Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 10.444
Filtrer
1.
Perspect Biol Med ; 67(3): 325-336, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247927

RÉSUMÉ

Many factors determine whether and when a class of therapeutic agents will be successfully developed and brought to market, and historians of science, entrepreneurs, drug developers, and clinicians should be interested in accounts of both successes and failures. Successes induce many participants and observers to document them, whereas failed efforts are often lost to history, in part because involved parties are typically unmotivated to document their failures. The GLP-1 class of drugs for diabetes and obesity have emerged over the past decade as clinical and financial blockbusters, perhaps soon becoming the highest single source of revenue for the pharmaceutical industry (Berk 2023). In that context, it is instructive to tell the story of the first commercial effort to develop this class of drugs for metabolic disease, and how, despite remarkable early success, the work was abandoned in 1990. Told by a key participant in the effort, this story documents history that would otherwise be lost and suggests a number of lessons about drug development that remain relevant today.


Sujet(s)
Développement de médicament , Glucagon-like peptide 1 , Humains , Glucagon-like peptide 1/histoire , Développement de médicament/histoire , Histoire du 20ème siècle , Hypoglycémiants/histoire , Hypoglycémiants/usage thérapeutique , Industrie pharmaceutique/histoire , Obésité/histoire , Obésité/traitement médicamenteux
2.
Einstein (Sao Paulo) ; 22: eAO0619, 2024.
Article de Anglais | MEDLINE | ID: mdl-39258689

RÉSUMÉ

OBJECTIVE: Glucagon-like peptide-1 (GLP1) and leptin (Lep) are afferent signals that regulate energy metabolism. Lactational hypernutrition results in hyperphagia and adiposity in adult life, and these events can be prevented by exercise. We evaluated the effects of swimming training on hypothalamic (GLP1-R) and Lep receptor (Lep-R) gene expressions in lactational hypernutrition-induced obesity. METHODS: On the 3rd postnatal day, the litter sizes of lactating dams were adjusted to small litters (SL; 3 pups/dams) or normal litters (NL; 9 pups/dams). After weaning (21 days), NL and SL male rats were randomly distributed to sedentary (Sed) and exercised (Exe) groups. Exercised mice swam (30 min/3 times/week) for 68 days. Food intake and body weight gain were registered. At 92 days, intraperitoneal glucose and insulin tolerance tests were performed and rats were euthanized at 93 days; adipose tissue depots were weighed, and blood counts and plasma biochemical analyses performed. Hypothalamus were isolated to evaluate Lep-R and GLP1-R gene expressions. RESULTS: Small litters sedentary rats presented increased body weight gain, adiposity, insulin sensibility and higher fasting values of glucose and triglycerides, besides higher hypothalamic gene expressions of Lep-R and GLP1-R, compared to NLSed animals. SLExe rats did not develop obesity or metabolic abnormalities and Lep-R and GLP1-R hypothalamic gene expressions were normalized. CONCLUSION: Lactational hypernutrition induces obesity and metabolic dysfunction in adult life, in association with higher hypothalamic expressions of the Lep-R and GLP1-R genes. Exercise prevented obesity and improved metabolic state in SL overnourished rats, and normalized their hypothalamic Lep-R and GLP1-R gene expressions.


Sujet(s)
Hypothalamus , Obésité , Conditionnement physique d'animal , Rat Wistar , Récepteurs à la leptine , Natation , Animaux , Hypothalamus/métabolisme , Obésité/métabolisme , Obésité/génétique , Obésité/prévention et contrôle , Conditionnement physique d'animal/physiologie , Conditionnement physique d'animal/méthodes , Mâle , Récepteurs à la leptine/génétique , Récepteurs à la leptine/métabolisme , Femelle , Natation/physiologie , Taille de la portée , Récepteur du peptide-1 similaire au glucagon/métabolisme , Récepteur du peptide-1 similaire au glucagon/génétique , Rats , Lactation/métabolisme , Lactation/physiologie , Glucagon-like peptide 1/métabolisme , Leptine/sang , Leptine/métabolisme , Répartition aléatoire , Expression des gènes , Consommation alimentaire/physiologie , Adiposité/physiologie
4.
Food Funct ; 15(18): 9116-9135, 2024 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-39219450

RÉSUMÉ

Konjac glucomannan (KGM) is a dietary fiber supplement that exhibits multiple biological activities, including weight control as well as regulation of glucose and lipid metabolism. Currently, KGM intake patterns in practical applications include KGM sol, thermal irreversible gel, and frozen thermal irreversible gel. In this study, four intake patterns of KGM, namely KGM sol (KS), deacetylated KGM (DK), KGM gel (KG), and frozen KGM gel (FKG), were used as materials to explore the effects of different KGM intake patterns on glucose and lipid metabolism and intestinal flora in obese mice induced by a high fat diet under the same dose. The results showed that any type of KGM intake could reduce body weight, fat mass, lipid levels, and insulin resistance in obese mice, and alleviate liver damage and inflammation caused by obesity. However, KS has the most significant effect on controlling blood glucose and blood lipid in obese mice. Additionally, it was found that KS, DK, KG and FKG can increase the α-diversity of intestinal microflora in high-fat mice and improve the microflora disorder in high-fat mice. Finally, KS may increase the levels of fasting appetite hormones GLP-1 and PYY in mice, up-regulate the expression of LDLR, GCK and G-6-pase mRNA, and increase the production of short-chain fatty acids (SCFAs) in the intestinal flora of mice, thus regulating glucose and lipid metabolism. This study systematically investigated the effects of different intake forms of KGM on metabolism and intestinal flora in obese mice, which is of great significance for further understanding the role of KGM in the prevention and treatment of obesity-related metabolic diseases and for developing targeted dietary interventions.


Sujet(s)
Alimentation riche en graisse , Microbiome gastro-intestinal , Métabolisme lipidique , Mannanes , Souris de lignée C57BL , Souris obèse , Obésité , Animaux , Mannanes/pharmacologie , Mannanes/administration et posologie , Souris , Alimentation riche en graisse/effets indésirables , Obésité/métabolisme , Métabolisme lipidique/effets des médicaments et des substances chimiques , Mâle , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Glucagon-like peptide 1/métabolisme , Insulinorésistance , Glycémie/métabolisme , Glucose/métabolisme , Fibre alimentaire/pharmacologie , Peptide YY/métabolisme , Foie/métabolisme , Foie/effets des médicaments et des substances chimiques
5.
Mol Biol Rep ; 51(1): 966, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39240462

RÉSUMÉ

In humans, 15 genes encode the class B1 family of GPCRs, which are polypeptide hormone receptors characterized by having a large N-terminal extracellular domain (ECD) and receive signals from outside the cell to activate cellular response. For example, the insulinotropic polypeptide (GIP) stimulates the glucose-dependent insulinotropic polypeptide receptor (GIPR), while the glucagon receptor (GCGR) responds to glucagon by increasing blood glucose levels and promoting the breakdown of liver glycogen to induce the production of insulin. The glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) elicit a response from glucagon-like peptide receptor types 1 and 2 (GLP1R and GLP2R), respectively. Since these receptors are implicated in the pathogenesis of diabetes, studying their activation is crucial for the development of effective therapies for the condition. With more structural information being revealed by experimental methods such as X-ray crystallography, cryo-EM, and NMR, the activation mechanism of class B1 GPCRs becomes unraveled. The available crystal and cryo-EM structures reveal that class B1 GPCRs follow a two-step model for peptide binding and receptor activation. The regions close to the C-termini of hormones interact with the N-terminal ECD of the receptor while the regions close to the N-terminus of the peptide interact with the TM domain and transmit signals. This review highlights the structural details of class B1 GPCRs and their conformational changes following activation. The roles of MD simulation in characterizing those conformational changes are briefly discussed, providing insights into the potential structural exploration for future ligand designs.


Sujet(s)
Récepteurs couplés aux protéines G , Humains , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/composition chimique , Récepteurs couplés aux protéines G/génétique , Cristallographie aux rayons X/méthodes , Conformation des protéines , Animaux , Récepteur du peptide-1 similaire au glucagon/métabolisme , Récepteur du peptide-1 similaire au glucagon/génétique , Récepteur hormone gastrointestinale/métabolisme , Récepteur hormone gastrointestinale/composition chimique , Récepteur hormone gastrointestinale/génétique , Glucagon-like peptide 1/métabolisme , Modèles moléculaires , Liaison aux protéines , Transduction du signal , Récepteurs au glucagon/métabolisme , Récepteurs au glucagon/génétique , Récepteurs au glucagon/composition chimique
6.
Proc Natl Acad Sci U S A ; 121(39): e2415550121, 2024 Sep 24.
Article de Anglais | MEDLINE | ID: mdl-39297680

RÉSUMÉ

The 2024 Lasker~DeBakey Clinical Medical Research Award has been given to Joel Habener and Svetlana Mojsov for their discovery of a new hormone GLP-1(7-37) and to Lotte Knudsen for her role in developing sustained acting versions of this hormone as a treatment for obesity. Each of the three had a distinct set of skills that made this advance possible; Habener is an endocrinologist and molecular biologist, Mojsov is a peptide chemist, and Knudsen is a pharmaceutical scientist. Their collective efforts have done what few thought possible-the development of highly effective medicines for reducing weight. Their research has also solved a mystery that began more than a century ago.


Sujet(s)
Glucagon-like peptide 1 , Obésité , Obésité/traitement médicamenteux , Glucagon-like peptide 1/métabolisme , Humains , Agents antiobésité/usage thérapeutique , Agents antiobésité/pharmacologie , Découverte de médicament/histoire , Découverte de médicament/méthodes , Animaux , Histoire du 21ème siècle , Récompenses et prix
7.
Obesity (Silver Spring) ; 32(10): 1819-1824, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39238194

RÉSUMÉ

OBJECTIVE: The intestinal luminal pH profile varies from stomach to rectum and becomes disrupted in diseases. However, little is known about the pH dependence of incretin hormone secretion, with most in vitro studies having failed to consider this modulatory factor or having used nonphysiological buffer systems. Here, we report the extracellular pH (pHe) dependence of glucagon-like peptide-1 (GLP-1) exocytosis from L cells. METHODS: The pHe dependence of GLP-1 release from GLUTag cells and murine ex vivo primary gut cultures was detected by ELISA. GLP-1 release was measured over a range of pHe under a physiological (CO2/HCO3 -) buffering regime and in its absence (HEPES buffer). The relationship between intracellular pH (pHi) and pHe was mapped given that at least some component of pH sensitivity is likely to be intracellular. RESULTS: GLP-1 secretion from L cells was pHe-dependent and stimulated under alkaline conditions. In the absence of glucose or extracellular calcium, secretion remained at a pHe-insensitive baseline. pHi followed changes in pHe, but the relationship was offset to more alkaline levels in the absence of CO2/HCO3 - buffer and became shallower if [Cl-] changes that normally accompany [HCO3 -] changes were compensated iso-osmotically with gluconate. CONCLUSIONS: GLP-1 secretion is sensitive to pHe and the buffer present. Exploiting this mechanism therapeutically may benefit patients with obesity.


Sujet(s)
Exocytose , Glucagon-like peptide 1 , Concentration en ions d'hydrogène , Glucagon-like peptide 1/métabolisme , Animaux , Souris , Cellules L (lignée cellulaire) , Souris de lignée C57BL , Glucose/métabolisme , Calcium/métabolisme , Hydrogénocarbonates/métabolisme , Muqueuse intestinale/métabolisme , Mâle
8.
J Agric Food Chem ; 72(38): 21077-21088, 2024 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-39262139

RÉSUMÉ

The polysaccharides of edible mushrooms are excellent phytochemicals for adjuvant treatment of metabolic diseases, but the potential mechanisms of synergistic effects are unclear. In this work, we discovered that NAP-3 enhanced the efficiency of metformin in lipid and glucose metabolism in type 2 diabetic (T2D) mice in a gut microbiome-dependent way. NAP-3 remodeled the intestinal microbial, resulting in the decreased activity of bile salt hydrolases and upregulation of CYP27A1 and CYP7B1 functions in the alternative pathway of bile acid synthesis, which leads to accumulation of the conjugated bile acids in ileum, specifically TßMCA and TUDCA. The accumulated conjugated bile acids either blocked or stimulated the nuclear receptors Farnesoid-X-receptor and TGR5, inducing the release of GLP-1 and ultimately enhanced glucose metabolism in mice. Collectively, our research indicated that edible mushroom polysaccharide NAP-3 may serve as a promising adjunctive oral therapeutic agent for T2D.


Sujet(s)
Acides et sels biliaires , Diabète de type 2 , Microbiome gastro-intestinal , Glucagon-like peptide 1 , Metformine , Souris de lignée C57BL , Polyosides , Animaux , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Souris , Glucagon-like peptide 1/métabolisme , Metformine/pharmacologie , Mâle , Acides et sels biliaires/métabolisme , Polyosides/pharmacologie , Polyosides/composition chimique , Polyosides/métabolisme , Polyosides/administration et posologie , Humains , Hypoglycémiants/pharmacologie , Hypoglycémiants/composition chimique , Hypoglycémiants/administration et posologie , Synergie des médicaments , Agaricales/composition chimique , Agaricales/métabolisme , Bactéries/effets des médicaments et des substances chimiques , Bactéries/génétique , Bactéries/métabolisme , Bactéries/classification
10.
Signal Transduct Target Ther ; 9(1): 234, 2024 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-39289339

RÉSUMÉ

The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.


Sujet(s)
Récepteur du peptide-1 similaire au glucagon , Humains , Récepteur du peptide-1 similaire au glucagon/génétique , Récepteur du peptide-1 similaire au glucagon/métabolisme , Glucagon-like peptide 1/métabolisme , Glucagon-like peptide 1/génétique , Glucagon-like peptide 1/usage thérapeutique , Animaux
11.
Rev Med Liege ; 79(9): 605-612, 2024 Sep.
Article de Français | MEDLINE | ID: mdl-39262368

RÉSUMÉ

Incretin gut hormones, especially glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), raise a huge interest in diabetology. GLP-1 receptor agonists have gained a privileged role in the management of type 2 diabetes (T2D). They improve glucose control without inducing hypoglycaemia, while promoting weight loss. Furthermore, they protect people with T2D against atherosclerotic cardiovascular disease and contribute to reduce the risk of heart failure and chronic kidney disease, two other common complications of T2D. A recent innovation consists in the development of co-agonists that target both GIP and GLP-1 receptors. Whereas the co-infusion of GIP and GLP-1 failed to further reduce hyperglycaemia of T2D compared to GLP-1 single infusion, tirzepatide, an original dual unimolecular biaised GIP/GLP-1 agonist, showed a remarkable improvement of glucose control in the SURPASS programme in patients with T2D. Consequently, it is now commercialized in many countries for the management of T2D. GLP-1/glucagon (GCG) co-agonists and GIP/GLP-1/GCG poly-agonists are currently in development, aiming to benefit from the favourable effects of GCG on energy expenditure and liver lipid metabolism, while mitigating the hyperglycaemic effects of this hormone thanks to balanced effects of GLP-1 and/or GIP. They might occupy in the future an interesting place in the management of obesity and its metabolic complications among which T2D and liver steatosis.


Les hormones digestives à effet incrétine, en particulier le «glucagon-like peptide-1¼ (GLP-1) et le «glucose-dependent insulinotropic polypeptide¼ (GIP) suscitent un intérêt considérable en diabétologie. Les agonistes des récepteurs du GLP-1 ont acquis une place de choix dans la prise en charge des patients avec un diabète de type 2 (DT2). Ils améliorent le contrôle glycémique, sans provoquer des hypoglycémies, tout en faisant perdre du poids. De plus, ils protègent contre les maladies cardiovasculaires athéromateuses. Enfin, ils contribuent à réduire le risque d'insuffisance cardiaque et de maladie rénale chronique, deux autres complications fréquentes du DT2. Une innovation récente consiste dans le développement de co-agonistes ciblant à la fois les récepteurs du GLP-1 et du GIP. Alors que la co-infusion de GIP et de GLP-1 ne réduit pas davantage l'hyperglycémie du DT2 qu'une perfusion isolée de GLP-1, le tirzépatide, un agoniste biaisé unimoléculaire original à effet double sur les récepteurs GIP/GLP-1, a montré une amélioration remarquable du contrôle glycémique, tout en favorisant l'amaigrissement, dans le programme SURPASS chez le patient avec DT2. Ce médicament est maintenant commercialisé dans de nombreux pays. Des co-agonistes GLP-1/glucagon (GCG) et des poly-agonistes GIP/GLP-1/GCG sont actuellement développés, profitant des effets favorables du glucagon sur les dépenses énergétiques et le métabolisme lipidique hépatique, tout en maîtrisant les effets hyperglycémiants de cette hormone grâce aux actions balancées du GLP-1 et/ou du GIP. Ils pourraient occuper à l'avenir une place intéressante dans le traitement de l'obésité et ses complications métaboliques dont le DT2 et la stéatopathie hépatique.


Sujet(s)
Diabète de type 2 , Récepteur du peptide-1 similaire au glucagon , Incrétines , Humains , Récepteur du peptide-1 similaire au glucagon/agonistes , Diabète de type 2/traitement médicamenteux , Incrétines/usage thérapeutique , Incrétines/pharmacologie , Hypoglycémiants/usage thérapeutique , Hypoglycémiants/pharmacologie , Peptide gastrointestinal/usage thérapeutique , Peptide gastrointestinal/agonistes , Peptide gastrointestinal/pharmacologie , Glucagon-like peptide 1/agonistes ,
12.
J Diabetes Res ; 2024: 5544296, 2024.
Article de Anglais | MEDLINE | ID: mdl-39263491

RÉSUMÉ

Aim: The aim of the study is to identify the regulatory role of intestinal sweet taste receptors (STRs) and glucose transporters (SGLT1, GLUT2) and gut peptide secretion in duodenal-jejunal bypass (DJB)-ameliorated glycemic control in Type 2 diabetes. Materials and Methods: DJB and sham surgeries were performed in streptozotocin-induced diabetic male rats. The blood GLP-1 and GLP-2 levels were evaluated under feeding and fasting conditions. The expression of STRs (T1R2, T1R3), sweet taste signaling effector (Gα-gustducin), SGLT1, and GLUT2 was detected in the intestinal alimentary limb (A limb), biliopancreatic limb (BP limb), and common limb (C limb). The effects of STR inhibition on glucose control were measured with lactisole. Results: Glucose tolerance was improved in DJB-operated rats compared with the sham group, similar to that of normal control rats, without significant differences in food intake and body weight. The plasma GLP-1 levels of DJB rats were increased under diet-fed condition, and GLP-2 levels were increased after fasting. The villus height and crypt depth were significantly increased in the A limb of DJB-operated rats. In addition, GLP-1 expression was restored in enterocytes. The expression of T1R2, Gα-gustducin, and SGLT1 was elevated in the A limb after DJB, while GLUT2 was downregulated in the A, BP, and C limbs. The localization of GLUT2 was normalized in the three intestinal limbs after DJB. However, the beneficial effects of DJB on glucose control were abolished in the presence of lactisole in vivo. Conclusion: DJB ameliorates glycemic control probably by restoring STR-mediated glucose sensing and absorption with the responses of GLP-1 and GLP-2 to carbohydrate.


Sujet(s)
Glycémie , Diabète expérimental , Duodénum , Glucagon-like peptide 1 , Transporteur de glucose de type 2 , Jéjunum , Récepteurs couplés aux protéines G , Transporteur-1 sodium-glucose , Animaux , Mâle , Transporteur-1 sodium-glucose/métabolisme , Transporteur de glucose de type 2/métabolisme , Jéjunum/chirurgie , Jéjunum/métabolisme , Duodénum/chirurgie , Duodénum/métabolisme , Diabète expérimental/chirurgie , Diabète expérimental/métabolisme , Rats , Récepteurs couplés aux protéines G/métabolisme , Glycémie/métabolisme , Glucagon-like peptide 1/métabolisme , Absorption intestinale , Glucagon-like peptide 2/métabolisme , Glucose/métabolisme , Rat Sprague-Dawley , Diabète de type 2/métabolisme , Diabète de type 2/chirurgie , Transducine/métabolisme , Muqueuse intestinale/métabolisme , Muqueuse intestinale/chirurgie
14.
J Histochem Cytochem ; 72(8-9): 545-550, 2024.
Article de Anglais | MEDLINE | ID: mdl-39248433

RÉSUMÉ

Processing of proglucagon into glucagon-like peptide-1 (GLP-1) and GLP-2 in intestinal L cells is mediated by the prohormone convertase 1/3 (PC1/3) while PC2 is responsible for the synthesis of glucagon in pancreatic alpha cells. While GLP-1 is also produced by alpha cells, the identity of the convertase involved in its synthesis is still unsettled. It also remains to be determined whether all alpha cells produce the incretin. The aims of this study were first, to elucidate the identity of the proconvertase responsible for GLP-1 production in human alpha cells, and second, to ascertain whether the number of glucagon cells expressing GLP-1 increase during diabetes. To answer these questions, sections of pancreas from donors' non-diabetic controls, type 1 and type 2 diabetes were processed for double-labelled immunostaining of glucagon and GLP-1 and of each hormone and either PC1 or PC2. Stained sections were examined by confocal microscopy. It was found that all alpha cells of islets from those three groups expressed GLP-1 and PC2 but not PC1/3. This observation supports the view that PC2 is the convertase involved in GLP-1 synthesis in all human glucagon cells and suggests that the regulation of its activity may have important clinical application in diabetes.


Sujet(s)
Glucagon-like peptide 1 , Cellules à glucagon , Proprotein convertase 1 , Proprotein convertase 2 , Humains , Glucagon-like peptide 1/métabolisme , Cellules à glucagon/métabolisme , Proprotein convertase 1/métabolisme , Proprotein convertase 1/génétique , Proprotein convertase 2/métabolisme , Proprotein convertase 2/génétique , Diabète de type 2/métabolisme , Diabète de type 2/anatomopathologie , Diabète de type 1/métabolisme , Diabète de type 1/anatomopathologie , Glucagon/métabolisme , Adulte , Mâle , Adulte d'âge moyen , Femelle
16.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39201336

RÉSUMÉ

Adipose tissue (AT) represents a plastic organ that can undergo significant remodeling in response to metabolic demands. With its numerous checkpoints, the incretin system seems to play a significant role in controlling glucose homeostasis and energy balance. The importance of the incretin hormones, namely the glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic peptide (GIP), in controlling the function of adipose cells has been brought to light by recent studies. Notably, a "paradigm shift" in reevaluating the role of the incretin system in AT as a potential target to treat obesity-linked metabolic disorders resulted from the demonstration that a disruption of the GIP and GLP-1 signaling axis in fat is associated with adiposity-induced insulin-resistance (IR) and/or type 2 diabetes mellitus (T2D). We will briefly discuss the (patho)physiological functions of GLP-1 and GIP signaling in AT in this review, emphasizing their potential impacts on lipid storage, adipogenesis, glucose metabolism and inflammation. We will also address the conundrum with the perturbation of the incretin axis in white or brown fat tissue and the emergence of metabolic disorders. In order to reduce or avoid adiposity-related metabolic complications, we will finally go over a potential scientific rationale for suggesting AT as a novel target for GLP-1 and GIP receptor agonists and co-agonists.


Sujet(s)
Tissu adipeux , Glucagon-like peptide 1 , Incrétines , Insulinorésistance , Obésité , Humains , Incrétines/métabolisme , Obésité/métabolisme , Tissu adipeux/métabolisme , Animaux , Glucagon-like peptide 1/métabolisme , Peptide gastrointestinal/métabolisme , Transduction du signal , Diabète de type 2/métabolisme
18.
EBioMedicine ; 107: 105283, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39142076

RÉSUMÉ

BACKGROUND: Gut L-type enteroendocrine cells (EECs) are intestinal chemosensory cells that secrete satiety hormones GLP-1 and PYY in response to activation of G-protein coupled receptors (GPCRs) by luminal components of nutrient digestion and microbial fermentation. Regulator of G-protein Signaling (RGS) proteins are negative regulators of GPCR signaling. The expression profile of RGS in EECs, and their potential role in satiety hormone secretion and obesity is unknown. METHODS: Transcriptomic profiling of RGS was completed in native colonic EECs was completed using single-cell RNA sequencing (scRNA-Seq) in lean and obesity, and human jejunal EECs with data obtained from a publicly available RNAseq dataset (GSE114853). RGS validation studies were completed using whole mucosal intestinal tissue obtained during endoscopy in 61 patients (n = 42 OB, n = 19 Lean); a subset of patients' postprandial plasma was assayed for GLP-1 and PYY. Ex vivo human intestinal cultures and in vitro NCI-H716 cells overexpressing RGS9 were exposed to GLP-1 secretagogues in conjunction with a nonselective RGS-inhibitor and assayed for GLP-1 secretion. FINDINGS: Transcriptomic profiling of colonic and jejunal enteroendocrine cells revealed a unique RGS expression profile in EECs, and further within GLP-1+ L-type EECs. In obesity the RGS expression profile was altered in colonic EECs. Human gut RGS9 expression correlated positively with BMI and negatively with postprandial GLP-1 and PYY. RGS inhibition in human intestinal cultures increased GLP-1 release from EECs ex vivo. NCI-H716 cells overexpressing RGS9 displayed defective nutrient-stimulated GLP-1 secretion. INTERPRETATION: This study introduces the expression profile of RGS in human EECs, alterations in obesity, and suggests a role for RGS proteins as modulators of GLP-1 and PYY secretion from intestinal EECs. FUNDING: AA is supported by the NIH(C-Sig P30DK84567, K23 DK114460), a Pilot Award from the Mayo Clinic Center for Biomedical Discovery, and a Translational Product Development Fund from The Mayo Clinic Center for Clinical and Translational Science Office of Translational Practice in partnership with the University of Minnesota Clinical and Translational Science Institute.


Sujet(s)
Cellules entéroendocrines , Glucagon-like peptide 1 , Obésité , Peptide YY , Protéines RGS , Transduction du signal , Humains , Cellules entéroendocrines/métabolisme , Obésité/métabolisme , Protéines RGS/métabolisme , Protéines RGS/génétique , Glucagon-like peptide 1/métabolisme , Peptide YY/métabolisme , Mâle , Femelle , Analyse de profil d'expression de gènes , Transcriptome , Adulte , Adulte d'âge moyen , Régulation de l'expression des gènes , Muqueuse intestinale/métabolisme , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/génétique
19.
Food Chem ; 460(Pt 3): 140759, 2024 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-39142205

RÉSUMÉ

Alpha-cyclodextrin (α-CD) is a non-absorbable and soluble fiber that causes weight loss. We studied whether this is due to an effect on GLP-1 secretion. In GLUTag cells, α-CD increased GLP-1 secretion up to 170% via adenylyl cyclase, phospholipase C, and L-type calcium channels dependent processes. In rat isolated colon perfusions, luminal α-CD increased GLP-1 secretion with 20%. In lean mice, once daily α-CD versus saline caused weight loss and lowered the peak in glucose after an oral glucose tolerance test (OGTT). In obese mice, α-CD added to high-fat diet caused weight loss similar to the control group (receiving cellulose). However, compared to cellulose, the α-CD group ate less. During an OGTT, no differences were observed in glucose, insulin and GLP-1. Thus, α-CD increases GLP-1 secretion in a dose-dependent manner and could be a safe and easy addition to food products to help reduce body weight.


Sujet(s)
Glucagon-like peptide 1 , Souris de lignée C57BL , Cyclodextrines alpha , Animaux , Souris , Glucagon-like peptide 1/métabolisme , Cyclodextrines alpha/métabolisme , Cyclodextrines alpha/composition chimique , Cyclodextrines alpha/pharmacologie , Mâle , Rats , Humains , Hyperglycémie provoquée , Glycémie/métabolisme , Obésité/métabolisme , Obésité/traitement médicamenteux , Obésité/physiopathologie , Insuline/métabolisme , Alimentation riche en graisse/effets indésirables
20.
Lancet Gastroenterol Hepatol ; 9(10): 957-964, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39096914

RÉSUMÉ

The availability of glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) such as liraglutide and semaglutide, and a GLP-1 and glucose dependent insulinotropic polypeptide coagonist (tirzepatide) represents a paradigm shift in the management of both type 2 diabetes and obesity. There is now considerable attention, including in the public media, on the effect of both long-acting and short-acting GLP-1RAs to delay gastric emptying. Although slowed gastric emptying is integral to reducing post-prandial blood glucose responses in type 2 diabetes, marked slowing of gastric emptying might also increase the propensity for longer intragastric retention of food, with a consequent increased risk of aspiration at the time of surgery or upper gastrointestinal endoscopy. This Personal View summarises current knowledge of the effects of GLP-1 and GLP-1RAs on gastrointestinal physiology, particularly gastric emptying, and discusses the implications for the development of sound pre-operative or pre-procedural guidelines. The development of pre-procedural guidelines is currently compromised by the poor evidence base, particularly in relation to the effect of long-acting GLP-1RAs on gastric emptying. We suggest pre-procedural management pathways for individuals on GLP-1RA-based therapy and discuss priorities for future research.


Sujet(s)
Diabète de type 2 , Vidange gastrique , Récepteur du peptide-1 similaire au glucagon , Peptides glucagon-like , Hypoglycémiants , Humains , Récepteur du peptide-1 similaire au glucagon/agonistes , Vidange gastrique/effets des médicaments et des substances chimiques , Diabète de type 2/traitement médicamenteux , Hypoglycémiants/usage thérapeutique , Hypoglycémiants/pharmacologie , Peptides glucagon-like/usage thérapeutique , Peptides glucagon-like/pharmacologie , Obésité/traitement médicamenteux , Liraglutide/usage thérapeutique , Liraglutide/pharmacologie , Glucagon-like peptide 1/agonistes ,
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE