Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres











Gamme d'année
1.
Respir Med ; 134: 103-109, 2018 01.
Article de Anglais | MEDLINE | ID: mdl-29413495

RÉSUMÉ

INTRODUCTION: Hemodialysis (HD) patients have altered pulmonary function and this is associated with impaired endothelial function and cardiovascular events. Respiratory muscle training (RMT) has the potential to improve cardiovascular outcomes in patients undergoing maintenance HD. Here, we evaluated the effects of RMT on endothelium/glycocalyx, oxidative stress biomarkers and pulmonary function test in HD patients. METHODS: This is a randomized controlled clinical trial including 41 patients undergoing thrice-weekly maintenance HD. Patients were randomly assigned at a 2:1 ratio to receive or not RMT during HD sessions for 8 weeks. Main outcomes were changes in levels of the biomarkers related to endothelium activation (vascular cell adhesion molecule 1, VCAM-1, and intercellular adhesion molecule 1, ICAM-1), glycocalyx derangement (syndecan-1), aberrant angiogenesis (angiopoietin-2) and oxidative stress (malondialdehyde) compared to baseline. Also, maximal inspiratory/expiratory pressure (MIP, MEP), Forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1) were evaluated. Other outcomes included changes in functional capacity and pulmonary function test. We also performed a post-hoc analysis of plasma endothelin-1 levels. RESULTS: Of 56 randomly assigned patients, 41 were included in the primary final analyses. RMT increased all pulmonary function parameters evaluated and significantly reduced plasma syndecan-1 levels at 8 weeks compared to placebo (between-group difference: -84.5; 95% CI, -148.1 to -20.9). Also, there was a reduction in plasma levels of angiopoietin-2 (between-group difference: -0.48; 95% CI, -1.03 to -0.097). Moreover, there was a significant reduction in mean blood pressure at rest (between-group difference: -12.2; 95%CI, -17.8 to -6.6) associated with a reduction in endothelin-1 levels (between-group difference: -0.164; 95% CI, -0.293 to -0.034). There was no difference regarding biomarkers of endothelial activation or oxidative stress. CONCLUSION: A short-term RMT program ameliorate FVC, FEV1 and reduces syndecan-1 and angiopoietin-2 biomarker levels. Finally, better blood pressure control was attained during training and it was associated with a reduction in endothelin-1 levels.


Sujet(s)
Exercices respiratoires/méthodes , Défaillance rénale chronique/physiopathologie , Stress oxydatif/physiologie , Dialyse rénale/effets indésirables , Adulte , Marqueurs biologiques/sang , Pression sanguine/physiologie , Endothéline-1/sang , Endothélium/physiopathologie , Femelle , Volume expiratoire maximal par seconde/physiologie , Glycocalyx/physiologie , Humains , Défaillance rénale chronique/thérapie , Mâle , Adulte d'âge moyen , Tests de la fonction respiratoire , Mécanique respiratoire/physiologie , Muscles respiratoires/physiopathologie , Résultat thérapeutique , Capacité vitale/physiologie
2.
An Acad Bras Cienc ; 88(2): 751-63, 2016 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-27276378

RÉSUMÉ

In this paper, we present the results of a study on the influence of hydrodynamic effects on the surface potentials of the erythrocyte membrane, comparing two different models formulated to simulate the electrophoretic movement of a biological cell: the classical Helmholtz-Smoluchowski model and a model presented by Hsu et al. (1996). This model considers hydrodynamic effects to describe the distribution of the fluid velocity. The electric potential equation was obtained from the non-linear Poisson-Boltzmann equation, considering the spatial distribution of electrical charges fixed in glycocalyx and cytoplasmic proteins, as well as electrolyte charges and ones fixed on the surfaces of lipidic bilayer. Our results show that the Helmholtz-Smoluchowski model is not able to reflect the real forces responsible to the electrophoretic behavior of cell, because it does not take account the hydrodynamic effects of glycocalyx. This charged network that covers cellular surface constitutes a complex physical system whose electromechanical characteristics cannot be neglected. Then, supporting the hypothesis of other authors, we suggest that, in electrophoretic motion analyses of cells, the classical model represents a limiting case of models that take into account hydrodynamic effects to describe the velocity distribution of fluid.


Sujet(s)
Membrane érythrocytaire/physiologie , Potentiels de membrane/physiologie , Électrophorèse , Glycocalyx/physiologie , Humains , Hydrodynamique , Double couche lipidique , Modèles biologiques
3.
Arch. cardiol. Méx ; Arch. cardiol. Méx;84(2): 110-116, abr.-jun. 2014. ilus
Article de Espagnol | LILACS | ID: lil-732015

RÉSUMÉ

El glucocáliz endotelial es una capa constituida por glucosaminoglicanos, proteoglicanos y glucoproteínas que cubre al endotelio en su cara luminal. La participación del deterioro del glucocáliz endotelial parece esencial en los pasos iniciales de la fisiopatología de la aterosclerosis, de las complicaciones microangiopáticas de la diabetes mellitus y de la enfermedad venosa crónica. Los factores de riesgo de la aterosclerosis como la hipercolesterolemia, la hiperglucemia, la inflamación, el exceso de sodio y las fuerzas de tensión alteradas causan deterioro del glucocáliz. Esto provoca disfunción endotelial y permite la filtración de lipoproteínas (LDL) y de leucocitos al espacio subendotelial, iniciando la formación de la placa de ateroma. En la diabetes el glucocáliz adelgazado, principalmente por estrés oxidativo, posibilita la filtración de proteínas (albuminuria) y el trastorno endotelial de la microangiopatía. La hipertensión venosa crónica altera las fuerzas de tensión y daña el glucocáliz, lo que permite la filtración de leucocitos a las partes más profundas de la pared venosa, iniciando la inflamación y el deterioro morfológico y funcional de las venas que lleva a la enfermedad venosa crónica. El tratamiento con glucosaminoglicanos (sulodexida) logra prevenir o revertir el daño al glucocáliz endotelial y algunas de sus consecuencias; es eficaz en la enfermedad venosa crónica, especialmente con úlceras venosas. También ha sido útil en aterosclerosis obliterante de miembros inferiores y en la nefropatía diabética con albuminuria.


Endothelial glycocalyx is a layer composed by glycosaminoglycans, proteoglycans and glycoproteins attached to the vascular endothelial luminal surface. Shredding of glycocalyx appears as an essential initial step in the pathophysiology of atherosclerosis and microangiopathic complications of diabetes mellitus, as well as in chronic venous disease. Atherosclerosis risk factors, as hypercholesterolemia (LDL), hyperglycemia, inflammation, salt excess and altered shear stress can damage glycocalyx. This lead to endothelial dysfunction and allows LDL and leukocytes to filtrate to the subendothelial space initiating atheroma plaque formation. Degradation of glycocalyx in diabetes mellitus is mainly due to oxidative stress and enables protein filtration (albuminuria) and endothelial disorder of microangiopathy. Chronic venous hypertension brings to altered shears stress which results in shredded glycocalyx, this allows leukocytes to migrate into venous wall and initiate inflammation leading to morphologic and functional venous changes of the chronic venous disease. Treatment with glycosaminoglycans (sulodexide) prevents or recovers the damaged glycocalyx and several of its consequences. This drug improves chronic venous disease and promotes healing of chronic venous ulcers. It has also been useful in peripheral arterial obstructive disease and in diabetic nephropathy with albuminuria.


Sujet(s)
Humains , Angiopathies diabétiques/étiologie , Endothélium vasculaire , Glycocalyx/physiologie , Maladies vasculaires/étiologie , Athérosclérose/étiologie , Athérosclérose/anatomopathologie , Maladie chronique , Angiopathies diabétiques/traitement médicamenteux , Angiopathies diabétiques/anatomopathologie , Endothélium vasculaire/composition chimique , Glycocalyx/composition chimique , Glycocalyx/effets des médicaments et des substances chimiques , Glycosaminoglycanes/usage thérapeutique , Maladies vasculaires/traitement médicamenteux , Maladies vasculaires/anatomopathologie , Pression veineuse/physiologie
4.
Arch Cardiol Mex ; 84(2): 110-6, 2014.
Article de Espagnol | MEDLINE | ID: mdl-24836779

RÉSUMÉ

Endothelial glycocalyx is a layer composed by glycosaminoglycans, proteoglycans and glycoproteins attached to the vascular endothelial luminal surface. Shredding of glycocalyx appears as an essential initial step in the pathophysiology of atherosclerosis and microangiopathic complications of diabetes mellitus, as well as in chronic venous disease. Atherosclerosis risk factors, as hypercholesterolemia (LDL), hyperglycemia, inflammation, salt excess and altered shear stress can damage glycocalyx. This lead to endothelial dysfunction and allows LDL and leukocytes to filtrate to the subendothelial space initiating atheroma plaque formation. Degradation of glycocalyx in diabetes mellitus is mainly due to oxidative stress and enables protein filtration (albuminuria) and endothelial disorder of microangiopathy. Chronic venous hypertension brings to altered shears stress which results in shredded glycocalyx, this allows leukocytes to migrate into venous wall and initiate inflammation leading to morphologic and functional venous changes of the chronic venous disease. Treatment with glycosaminoglycans (sulodexide) prevents or recovers the damaged glycocalyx and several of its consequences. This drug improves chronic venous disease and promotes healing of chronic venous ulcers. It has also been useful in peripheral arterial obstructive disease and in diabetic nephropathy with albuminuria.


Sujet(s)
Angiopathies diabétiques/étiologie , Endothélium vasculaire , Glycocalyx/physiologie , Maladies vasculaires/étiologie , Athérosclérose/étiologie , Athérosclérose/anatomopathologie , Maladie chronique , Angiopathies diabétiques/traitement médicamenteux , Angiopathies diabétiques/anatomopathologie , Endothélium vasculaire/composition chimique , Glycocalyx/composition chimique , Glycocalyx/effets des médicaments et des substances chimiques , Glycosaminoglycanes/usage thérapeutique , Humains , Maladies vasculaires/traitement médicamenteux , Maladies vasculaires/anatomopathologie , Pression veineuse/physiologie
5.
PLoS One ; 9(5): e96194, 2014.
Article de Anglais | MEDLINE | ID: mdl-24801682

RÉSUMÉ

We present a model for the electric potential profile across the membranes of neuronal cells. We considered the resting and action potential states, and analyzed the influence of fixed charges of the membrane on its electric potential, based on experimental values of membrane properties of the spinal ganglion neuron and the neuroblastoma cell. The spinal ganglion neuron represents a healthy neuron, and the neuroblastoma cell, which is tumorous, represents a pathological neuron. We numerically solved the non-linear Poisson-Boltzmann equation for the regions of the membrane model we have adopted, by considering the densities of charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmic proteins. Our model predicts that there is a difference in the behavior of the electric potential profiles of the two types of cells, in response to changes in charge concentrations in the membrane. Our results also describe an insensitivity of the neuroblastoma cell membrane, as observed in some biological experiments. This electrical property may be responsible for the low pharmacological response of the neuroblastoma to certain chemotherapeutic treatments.


Sujet(s)
Potentiels d'action , Potentiels de membrane , Modèles neurologiques , Neuroblastome/physiopathologie , Neurones/physiologie , Ganglions sensitifs des nerfs spinaux/cytologie , Ganglions sensitifs des nerfs spinaux/physiologie , Glycocalyx/physiologie , Humains
6.
Arch. cardiol. Méx ; Arch. cardiol. Méx;83(4): 303-312, oct.-dic. 2013. ilus, tab
Article de Espagnol | LILACS | ID: lil-703020

RÉSUMÉ

El glucocáliz endotelial es una capa constituida por glucosaminoglicanos, proteoglicanos y glucoproteínas que cubre al endotelio vascular en su cara luminal. Tiene múltiples funciones: transducción de las fuerzas mecánicas de tensión, regulación de la permeabilidad vascular de líquidos y moléculas y de la activación de la coagulación y de la fibrinólisis, protege de la adhesión de leucocitos y plaquetas al endotelio. En general, el glucocáliz protege a la pared vascular de ataques patogénicos. La lesión del glucocáliz puede ocurrir por fuerzas de tensión anormales, especies reactivas de oxígeno, hipernatremia, hiperglucemia, hipercolesterolemia y moléculas inflamatorias, lo que causa disfunción endotelial, incremento en la permeabilidad, filtración de lipoproteínas al subendotelio, activación de la coagulación e incremento de la adherencia de leucocitos y plaquetas al endotelio vascular. La participación del deterioro del glucocáliz endotelial puede ser importante en la fisiopatología de diversas enfermedades vasculares.


Endothelial glycocalyx is a layer composed by glycosaminoglycans, proteoglycans and glycoproteins attached to the vascular endothelial luminal surface. It has several physiological roles: shear stress mechanotransduction to the endothelial cells, regulation of fluids and macromolecules vascular permeability, of coagulation cascade activation and fibrinolysis, and protects the endothelium from platelets and leukocytes adhesion. In general, glycocalyx protects vascular wall against pathogenic insults. The glycocalyx may be damaged by abnormal shear stress, reactive oxygen species, hypernatremia, hyperglycemia, hypercholesterolemia and inflammatory molecules, resulting in endothelial dysfunction, enhanced vascular permeability, lipoproteins leakage to subendothelial space, activation of plasma coagulation, and increased adherence of platelets and leukocytes to the endothelial cells. Shredding of glycocalyx appears as an important initial step in the pathophysiology of vascular diseases.


Sujet(s)
Humains , Endothélium vasculaire , Glycocalyx/physiologie , Endothélium vasculaire/ultrastructure , Glycocalyx/ultrastructure , Maladies métaboliques/étiologie , Maladies vasculaires/étiologie
7.
Arch Cardiol Mex ; 83(4): 303-12, 2013.
Article de Espagnol | MEDLINE | ID: mdl-24280179

RÉSUMÉ

Endothelial glycocalyx is a layer composed by glycosaminoglycans, proteoglycans and glycoproteins attached to the vascular endothelial luminal surface. It has several physiological roles: shear stress mechanotransduction to the endothelial cells, regulation of fluids and macromolecules vascular permeability, of coagulation cascade activation and fibrinolysis, and protects the endothelium from platelets and leukocytes adhesion. In general, glycocalyx protects vascular wall against pathogenic insults. The glycocalyx may be damaged by abnormal shear stress, reactive oxygen species, hypernatremia, hyperglycemia, hypercholesterolemia and inflammatory molecules, resulting in endothelial dysfunction, enhanced vascular permeability, lipoproteins leakage to subendothelial space, activation of plasma coagulation, and increased adherence of platelets and leukocytes to the endothelial cells. Shredding of glycocalyx appears as an important initial step in the pathophysiology of vascular diseases.


Sujet(s)
Endothélium vasculaire , Glycocalyx/physiologie , Endothélium vasculaire/ultrastructure , Glycocalyx/ultrastructure , Humains , Maladies métaboliques/étiologie , Maladies vasculaires/étiologie
8.
Front Biosci ; 13: 5421-31, 2008 May 01.
Article de Anglais | MEDLINE | ID: mdl-18508596

RÉSUMÉ

The coronary endothelial luminal membrane (CELM) glycocalyx has diverse molecules involved in blood flow signal transduction. Evidence suggests that some of these structures may be lectinic. To test this, we synthesized two monosaccharide polymers (Mon-Pols) made of Mannose (Man-Pol) or Galactose (Gal-Pol) covalently coupled to Dextran (70 kDa) and used them as lectin affinity probes. In situ intracoronary infusion of both polymers resulted in CELM-binding but only Man-Pol caused a reduction in flow-induced positive inotropism and dromotropism. To demonstrate that our lectinic probes could bind to CELM lectins, a representative CELM protein fraction was isolated via intracoronary infusion of a cationic silica colloid and either Mannose- or Galactose-binding lectins were purified from the CELM protein fraction using the corresponding Mon-Pol affinity chromatography resin. Resin-bound CELM proteins were eluted with the corresponding monosaccharide. 2D-SDS-PAGE (pH 4-7) revealed 9 Mannose- and approximately 100 Galactose-selective CELM lectins. In summary, the CELM glycocalyx contains Mannose- and Galactose-binding lectins that may be involved in translating coronary flow into a cardiac parenchymal response.


Sujet(s)
Vitesse du flux sanguin/physiologie , Vaisseaux coronaires/physiologie , Endothélium vasculaire/physiologie , Galectines/physiologie , Lectine liant le mannose/physiologie , Muscles lisses vasculaires/physiologie , Animaux , Techniques de biocapteur , Glycocalyx/physiologie , Coeur/effets des médicaments et des substances chimiques , Coeur/physiologie , Humains , Mammifères , Contraction musculaire/physiologie , Relâchement musculaire/physiologie , Vasoconstriction/physiologie , Vasodilatation/physiologie
9.
Theriogenology ; 59(5-6): 1171-80, 2003 Mar.
Article de Anglais | MEDLINE | ID: mdl-12527065

RÉSUMÉ

Sperm glycocalyx modifications are known to occur during capacitation and the acrosome reaction (AR). These changes are very important for gamete recognition and fertilization in mammals but are not fully understood. The purpose of this study was to determine the distribution of surface carbohydrates in boar spermatozoa during capacitation and the AR. These processes may be associated with specific changes in the content and distribution of surface carbohydrates. Thirty-nine ejaculates from fertile boars of various breeds were analyzed. N-Acetylglucosamine and sialic acid, mannose and fucose residues were detected by fluorescence microscopy and flow cytometry using FITC-conjugated lectins. Triticum vulgaris agglutinin (WGA) bound on the head and tail of fresh sperm, and fluorescence intensity (FI) decreased in capacitated sperm (6751 to 5621 fluorescence units (FU), P<0.05), and decreased further in acrosome-reacted sperm (5240 FU, P<0.05). Concanavalia ensiformis agglutinin (Con-A) bound homogeneously on the head and the midpiece of fresh sperm with a FI of 5335 FU, and increased in capacitated sperm (5957 FU, P<0.05) mainly on the acrosomal region. In acrosome-reacted sperm, fluorescence was concentrated on the border of the acrosomal region (5608 FU, P<0.05). It was not possible to detect Ulex europaeus agglutinin (UEA) by fluorescence microscopy. However, flow cytometry revealed UEA receptors (187 FU), with a nonsignificant decreased number in capacitated (142 FU) and AR sperm (142 FU). Labeling patterns were similar in all breeds. Sperm glycocalyx modifications observed in this study provide insights to the molecular modifications accompanying capacitation and the AR. This kind of study could improve the diagnosis of reproductive problems of subfertile boars and males of other species.


Sujet(s)
Réaction acrosomique/physiologie , Récepteur mitogène/métabolisme , Capacitation des spermatozoïdes/physiologie , Spermatozoïdes/physiologie , Suidae/physiologie , Acétyl-glucosamine/métabolisme , Animaux , Concanavaline A/métabolisme , Cytométrie en flux/médecine vétérinaire , Fucose/métabolisme , Glycocalyx/physiologie , Mâle , Mannose/métabolisme , Microscopie de fluorescence/médecine vétérinaire , Acide N-acétyl-neuraminique/métabolisme , Lectines végétales/métabolisme , Spermatozoïdes/métabolisme , Agglutinines germe blé/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE