Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 578
Filtrer
1.
Sci Rep ; 14(1): 13074, 2024 06 06.
Article de Anglais | MEDLINE | ID: mdl-38844784

RÉSUMÉ

While adaptive immune responses have been studied extensively in SLE (systemic lupus erythematosus), there is limited and contradictory evidence regarding the contribution of natural killer (NK) cells to disease pathogenesis. There is even less evidence about the role of NK cells in the more severe phenotype with juvenile-onset (J)SLE. In this study, analysis of the phenotype and function of NK cells in a large cohort of JSLE patients demonstrated that total NK cells, as well as perforin and granzyme A expressing NK cell populations, were significantly diminished in JSLE patients compared to age- and sex-matched healthy controls. The reduction in NK cell frequency was associated with increased disease activity, and transcriptomic analysis of NK populations from active and low disease activity JSLE patients versus healthy controls confirmed that disease activity was the main driver of differential NK cell gene expression. Pathway analysis of differentially expressed genes revealed an upregulation of interferon-α responses and a downregulation of exocytosis in active disease compared to healthy controls. Further gene set enrichment analysis also demonstrated an overrepresentation of the apoptosis pathway in active disease. This points to increased propensity for apoptosis as a potential factor contributing to NK cell deficiency in JSLE.


Sujet(s)
Cellules tueuses naturelles , Lupus érythémateux disséminé , Humains , Cellules tueuses naturelles/immunologie , Cellules tueuses naturelles/métabolisme , Lupus érythémateux disséminé/génétique , Lupus érythémateux disséminé/immunologie , Lupus érythémateux disséminé/anatomopathologie , Femelle , Mâle , Adolescent , Enfant , Phénotype , Granzymes/métabolisme , Granzymes/génétique , Perforine/métabolisme , Perforine/génétique , Apoptose/génétique , Transcriptome , Analyse de profil d'expression de gènes , Études cas-témoins
2.
J Cancer Res Clin Oncol ; 150(6): 286, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38833021

RÉSUMÉ

BACKGROUND: Granzyme K (GZMK) is a crucial mediator released by immune cells to eliminate tumor cells, playing significant roles in inflammation and tumorigenesis. Despite its importance, the specific role of GZMK in breast cancer and its mechanisms are not well understood. METHODS: We utilized data from the TCGA and GEO databases and employed a range of analytical methods including GO, KEGG, GSEA, ssGSEA, and PPI to investigate the impact of GZMK on breast cancer. In vitro studies, including RT-qPCR, CCK-8 assay, cell cycle experiments, apoptosis assays, Celigo scratch assays, Transwell assays, and immunohistochemical methods, were conducted to validate the effects of GZMK on breast cancer cells. Additionally, Cox regression analysis integrating TCGA and our clinical data was used to develop an overall survival (OS) prediction model. RESULTS: Analysis of clinical pathological features revealed significant correlations between GZMK expression and lymph node staging, differentiation grade, and molecular breast cancer subtypes. High GZMK expression was associated with improved OS, progression-free survival (PFS), and recurrence-free survival (RFS), as confirmed by multifactorial Cox regression analysis. Functional and pathway enrichment analyses of genes positively correlated with GZMK highlighted involvement in lymphocyte differentiation, T cell differentiation, and T cell receptor signaling pathways. A robust association between GZMK expression and T cell presence was noted in the breast cancer tumor microenvironment (TME), with strong correlations with ESTIMATEScore (Cor = 0.743, P < 0.001), ImmuneScore (Cor = 0.802, P < 0.001), and StromalScore (Cor = 0.516, P < 0.001). GZMK also showed significant correlations with immune checkpoint molecules, including CTLA4 (Cor = 0.856, P < 0.001), PD-1 (Cor = 0.82, P < 0.001), PD-L1 (Cor = 0.56, P < 0.001), CD48 (Cor = 0.75, P < 0.001), and CCR7 (Cor = 0.856, P < 0.001). Studies indicated that high GZMK expression enhances patient responsiveness to immunotherapy, with higher levels observed in responsive patients compared to non-responsive ones. In vitro experiments confirmed that GZMK promotes cell proliferation, cell division, apoptosis, cell migration, and invasiveness (P < 0.05). CONCLUSION: Our study provides insights into the differential expression of GZMK in breast cancer and its potential mechanisms in breast cancer pathogenesis. Elevated GZMK expression is associated with improved OS and RFS, suggesting its potential as a prognostic marker for breast cancer survival and as a predictor of the efficacy of immunotherapy.


Sujet(s)
Marqueurs biologiques tumoraux , Tumeurs du sein , Granzymes , Immunothérapie , Humains , Tumeurs du sein/anatomopathologie , Tumeurs du sein/immunologie , Tumeurs du sein/génétique , Tumeurs du sein/thérapie , Tumeurs du sein/mortalité , Femelle , Pronostic , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme , Immunothérapie/méthodes , Granzymes/métabolisme , Granzymes/génétique , Résultat thérapeutique , Adulte d'âge moyen , Microenvironnement tumoral/immunologie
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167219, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38734321

RÉSUMÉ

Chronic infections induce CD4+ T-cells with cytotoxic functions (CD4 CTLs); at present, it is still unknown whether latent tuberculosis (LTB) and active tuberculosis (ATB) induce CD4 CTLs. Plasma and cells from four patient groups-uninfected contact (UC), LTB, and ATB (divided as sensitive [DS-TB]- or resistant [DR-TB]-drug)-were evaluated by flow cytometry, q-PCR, and proteomics. The data showed that ATB patients had an increased frequency of CD4+ T-cells and a decreased frequency of CD8+ T-cells. The latter displays an exhausted-like profile characterized by CD39, CD279, and TIM-3 expression. ATB had a high frequency of CD4 + perforin+ cells, suggesting a CD4 CTL profile. The expression (at the transcriptional level) of granzyme A, granzyme B, granulysin, and perforin, as well as the genes T-bet (Tbx21) and NKG2D (Klrk1), in enriched CD4+ T-cells, confirmed the cytotoxic signature of CD4+ T-cells during ATB (which was stronger in DS-TB than in DR-TB). Moreover, proteomic analysis revealed the presence of HSP70 (in DS-TB) and annexin A5 (in DR-TB), which are molecules that have been associated with favoring the CD4 CTL profile. Finally, we found that lipids from Mycobacterium tuberculosis increased the presence of CD4 CTLs in DR-TB patients. Our data suggest that ATB is characterized by exhausted-like CD8+ T-cells, which, together with a specific microenvironment, favor the presence of CD4 CTLs.


Sujet(s)
Lymphocytes T CD4+ , Lymphocytes T CD8+ , Granzymes , Récepteur cellulaire-2 du virus de l'hépatite A , Perforine , Tuberculose , Humains , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , Lymphocytes T CD4+/immunologie , Lymphocytes T CD4+/métabolisme , Mâle , Granzymes/métabolisme , Granzymes/génétique , Granzymes/immunologie , Perforine/métabolisme , Perforine/génétique , Perforine/immunologie , Adulte , Femelle , Récepteur cellulaire-2 du virus de l'hépatite A/métabolisme , Récepteur cellulaire-2 du virus de l'hépatite A/immunologie , Tuberculose/immunologie , Tuberculose/microbiologie , Tuberculose latente/immunologie , Tuberculose latente/microbiologie , Adulte d'âge moyen , Lymphocytes T cytotoxiques/immunologie , Lymphocytes T cytotoxiques/métabolisme , Mycobacterium tuberculosis/immunologie , Protéines à domaine boîte-T/métabolisme , Protéines à domaine boîte-T/génétique , Protéines à domaine boîte-T/immunologie , Antigènes CD/métabolisme , Antigènes CD/immunologie , Antigènes CD/génétique , Sous-famille K des récepteurs de cellules NK de type lectine/métabolisme , Sous-famille K des récepteurs de cellules NK de type lectine/immunologie , Sous-famille K des récepteurs de cellules NK de type lectine/génétique , Protéomique/méthodes , Antigènes de différenciation des lymphocytes T , Apyrase
4.
J Immunol ; 212(11): 1722-1732, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38607279

RÉSUMÉ

An imbalance between proinflammatory and regulatory processes underlies autoimmune disease pathogenesis. We have shown that acute relapses of multiple sclerosis are characterized by a deficit in the immune suppressive ability of CD8+ T cells. These cells play an important immune regulatory role, mediated in part through cytotoxicity (perforin [PRF]/granzyme [GZM]) and IFNγ secretion. In this study, we further investigated the importance of IFNγ-, GZMB-, PRF1-, and LYST-associated pathways in CD8+ T cell-mediated suppression. Using the CRISPR-Cas9 ribonucleoprotein transfection system, we first optimized efficient gene knockout while maintaining high viability in primary bulk human CD8+ T cells. Knockout was confirmed through quantitative real-time PCR assays in all cases, combined with flow cytometry where appropriate, as well as confirmation of insertions and/or deletions at genomic target sites. We observed that the knockout of IFNγ, GZMB, PRF1, or LYST, but not the knockout of IL4 or IL5, resulted in significantly diminished in vitro suppressive ability in these cells. Collectively, these results reveal a pivotal role for these pathways in CD8+ T cell-mediated immune suppression and provide important insights into the biology of human CD8+ T cell-mediated suppression that could be targeted for immunotherapeutic intervention.


Sujet(s)
Lymphocytes T CD8+ , Granzymes , Interféron gamma , Perforine , Humains , Lymphocytes T CD8+/immunologie , Interféron gamma/immunologie , Interféron gamma/métabolisme , Perforine/génétique , Perforine/métabolisme , Granzymes/métabolisme , Granzymes/génétique , Systèmes CRISPR-Cas , Sclérose en plaques/immunologie , Sclérose en plaques/génétique , Techniques de knock-out de gènes , Cellules cultivées
5.
Cancer Immunol Immunother ; 73(3): 58, 2024 Feb 22.
Article de Anglais | MEDLINE | ID: mdl-38386050

RÉSUMÉ

B cells possess anti-tumor functions mediated by granzyme B, in addition to their role in antigen presentation and antibody production. However, the variations in granzyme B+ B cells between tumor and non-tumor tissues have been largely unexplored. Therefore, we integrated 25 samples from the Gene Expression Omnibus database and analyzed the tumor immune microenvironment. The findings uncovered significant inter- and intra-tumoral heterogeneity. Notably, single-cell data showed higher proportions of granzyme B+ B cells in tumor samples compared to control samples, and these levels were positively associated with disease-free survival. The elevated levels of granzyme B+ B cells in tumor samples resulted from tumor cell chemotaxis through the MIF- (CD74 + CXCR4) signaling pathway. Furthermore, the anti-tumor function of granzyme B+ B cells in tumor samples was adversely affected, potentially providing an explanation for tumor progression. These findings regarding granzyme B+ B cells were further validated in an independent clinic cohort of 40 liver transplant recipients with intrahepatic cholangiocarcinoma. Our study unveils an interaction between granzyme B+ B cells and intrahepatic cholangiocarcinoma, opening up potential avenues for the development of novel therapeutic strategies against this disease.


Sujet(s)
Tumeurs des canaux biliaires , Cholangiocarcinome , Transplantation hépatique , Humains , Granzymes/génétique , Cholangiocarcinome/génétique , Cholangiocarcinome/chirurgie , Pronostic , Tumeurs des canaux biliaires/génétique , Tumeurs des canaux biliaires/chirurgie , Conduits biliaires intrahépatiques , Microenvironnement tumoral
6.
Cell Death Dis ; 15(2): 109, 2024 02 02.
Article de Anglais | MEDLINE | ID: mdl-38307835

RÉSUMÉ

Chimeric antigen receptor (CAR) T cell show promise in cancer treatments, but their mechanism of action is not well understood. Decoding the mechanisms used by individual T cells can help improve the efficacy of T cells while also identifying mechanisms of T cell failure leading to tumor escape. Here, we used a suite of assays including dynamic single-cell imaging of cell-cell interactions, dynamic imaging of fluorescent reporters to directly track cytotoxin activity in tumor cells, and scRNA-seq on patient infusion products to investigate the cytotoxic mechanisms used by individual CAR T cells in killing tumor cells. We show that surprisingly, overexpression of the Granzyme B (GZMB) inhibitor, protease inhibitor-9 (PI9), does not alter the cytotoxicity mediated by CD19-specific CAR T cells against either the leukemic cell line, NALM6; or the ovarian cancer cell line, SkOV3-CD19. We designed and validated reporters to directly assay T cell delivered GZMB activity in tumor cells and confirmed that while PI9 overexpression inhibits GZMB activity at the molecular level, this is not sufficient to impact the kinetics or magnitude of killing mediated by the CAR T cells. Altering cytotoxicity mediated by CAR T cells required combined inhibition of multiple pathways that are tumor cell specific: (a) B-cell lines like NALM6, Raji and Daudi were sensitive to combined GZMB and granzyme A (GZMA) inhibition; whereas (b) solid tumor targets like SkOV3-CD19 and A375-CD19 (melanoma) were sensitive to combined GZMB and Fas ligand inhibition. We realized the translational relevance of these findings by examining the scRNA-seq profiles of Tisa-cel and Axi-cel infusion products and show a significant correlation between GZMB and GZMA expression at the single-cell level in a T cell subset-dependent manner. Our findings highlight the importance of the redundancy in killing mechanisms of CAR T cells and how this redundancy is important for efficacious T cells.


Sujet(s)
Tumeurs , Récepteurs chimériques pour l'antigène , Humains , Récepteurs chimériques pour l'antigène/génétique , Granzymes/génétique , Lymphocytes T , Immunothérapie adoptive/méthodes
7.
Mucosal Immunol ; 17(3): 476-490, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38176655

RÉSUMÉ

Respiratory viral infections, including human metapneumovirus (HMPV), remain a leading cause of morbidity and mortality in neonates and infants. However, the mechanisms behind the increased sensitivity to those respiratory viral infections in neonates are poorly understood. Neonates, unlike adults, have several anti-inflammatory mechanisms in the lung, including elevated baseline expression of programmed death ligand 1 (PD-L1), a ligand for the inhibitory receptor programmed cell death protein 1 (PD-1). We thus hypothesized that neonates would rely on PD-1:PD-L1 signaling to restrain antiviral CD8 responses. To test this, we developed a neonatal primary HMPV infection model using wild-type C57BL/6 (B6) and Pdcd1-/- (lacking PD-1) mice. HMPV-infected neonatal mice had increased PD-L1/PD-L2 co-expression on innate immune cells but a similar number of antigen-specific CD8+ T cells and upregulation of PD-1 to that of adult B6 mice. Neonatal CD8+ T cells had reduced interferon-gamma (IFN-γ), granzyme B, and interleukin-2 production compared with B6 adults. Pdcd1-/- neonatal CD8+ T cells had markedly increased production of IFN-γ and granzyme B compared with B6 neonates. Pdcd1-/- neonates had increased acute pathology with HMPV or influenza. Pdcd1-/- neonates infected with HMPV had long-term changes in pulmonary physiology with evidence of immunopathology and a persistent CD8+ T-cell response with increased granzyme B production. Using single-cell ribonucleic acid sequencing from a child lacking PD-1 signaling, a similar activated CD8+ T-cell signature with increased granzyme B expression was observed. These data indicate that PD-1 signaling critically limits CD8+ T-cell effector functions and prevents immunopathology in response to neonatal respiratory viral infections.


Sujet(s)
Animaux nouveau-nés , Lymphocytes T CD8+ , Metapneumovirus , Souris knockout , Infections à Paramyxoviridae , Récepteur-1 de mort cellulaire programmée , Transduction du signal , Animaux , Lymphocytes T CD8+/immunologie , Récepteur-1 de mort cellulaire programmée/métabolisme , Récepteur-1 de mort cellulaire programmée/génétique , Souris , Humains , Metapneumovirus/immunologie , Infections à Paramyxoviridae/immunologie , Antigène CD274/métabolisme , Antigène CD274/génétique , Souris de lignée C57BL , Granzymes/métabolisme , Granzymes/génétique , Modèles animaux de maladie humaine , Infections de l'appareil respiratoire/immunologie , Infections de l'appareil respiratoire/virologie
8.
J Neurooncol ; 166(2): 283-292, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38214828

RÉSUMÉ

BACKGROUND: PTEN is a tumour suppressor gene and well-known for being frequently mutated in several cancer types. Loss of immunogenicity can also be attributed to PTEN loss, because of its role in establishing the tumour microenvironment. Therefore, this study aimed to represent the link between PTEN and cGAS-STING activity, a key mediator of inflammation, in tumour samples of glioblastoma patients. METHODS: Tumour samples of 36 glioblastoma patients were collected. After DNA isolation, all coding regions of PTEN were sequenced and analysed. PTEN expression status was also evaluated by qRT-PCR, western blot, and immunohistochemical methods. Interferon-stimulated gene expressions, cGAMP activity, CD8 infiltration, and Granzyme B expression levels were determined especially for the evaluation of cGAS-STING activity and immunogenicity. RESULTS: Mutant PTEN patients had significantly lower PTEN expression, both at mRNA and protein levels. Decreased STING, IRF3, NF-KB1, and RELA mRNA expressions were also found in patients with mutant PTEN. Immunohistochemistry staining of PTEN displayed expressional loss in 38.1% of the patients. Besides, patients with PTEN loss had considerably lower amounts of IFNB and IFIT2 mRNA expressions. Furthermore, CD8 infiltration, cGAMP, and Granzyme B levels were reduced in the PTEN loss group. CONCLUSION: This study reveals the immunosuppressive effects of PTEN loss in glioblastoma tumours via the cGAS-STING pathway. Therefore, determining the PTEN status in tumours is of great importance, like in situations when considering the treatment of glioblastoma patients with immunotherapeutic agents.


Sujet(s)
Glioblastome , Humains , Granzymes/génétique , Glioblastome/génétique , Nucleotidyltransferases/génétique , Nucleotidyltransferases/métabolisme , ARN messager , Mutation , Microenvironnement tumoral , Phosphohydrolase PTEN/génétique
9.
J Allergy Clin Immunol ; 153(2): 513-520.e10, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37652139

RÉSUMÉ

BACKGROUND: Germinal center (GC) responses controlled by T follicular helper (Tfh) and T follicular regulatory (Tfr) cells are crucial for the generation of high-affinity antibodies. Acquired immune responses to tissue-released antigens might be mainly induced in tertiary lymphoid organs (TLOs) with GCs in affected tissues. IgG4-related disease (IgG4-RD) demonstrates polarized isotype switching and TLOs in affected tissues. We performed single-cell transcriptomics of tissue-infiltrating T cells from these TLOs to obtain a comprehensive, unbiased view of tissue-infiltrating GC-Tfh cells. OBJECTIVE: To identify GC-Tfh-cell subsets in TLOs in patients with IgG4-RD using single-cell transcriptomics. METHODS: Single-cell RNA sequencing of sorted CD3+ T cells and multicolor immunofluorescence analysis were used to investigate CD4+CXCR5+Bcl6+ GC-Tfh cells in affected lesions from patients with IgG4-RD. RESULTS: Infiltrating CD4+CXCR5+Bcl6+ Tfh cells were divided into 5 main clusters. We detected HLA+ granzyme K+ (GZMK+) Tfh cells with cytotoxicity-associated features in patients with IgG4-RD. We also observed abundant infiltrating Tfr cells with suppressor-associated features in patients with IgG4-RD. These GZMK+ Tfh cells and Tfr cells clustered together in affected tissues from patients with IgG4-RD. CONCLUSIONS: This single-cell data set revealed a novel subset of HLA+GZMK+ cytotoxic Tfh cells infiltrating affected organs in patients with IgG4-RD, suggesting that infiltrating Tfr cells might suppress cytotoxic Tfh cells.


Sujet(s)
Antinéoplasiques , Maladie associée aux immunoglobulines G4 , Structures lymphoïdes tertiaires , Humains , Granzymes/génétique , Lymphocytes T auxiliaires folliculaires , Analyse de profil d'expression de gènes , Lymphocytes T auxiliaires , Lymphocytes T régulateurs
10.
Hum Pathol ; 143: 10-16, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38000677

RÉSUMÉ

Extranodal NK/T-cell lymphoma (ENKTL) generally expresses cytotoxic molecules, including granzyme B (GZMB), T-cell-restricted intracellular antigen-1 (TIA-1), and perforin; however, the expression of these molecules varies across cases. We performed gene expression profiling and identified unique biological and clinicopathological features of GZMB-negative ENKTL. We reviewed the clinicopathological characteristics of 71 ENKTL samples. Gene expression profiling on nine ENKTLs using multiplexed, direct, and digital mRNA quantification divided ENKTLs into Groups A (n = 7) and B (n = 2) through hierarchical clustering and t-distributed stochastic neighbor embedding. Group B was characterized by downregulation of genes associated with IL6-JAK-STAT3 signaling and inflammatory responses. GZMB mRNA expression was significantly downregulated in Group B. GZMB protein expression was evaluated with immunohistochemistry in all 71 ENKTLs, and expression data of Tyr705-phosphorylated STAT3 (pSTAT3) and MYC from our previous study was utilized. T-cell receptor gamma (TRG) gene rearrangement in the selected samples was also assessed using PCR. GZMB expression was higher in pSTAT3-positive (p = 0.028) and MYC-positive (p = 0.014) ENKTLs. Eighteen percent (13/71) of all ENKTLs were negative for GZMB (defined by positivity <10 %); patients with GZMB-negative ENKTLs were often in a higher clinical stage (p = 0.016). We observed no other correlations with clinical parameters or TRG rearrangement and no significant association between GZMB expression and survival. In conclusion, GZMB expression is highly heterogeneous in ENKTLs and is associated with the activation of the JAK-STAT3 pathway and higher MYC expression. GZMB-negative ENKTLs correlate with an advanced clinical stage, suggesting the potential utility of GZMB immunohistochemistry as a biomarker of ENKTL.


Sujet(s)
Lymphome T-NK extraganglionnaire , Humains , Granzymes/génétique , Lymphome T-NK extraganglionnaire/anatomopathologie , Récepteur lymphocytaire T antigène, gamma-delta/génétique , Récepteur lymphocytaire T antigène, gamma-delta/métabolisme , ARN messager
11.
Virol J ; 20(1): 304, 2023 12 19.
Article de Anglais | MEDLINE | ID: mdl-38115107

RÉSUMÉ

BACKGROUND: Human T-lymphotropic virus 1 (HTLV-1) is associated with the development of several pathologies and chronic infection in humans. The inefficiency of the available treatments and the challenge in developing a protective vaccine highlight the need to produce effective immunotherapeutic tools. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ) plays an important role in the HTLV-1 persistence, conferring a survival advantage to infected cells by reducing the HTLV-1 proteins expression, allowing infected cells to evade immune surveillance, and enhancing cell proliferation leading to increased proviral load. METHODS: We have generated a recombinant Modified Virus Vaccinia Ankara (MVA-HBZ) and a plasmid DNA (pcDNA3.1(+)-HBZ) expressing a multiepitope protein based on peptides of HBZ to study the immunogenic potential of this viral-derived protein in BALB/c mice model. Mice were immunized in a prime-boost heterologous protocol and their splenocytes (T CD4+ and T CD8+) were immunophenotyped by flow cytometry and the humoral response was evaluated by ELISA using HBZ protein produced in prokaryotic vector as antigen. RESULTS: T CD4+ and T CD8+ lymphocytes cells stimulated by HBZ-peptides (HBZ42-50 and HBZ157-176) showed polyfunctional double positive responses for TNF-α/IFN-γ, and TNF-α/IL-2. Moreover, T CD8+ cells presented a tendency in the activation of effector memory cells producing granzyme B (CD44+High/CD62L-Low), and the activation of Cytotoxic T Lymphocytes (CTLs) and cytotoxic responses in immunized mice were inferred through the production of granzyme B by effector memory T cells and the expression of CD107a by CD8+ T cells. The overall data is consistent with a directive and effector recall response, which may be able to operate actively in the elimination of HTLV-1-infected cells and, consequently, in the reduction of the proviral load. Sera from immunized mice, differently from those of control animals, showed IgG-anti-HBZ production by ELISA. CONCLUSIONS: Our results highlight the potential of the HBZ multiepitope protein expressed from plasmid DNA and a poxviral vector as candidates for therapeutic vaccine.


Sujet(s)
Virus T-lymphotrope humain de type 1 , Vaccins à ADN , Souris , Humains , Animaux , Lymphocytes T CD8+ , Granzymes/génétique , Facteur de nécrose tumorale alpha , Vaccins à ADN/génétique , Protéines virales/métabolisme , Virus de la vaccine/génétique , ADN , Facteurs de transcription à motif basique et à glissière à leucines , Protéines des retroviridae/génétique
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(12): 1063-1068, 2023 Dec.
Article de Chinois | MEDLINE | ID: mdl-38140864

RÉSUMÉ

Objective To explore the effect of formononetin on immunity of mice with transplanted H22 hepatocarcinoma. Methods Male C57BL/6 mice were subcutaneously inoculated with H22 cells (4×105) to establish a tumor-bearing mouse model. The mice were treated with formononetin [10 mg/(kg.d)] or [50 mg/(kg.d)] for 28 days, and then the tumor inhibition rate was calculated. Carrilizumab was used as a positive control drug. The expressions of CD8, granzyme B and forkbox transcription factor 3 (FOXP3) in HCC tissues were analyzed by immunohistochemical staining. The mRNA and protein expression of programmed cell death protein 1 (PD-1) and its ligand 1 (PD-L1) in HCC tissues were detected by real-time PCR or Western blot analysis, respectively. The serum levels of interleukin-10 (IL-10) and transforming growth factor-ß (TGF-ß) were detected by ELISA. Results Formononetin increased the tumor inhibition rate and the positive rate of CD8 and granzyme B staining in tumor-bearing mice. There was no significant difference in the positive rate of FOXP3 staining in tumor tissues of mice in each group. Formononetin decreased the levels of IL-10 and TGF-ß in serum of tumor-bearing mice, and decreased the relative expression of mRNA and protein of PD-1 and PD-L1 in tumor tissue of tumor-bearing mice. Conclusion Formononetin can activate CD8+ T cells and reduce the release of immunosuppressive factors in regulatory T cells by blocking PD-1/PD-L1 pathway and play an antitumor role.


Sujet(s)
Carcinome hépatocellulaire , Tumeurs du foie , Mâle , Animaux , Souris , Carcinome hépatocellulaire/anatomopathologie , Tumeurs du foie/génétique , Interleukine-10/génétique , Antigène CD274 , Granzymes/génétique , Récepteur-1 de mort cellulaire programmée/métabolisme , Lymphocytes T CD8+/métabolisme , Souris de lignée C57BL , Facteur de croissance transformant bêta/génétique , ARN messager/métabolisme , Facteurs de transcription Forkhead/génétique , Lignée cellulaire tumorale
13.
Proc Natl Acad Sci U S A ; 120(49): e2302903120, 2023 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-38015852

RÉSUMÉ

Uncontrolled type 2 immunity by type 2 helper T (Th2) cells causes intractable allergic diseases; however, whether the interaction of CD4+ T cells shapes the pathophysiology of allergic diseases remains unclear. We identified a subset of Th2 cells that produced the serine proteases granzyme A and B early in differentiation. Granzymes cleave protease-activated receptor (Par)-1 and induce phosphorylation of p38 mitogen-activated protein kinase (MAPK), resulting in the enhanced production of IL-5 and IL-13 in both mouse and human Th2 cells. Ubiquitin-specific protease 7 (USP7) regulates IL-4-induced phosphorylation of STAT3, resulting in granzyme production during Th2 cell differentiation. Genetic deletion of Usp7 or Gzma and pharmacological blockade of granzyme B ameliorated allergic airway inflammation. Furthermore, PAR-1+ and granzyme+ Th2 cells were colocalized in nasal polyps from patients with eosinophilic chronic rhinosinusitis. Thus, the USP7-STAT3-granzymes-Par-1 pathway is a potential therapeutic target for intractable allergic diseases.


Sujet(s)
Hypersensibilité , Lymphocytes auxiliaires Th2 , Humains , Animaux , Souris , Granzymes/génétique , Granzymes/métabolisme , Interleukine-5/métabolisme , Ubiquitin-specific peptidase 7/métabolisme , Inflammation/métabolisme , Différenciation cellulaire , Facteur de transcription STAT-3/génétique , Facteur de transcription STAT-3/métabolisme
14.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-37686170

RÉSUMÉ

Natural killer (NK) cells are cytotoxic lymphocytes that are critical for the innate immune system. Engineering NK cells with chimeric antigen receptors (CARs) allows CAR-NK cells to target tumor antigens more effectively. In this report, we present novel CAR mRNA-LNP (lipid nanoparticle) technology to effectively transfect NK cells expanded from primary PBMCs and to generate functional CAR-NK cells. CD19-CAR mRNA and BCMA-CAR mRNA were embedded into LNPs that resulted in 78% and 95% CAR expression in NK cells, respectively. BCMA-CAR-NK cells after transfection with CAR mRNA-LNPs killed multiple myeloma RPMI8226 and MM1S cells and secreted IFN-gamma and Granzyme B in a dose-dependent manner in vitro. In addition, CD19-CAR-NK cells generated with CAR mRNA-LNPs killed Daudi and Nalm-6 cells and secreted IFN-gamma and Granzyme B in a dose-dependent manner. Both BCMA-CAR-NK and CD19-CAR-NK cells showed significantly higher cytotoxicity, IFN-gamma, and Granzyme B secretion compared with normal NK cells. Moreover, CD19-CAR-NK cells significantly blocked Nalm-6 tumor growth in vivo. Thus, non-viral delivery of CAR mRNA-LNPs can be used to generate functional CAR-NK cells with high anti-tumor activity.


Sujet(s)
Myélome multiple , Récepteurs chimériques pour l'antigène , Humains , Récepteurs chimériques pour l'antigène/génétique , Granzymes/génétique , Antigène de maturation des cellules B , Cellules tueuses naturelles , Myélome multiple/génétique , Myélome multiple/thérapie , Protéines adaptatrices de la transduction du signal , Antigènes CD19
15.
Int J Mol Sci ; 24(17)2023 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-37686395

RÉSUMÉ

Granzyme B (GZMB) is a key enzyme released by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to induce apoptosis in target cells. We designed a novel fluorogenic biosensor which is able to assess GZMB activity in a specific and sensitive manner. This cleavage-responsive sensor for T cell activity level (CRSTAL) is based on a fluorescent protein that is only activated upon cleavage by GZMB or caspase-8. CRSTAL was tested in stable cell lines and demonstrated a strong and long-lasting fluorescence signal upon induction with GZMB. It can detect GZMB activity not only by overexpression of GZMB in target cells but also following transfer of GZMB and perforin from effector cells during cytotoxicity. This feature has significant implications for cancer immunotherapy, particularly in monitoring the efficacy of chimeric antigen receptor (CAR)-T cells. CAR-T cells are a promising therapy option for various cancer types, but monitoring their activity in vivo is challenging. The development of biosensors like CRSTAL provides a valuable tool for monitoring of CAR-T cell activity. In summary, CRSTAL is a highly sensitive biosensor that can detect GZMB activity in target cells, providing a means for evaluating the cytotoxic activity of immune cells and monitoring T cell activity in real time.


Sujet(s)
Apoptose , Agents colorants , Granzymes/génétique , Lignée cellulaire , Érythrocytes anormaux
16.
Dev Comp Immunol ; 148: 104920, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37597699

RÉSUMÉ

Granzymes A and K are two highly homologous serine proteases expressed by mammalian cytotoxic T cells (CTLs) and natural killer (NK) cells. The locus encoding these two proteases is the first of the hematopoietic serine protease loci to appear during vertebrate evolution. This locus is found in all jawed vertebrates including the cartilaginous fishes. Granzyme A is the most abundant of the different granzymes expressed by CTLs and NK cells and its potential function has been studied extensively for many years. However, no clear conclusions concerning its primary role in the immune defense has been obtained. In all mammals, there are only one copy each of granzyme A and K, whereas additional copies are found in both cartilaginous and ray finned fishes. In cichlids two of these copies seem to encode new members of the granzyme A/K family. These two new members appear to have changed primary specificity and to be pure chymases based on the amino acids in their active site substrate binding pockets. Interestingly, one of these gene copies is located in the middle of the granzyme A/K locus, while the other copy is present in another locus, the met-ase locus. We here present a detailed characterization of the extended cleavage specificity of one of these non-classical granzymes, a Zebra mbuna granzyme positioned in the granzyme A/K locus. This enzyme, named granzyme A2, showed a high preference for tyrosine in the P1 position of substrates, thereby being a strict chymase. We have also characterized one of the classical granzyme A/Ks of the Zebra mbuna, granzyme A1, which is a tryptase with preference for arginine in the P1 position of substrates. Based on their extended specificities, the two granzymes showed major similarities, but also some differences in preferred amino acids in positions surrounding the cleavable amino acid. Fish lack one of the hematopoietic serine protease loci of mammals, the chymase locus, where one of the major mast cell enzymes is located. An interesting question is now if cichlids have by compensatory mechanisms generated a mast cell chymase from another locus, and if similar chymotryptic enzymes have appeared also in other fish species.


Sujet(s)
Cichlides , Protéases à sérine , Animaux , Tryptases , Granzymes/génétique , Chymases/génétique , Acides aminés , Cichlides/génétique , Mammifères
17.
Inflamm Res ; 72(8): 1525-1538, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37470818

RÉSUMÉ

INTRODUCTION: Granzyme B (GZMB), a serine protease with cytotoxic and immunomodulatory functions, shows elevated levels in blood plasma of patients with atopic dermatitis (AD). It has been observed that GZMB expression in CD4+ and CD8+ T cells is higher in lesional skin in AD than in healthy skin. Since histamine is present in high concentration in the skin of AD patients, we investigated the regulation of GZMB in human CD4+ T cells by histamine. METHODS: Naïve CD4+ T cells polarized into Th2 cells, total CD4+ T cells treated with IL-4 for 72 h and CD4+ T cells isolated from healthy donors and AD patients were investigated. The cells were stimulated with histamine or with different histamine-receptor agonists. Gene expression was evaluated by RNA-Seq. GZMB mRNA expression was detected by quantitative real time PCR, whereas GZMB secretion was measured by ELISpot and ELISA. T cell degranulation was evaluated by flow cytometry using CD107a surface expression as a degranulation marker. RESULTS: By RNA-Seq, we identified the up-regulation of various genes of the cytotoxic pathway, in particular of GZMB, by histamine in Th2-polarized CD4+ T cells. In Th2-polarized CD4+ T cells and in CD4+ T cells activated by IL-4 the mRNA expression of GZMB was significantly up-regulated by histamine and by histamine H2 receptor (H2R) agonists. The induction of GZMB secretion by histamine was significantly higher in CD4+ T cells from AD patients than in those from healthy donors. CD107a surface expression was up-regulated by trend in response to histamine in Th2-polarized CD4+ T cells. CONCLUSION: Our findings may help to elucidate novel mechanisms of the H2R and to achieve a better understanding of the role of GZMB in the pathogenesis of AD.


Sujet(s)
Eczéma atopique , Granzymes , Récepteurs histaminergiques , Humains , Lymphocytes T CD8+ , Granzymes/génétique , Histamine/métabolisme , Interleukine-4 , ARN messager , Lymphocytes auxiliaires Th2 , Récepteurs histaminergiques/métabolisme
18.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-37446056

RÉSUMÉ

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that has been implicated in numerous oncogenic processes. GSK-3 inhibitor elraglusib (9-ING-41) has shown promising preclinical and clinical antitumor activity across multiple tumor types. Despite promising early-phase clinical trial results, there have been limited efforts to characterize the potential immunomodulatory properties of elraglusib. We report that elraglusib promotes immune cell-mediated tumor cell killing of microsatellite stable colorectal cancer (CRC) cells. Mechanistically, elraglusib sensitized CRC cells to immune-mediated cytotoxicity and enhanced immune cell effector function. Using western blots, we found that elraglusib decreased CRC cell expression of NF-κB p65 and several survival proteins. Using microarrays, we discovered that elraglusib upregulated the expression of proapoptotic and antiproliferative genes and downregulated the expression of cell proliferation, cell cycle progression, metastasis, TGFß signaling, and anti-apoptotic genes in CRC cells. Elraglusib reduced CRC cell production of immunosuppressive molecules such as VEGF, GDF-15, and sPD-L1. Elraglusib increased immune cell IFN-γ secretion, which upregulated CRC cell gasdermin B expression to potentially enhance pyroptosis. Elraglusib enhanced immune effector function resulting in augmented granzyme B, IFN-γ, TNF-α, and TRAIL production. Using a syngeneic, immunocompetent murine model of microsatellite stable CRC, we evaluated elraglusib as a single agent or combined with immune checkpoint blockade (anti-PD-1/L1) and observed improved survival in the elraglusib and anti-PD-L1 group. Murine responders had increased tumor-infiltrating T cells, augmented granzyme B expression, and fewer regulatory T cells. Murine responders had reduced immunosuppressive (VEGF, VEGFR2) and elevated immunostimulatory (GM-CSF, IL-12p70) cytokine plasma concentrations. To determine the clinical significance, we then utilized elraglusib-treated patient plasma samples and found that reduced VEGF and BAFF and elevated IL-1 beta, CCL22, and CCL4 concentrations correlated with improved survival. Using paired tumor biopsies, we found that tumor-infiltrating immune cells had a reduced expression of inhibitory immune checkpoints (VISTA, PD-1, PD-L2) and an elevated expression of T-cell activation markers (CTLA-4, OX40L) after elraglusib treatment. These results address a significant gap in knowledge concerning the immunomodulatory mechanisms of GSK-3 inhibitor elraglusib, provide a rationale for the clinical evaluation of elraglusib in combination with immune checkpoint blockade, and are expected to have an impact on additional tumor types, besides CRC.


Sujet(s)
Tumeurs colorectales , Glycogen Synthase Kinase 3 , Humains , Animaux , Souris , Glycogen Synthase Kinase 3/métabolisme , Granzymes/génétique , Granzymes/métabolisme , Modèles animaux de maladie humaine , Inhibiteurs de points de contrôle immunitaires/métabolisme , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Tumeurs colorectales/métabolisme , Lymphocytes TIL , Biopsie , Lignée cellulaire tumorale , Antigène CD274
19.
Jt Dis Relat Surg ; 34(2): 271-278, 2023 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-37462629

RÉSUMÉ

OBJECTIVES: This study aims to assess the development of osteoarthritis (OA) in granzyme A- (gzmA) and B- (gzmB) and perforin- (perf) knockout mice. MATERIALS AND METHODS: A total of 75 male and female C57BL/6 (eight to nine-week-old) mice were allocated to: gzmA-deficient (gzmA-/-) (11 females, 8 males), gzmB-deficient (gzmB-/-) (9 females, 8 males), perf-deficient (perf-/-) (10 females, 9 males), and control group (10 females, 10 males). Osteoarthritis was induced in the right knee by instability of the meniscus medial ligament. Sham surgery was practiced in the left knee. Knee samples obtained eight weeks after surgery were stained (Safranin-O) and blindly scored in lateral and medial femur and tibia using the Osteoarthritis Research Society International scale (OARSI) (from Grade 0, cartilage intact to 6, deformation), (five stages from 0, no OA to 4, >50% surface involvement); OARSI score (Grade x Stage); and a semi-quantitative scale from Grade 0 (normal) to 6 (cartilage erosion >80%). RESULTS: Significantly higher values in all scales in the right knees compared to the left knees in male and female mice were observed (p<0.05). Males of all strains showed in the right knee higher values than females on all scales. Deficiency of perforin did not modify OA severity in any sex. The gzmA-/- females presented less degenerative changes than the other groups. CONCLUSION: Our study results show that sex plays an important role in the development of experimental OA in mice. Deficiency of gzmA can protect from the development of OA in female mice.


Sujet(s)
Arthrose , Animaux , Femelle , Mâle , Souris , Cartilage , Granzymes/génétique , Souris de lignée C57BL , Arthrose/génétique , Perforine/génétique
20.
Int Endod J ; 56(10): 1254-1269, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37400946

RÉSUMÉ

AIM: T cells are key immunomodulatory cells in periapical lesions. This study aimed to explore the roles of T cells in chronic apical periodontitis (CAP) using single-cell RNA sequencing and to further investigate Granzyme A (GZMA) in angiogenesis regulation. METHODOLOGY: A total of five CAP samples were collected for single-cell RNA sequencing. We performed subcluster and lineage-tracing analyses for T cells. According to differential gene expression, distinct biological functions enriched in T cells of CAP were presented by gene set enrichment analysis (GSEA) and compared with healthy gingiva (data obtained from the GEO database). CellChat was used to explore potential ligand-receptor interactions between T cells and endothelial cells in CAP. The coculture of primary human umbilical vein endothelial cells (HUVECs) and Jurkat T cells, as well as the addition of GZMA recombinant protein, was used to validate the predicted pair of GZMA and coagulation factor II thrombin receptor (F2R) by RT-PCR, angiogenesis and migration assays. RESULTS: A transcriptomic atlas of 44 746 individual cells was constructed from the periapical lesions of five patients with CAP by single-cell RNA-seq, and eight cell types were identified. We identified nine subsets of T cells and deciphered the cellular heterogeneity of T cells in CAP at the functional level by subclustering and GSEA. Lineage tracing revealed a distinct lineage of T cells in CAP and predicted the transition of the T cellular state upon CAP. GSEA revealed multiple biological processes and relevant angiogenesis genes upregulated in CAP T cells. GZMA-F2R pairs were predicted by cell-cell interactions in CAP. High expression of GZMA and F2R was observed in the coculture of HUVECs and Jurkat T cells, and the proangiogenic capacity of the GZMA recombinant protein was emphasized by in vitro experiments. CONCLUSIONS: Our study provides novel insights into the heterogeneity of T cells in periapical lesions and reveals the potential role of GZMA in T cells in regulating angiogenesis in HUVECs.


Sujet(s)
Lymphocytes T , Humains , Granzymes/génétique , Granzymes/métabolisme , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Lymphocytes T/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...