ineffective against blaB-positive isolates in vivo in terms of improvement of the survival of wax moth larvae and reduction of murine bacterial load. The deletion of blaB restored the efficacy of imipenem. The blaB gene was also responsible for a >4-fold increase of ampicillin/sulbactam and piperacillin/tazobactam MICs. The presence of blaCME, but not blaB or blaGOB, increased the MICs of ceftazidime and cefepime by 8-16- and 4-8-fold, respectively. CONCLUSIONS: The constitutionally and highly expressed blaB gene in E. anophelis was responsible for increased MICs of carbapenems and led to their poor in vivo efficacy. blaCME increased the MICs of ceftazidime and cefepime.


Sujet(s)
Antibactériens , Infections à Flavobacteriaceae , Flavobacteriaceae , Tests de sensibilité microbienne , bêta-Lactamases , bêta-Lactames , Animaux , bêta-Lactamases/génétique , bêta-Lactamases/métabolisme , Flavobacteriaceae/effets des médicaments et des substances chimiques , Flavobacteriaceae/génétique , Infections à Flavobacteriaceae/microbiologie , Infections à Flavobacteriaceae/traitement médicamenteux , Antibactériens/pharmacologie , Souris , bêta-Lactames/pharmacologie , Modèles animaux de maladie humaine , Carbapénèmes/pharmacologie , Papillons de nuit/microbiologie , Humains , Résistance aux bêta-lactamines/génétique , Femelle
11.
PeerJ ; 12: e17095, 2024.
Article de Anglais | MEDLINE | ID: mdl-38525276

RÉSUMÉ

The brown-banded cockroach (Supella longipalpa) is a widespread nuisance and public health pest. Like the German cockroach (Blattella germanica), this species is adapted to the indoor biome and completes the entirety of its life cycle in human-built structures. Recently, understanding the contributions of commensal and symbiotic microbes to the biology of cockroach pests, as well as the applications of targeting these microbes for pest control, have garnered significant scientific interest. However, relative to B. germanica, the biology of S. longipalpa, including its microbial associations, is understudied. Therefore, the goal of the present study was to quantitatively examine and characterize both the endosymbiont and gut bacterial communities of S. longipalpa for the first time. To do so, bacterial 16S rRNA gene amplicon sequencing was conducted on DNA extracts from whole adult females and males, early instar nymphs, and late instar nymphs. The results demonstrate that the gut microbiome is dominated by two genera of bacteria known to have beneficial probiotic effects in other organisms, namely Lactobacillus and Akkermansia. Furthermore, our data show a significant effect of nymphal development on diversity and variation in the gut microbiome. Lastly, we reveal significant negative correlations between the two intracellular endosymbionts, Blattabacterium and Wolbachia, as well as between Blattabacterium and the gut microbiome, suggesting that Blattabacterium endosymbionts could directly or indirectly influence the composition of other bacterial populations. These findings have implications for understanding the adaptation of S. longipalpa to the indoor biome, its divergence from other indoor cockroach pest species such as B. germanica, the development of novel control approaches that target the microbiome, and fundamental insect-microbe interactions more broadly.


Sujet(s)
Blattellidae , Flavobacteriaceae , Microbiome gastro-intestinal , Mâle , Animaux , Femelle , Adulte , Humains , Blattellidae/génétique , ARN ribosomique 16S/génétique , Flavobacteriaceae/génétique , Symbiose/génétique
12.
Eur J Clin Microbiol Infect Dis ; 43(4): 797-803, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38356016

RÉSUMÉ

Fourier-transform infrared (FTIR) spectroscopy has the potential to be used for bacterial typing and outbreak characterization. We evaluated FTIR for the characterization of an outbreak caused by Elizabethkingia miricola. During the 2020-2021 period, 26 isolates (23 clinical and 3 environmental) were collected and analyzed by FTIR (IR Biotyper) and core-genome MLST (cgMLST), in addition to antimicrobial susceptibility testing. FTIR spectroscopy and cgMLST showed that 22 of the isolates were related to the outbreak, including the environmental samples, with only one discordance between both methods. Then, FTIR is useful for E. miricola typing and can be easily implemented in the laboratory.


Sujet(s)
Flavobacteriaceae , Humains , Typage par séquençage multilocus , Spectroscopie infrarouge à transformée de Fourier , Flavobacteriaceae/génétique , Épidémies de maladies
13.
Appl Environ Microbiol ; 90(2): e0202523, 2024 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-38259074

RÉSUMÉ

Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.


Sujet(s)
, Flavobacteriaceae , Varech , Laminaria , Microbiote , Phaeophyceae , Humains , Métagénome , Varech/métabolisme , Polyosides/métabolisme , Alginates/métabolisme , Flavobacteriaceae/génétique , Flavobacteriaceae/métabolisme , Carbone/métabolisme
14.
Int Microbiol ; 27(4): 1169-1180, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38127105

RÉSUMÉ

The bacteria belonging to the Myroides genus are opportunistic pathogens causing community or hospital-acquired infections that result in treatment failure due to antibiotic resistance. This study aimed to investigate molecular mechanisms of antibiotic resistance, clonal relatedness, and the biofilm forming capacity of the 51 multi-drug resistant Myroides odoratimimus. All isolates were screened for blaKPC, blaOXA, blaVIM, blaIMP, blaMUS, blaTUS, blaNDM, and blaB genes by using PCR amplification. Whole genome sequencing (WGS) was applied on three randomly selected isolates for further investigation of antibiotic resistance mechanisms. Clonal relatedness was analyzed by Pulsed-field gel electrophoresis (PFGE) and the microtiter plate method was used to demonstrate biofilm formation. All isolates were positive for biofilm formation. PCR analysis resulted in a positive for only the blaMUS-1 gene. WGS identified blaMUS-1, erm(F), ere(D), tet(X), and sul2 genes in all strains tested. Moreover, the genomic analyses of three strains revealed that genomes contained a large number of virulence factors (VFs). PFGE yielded a clustering rate of 96%. High clonal relatedness, biofilm formation, and multi-drug resistance properties may lead to the predominance of these opportunistic pathogens in hospital environments and make them cause nosocomial infections.


Sujet(s)
Antibactériens , Biofilms , Carbapénèmes , Multirésistance bactérienne aux médicaments , Flavobacteriaceae , Génome bactérien , Séquençage du génome entier , Multirésistance bactérienne aux médicaments/génétique , Biofilms/effets des médicaments et des substances chimiques , Biofilms/croissance et développement , Humains , Flavobacteriaceae/génétique , Flavobacteriaceae/effets des médicaments et des substances chimiques , Flavobacteriaceae/isolement et purification , Flavobacteriaceae/classification , Carbapénèmes/pharmacologie , Antibactériens/pharmacologie , Infections à Flavobacteriaceae/microbiologie , Tests de sensibilité microbienne , Facteurs de virulence/génétique , bêta-Lactamases/génétique , Électrophorèse en champ pulsé
15.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38054484

RÉSUMÉ

A novel yellow-pigmented bacterial strain, designated YZ-48T, was isolated from the sediment of the Yangtze River, PR China. Cells were Gram-stain-negative, non-motile, rod-shaped, strictly aerobic, catalase-positive and oxidase-positive. The strain grew optimally on R2A medium at 37 °C, pH 7.0 and with 1.0 % (w/v) NaCl. Strain YZ-48T showed the closest 16S rRNA gene sequence similarity to Flavobacterium solisilvae SE-s27T (96.4 %) and F. dankookense DSM 25687T (96.2 %). The phylogenetic trees based on 16S rRNA gene sequences showed that strain YZ-48T belonged to the genus Flavobacterium but formed a distinct phylogenetic lineage. The obtained average nucleotide identity and digital DNA-DNA hybridization values between YZ-48T and the two closest strains were 75.0 and 74.5 % and 19.6 and 19.0 %, respectively. The sole respiratory quinone was MK-6. The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and three unidentified polar lipids. The major cellular fatty acids were iso-C16 : 0, iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and iso-C16 : 0 3-OH. The DNA G+C content was 40.2 mol%. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain YZ-48T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium sedimenticola sp. nov. is proposed, with strain YZ-48T (=KCTC 82329T=CCTC AB 2023061T=MCCC 1K08804T) as the type strain.


Sujet(s)
Flavobacteriaceae , Flavobacterium , Acides gras/composition chimique , Phylogenèse , ARN ribosomique 16S/génétique , ADN bactérien/génétique , Analyse de séquence d'ADN , Composition en bases nucléiques , Techniques de typage bactérien , Vitamine K2/composition chimique , Flavobacteriaceae/génétique
16.
Salud Publica Mex ; 65(2 mar-abr): 167-170, 2023 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-38060856

RÉSUMÉ

OBJECTIVE: To evaluate the presence of Elizabethkingia anophelis infection in Aedes albopictus wild populations of Southern Mexico. MATERIALS AND METHODS: Eight sites were selected to collect Aedes albopictus in the Soconusco region, Chiapas, females were analyzed to amplify the Gyrase B gene by PCR, the minimum infection rate of E. anopheliswas calculated and its species was determined by sequencing and phylogeny. RESULTS: The presence of E. anophelis was only observed in Huehuetán with a minimum infection rate of 37.8%. CONCLUSION: A local strain of E. anophelis was detected for the first time in Ae. albopictus from Chiapas and this bacterium could be considered a candidate for study as a probable control agent or as a vehicle for transgenesis.


Sujet(s)
Aedes , Flavobacteriaceae , Humains , Animaux , Femelle , Mexique/épidémiologie , Flavobacteriaceae/génétique , Aedes/génétique
17.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37942742

RÉSUMÉ

Two novel rod-shaped, Gram-stain-negative, aerobic and non-motile bacterial strains, designated M39T and C2-7T, were isolated from the coastal sediment of Xiaoshi Island, Weihai, PR China. Growth of strain M39T occurred at 15-37 °C, at pH 6.0-9.0 and in the presence of 1.0-9.0 % (w/v) NaCl. Strain C2-7T grew at 15-40 °C, at pH 6.0-8.0 and in the presence of 0.5-8.0 % (w/v) NaCl. Phylogenetic analysis based 16S rRNA gene sequences revealed that strains M39T and C2-7T belong to the phylum Bacteroidota. Based on the results of 16S rRNA gene sequence analysis, the closest relative of strain M39T was Robiginitalea marina KCTC 92035T (95.4 %), and the closest relative of strain C2-7T was Algoriphagus namhaensis DPG-3T (97.0 %). The percentage of conserved protein and average nucleotide identity values between strain M39T and some species of the genus Robiginitalea were 66.9-77.6% and 69.3-71.0 %, respectively, while those between strain C2-7T and some species of the genus Algoriphagus were 68.0-70.1% and 56.1-72.6 %, respectively. The major cellular fatty acids (>10 %) of strain M39T consisted of iso-C15 : 1 F, iso-C15 : 0 and iso-C17 : 0 3-OH, while those of strain C2-7T were iso-C15 : 0 and C16 : 1 ω7c/C16 : 1 ω6c. MK-6 was the only respiratory quinone that was compatible with the genus of strain M39T. The predominant menaquinone of strain C2-7T was MK-7. The major polar lipids of strain M39T were phosphatidylethanolamine and glycolipids, and those of strain C2-7T were phosphatidylethanolamine, one unidentified aminolipid and four unidentified lipids. The DNA G+C contents of strains M39T and C2-7T were 46.9 and 40.8 mol%, respectively. Based upon the results presented in this study, strains M39T and C2-7T represent novel species of the genera Robiginitalea and Algoriphagus, respectively, for which the names Robiginitalea aurantiaca sp. nov. and Algoriphagus sediminis sp. nov. are proposed with the type strains M39T (=MCCC 1H00498T=KCTC 92014T) and C2-7T (=MCCC 1H00414T=KCTC 92027T).


Sujet(s)
Flavobacteriaceae , Phosphatidyléthanolamine , Phosphatidyléthanolamine/composition chimique , Acides gras/composition chimique , Eau de mer/microbiologie , Phylogenèse , ARN ribosomique 16S/génétique , Chlorure de sodium , ADN bactérien/génétique , Analyse de séquence d'ADN , Composition en bases nucléiques , Techniques de typage bactérien , Flavobacteriaceae/génétique
18.
Mar Genomics ; 72: 101074, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38008534

RÉSUMÉ

Aestuariibaculum lutulentum L182T (= KCTC 92530T = MCCC 1K08065T) was isolated from the tidal sediment collected in Beihai, People's Republic of China. The genome was sequenced and consisted of a single chromosome with the size of 3,782,725 bp and DNA G + C content of 35.1%. Genomic annotations demonstrated that it encoded 12 rRNA genes, 56 tRNA genes and 3210 ORFs. The percentages of ORFs assigned to CAZy, COG, and KEGG databases were 5.5, 86.2 and 45.5%, respectively. Comparative genomic analysis indicated that the pan- and core-genomes of the genus Aestuariibaculum consisted of 4826 and 2257 orthologous genes, respectively. Carbohydrate-active enzyme annotations of the genus Aestuariibaculum genomes revealed that they shared three polysaccharide lyase (PL) families including PL1, PL22 and PL42. Meanwhile, one carotenoid biosynthetic gene cluster related to biosynthesizing flexixanthin was found in the genus Aestuariibaculum. Furthermore, the core-genome of the genus Aestuariibaculum showed that this genus played a role in cleaving pectate, degrading ulvan, and biosynthesizing carotenoids. This study is a complete genomic report of the genus Aestuariibaculum and broadens understandings of its ecological roles and biotechnological applications.


Sujet(s)
Flavobacteriaceae , Eau de mer , Humains , Acides gras , ADN bactérien/génétique , Génomique , Caroténoïdes , Analyse de séquence d'ADN , Flavobacteriaceae/génétique , Phylogenèse , ARN ribosomique 16S
19.
Antonie Van Leeuwenhoek ; 116(12): 1345-1357, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37837564

RÉSUMÉ

An auxin-producing bacterial strain, CC-SYL302T, was isolated from paddy soil in Taiwan and identified using a polyphasic taxonomic approach. The cells were observed to be aerobic, non-motile, non-spore-forming rods, and tested positive for catalase and oxidase. Produced carotenoid but flexirubin-type pigments were absent. Optimal growth of strain CC-SYL302T was observed at 25 °C, pH 7.0, and with 2% (w/v) NaCl present. Based on analysis of 16S rRNA gene sequences, it was determined that strain CC-SYL302T belongs to the genus Flavobacterium of the Flavobacteriaceae family. The closest known relatives of this strain are F. tangerinum YIM 102701-2 T (with 93.3% similarity) and F. cucumis R2A45-3 T (with 93.1% similarity). Digital DNA-DNA hybridization (dDDH) values were calculated to assess the genetic distance between strain CC-SYL302T and its closest relatives, with mean values of 21.3% for F. tangerinum and 20.4% for F. cucumis. Strain CC-SYL302T exhibited the highest orthologous average nucleotide identity (OrthoANI) values with members of the Flavobacterium genus, ranging from 67.2 to 72.1% (n = 22). The dominating cellular fatty acids (> 5%) included iso-C14:0, iso-C15:0, iso-C16:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C16:1 ω6c/C16:1 ω7c and C16:0 10-methyl/iso-C17:1 ω9c. The polar lipid profile consisted of phosphatidylethanolamine, an unidentified aminolipid, an unidentified aminophospholipid, and nine unidentified polar lipids. The genome (2.7 Mb) contained 33.6% GC content, and the major polyamines were putrescine and sym-homospermidine. Strain CC-SYL302T exhibits distinct phylogenetic, phenotypic, and chemotaxonomic characteristics, as well as unique results in comparative analysis of 16S rRNA gene sequence, OrthoANI, dDDH, and phylogenomic placement. Therefore, it is proposed that this strain represents a new species of the Flavobacterium genus, for which the name Flavobacterium agricola sp. nov. is proposed. The type strain is CC-SYL302T (= BCRC 81320 T = JCM 34764 T).


Sujet(s)
Flavobacteriaceae , Flavobacterium , Phospholipides/composition chimique , Phylogenèse , ARN ribosomique 16S/génétique , Acides gras/composition chimique , Flavobacteriaceae/génétique , ADN , Analyse de séquence d'ADN , ADN bactérien/génétique , Techniques de typage bactérien , Vitamine K2/composition chimique
20.
Mar Genomics ; 71: 101047, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37620053

RÉSUMÉ

Pectic oligosaccharides, which are considered to be potential prebiotics, may be generated by pectin-degrading enzymes. Here, we report the complete genome sequence of the pectin-degrading marine bacterium, Flavobacteriaceae bacterium GSB9, which was isolated from seawater of South Korea. The complete genome sequence revealed that the chromosome was 3,630,376 bp in size, had a G + C content of 36.6 mol%, and was predicted to encode 3100 protein-coding sequences (CDSs), 40 tRNAs, and six 16S-23S-5S rRNAs. Genome sequence analysis revealed that this strain possesses multiple genes predicted to encode pectin-degrading enzymes. Our analysis may facilitate the future application of this strain against pectin in various industries.


Sujet(s)
Flavobacteriaceae , Pectine , Cadres ouverts de lecture , ARN ribosomique 16S , République de Corée , Flavobacteriaceae/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE