Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.013
Filtrer
2.
Nat Commun ; 15(1): 5593, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961067

RÉSUMÉ

Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.


Sujet(s)
Anticorps antiviraux , Réactions croisées , Sous-type H3N2 du virus de la grippe A , Grippe humaine , Sialidase , Pandémies , Sialidase/immunologie , Sialidase/génétique , Animaux , Humains , Anticorps antiviraux/immunologie , Anticorps antiviraux/sang , Sous-type H3N2 du virus de la grippe A/immunologie , Femelle , Réactions croisées/immunologie , Souris , Grippe humaine/immunologie , Grippe humaine/épidémiologie , Grippe humaine/virologie , Sujet âgé , Sous-type H2N2 du virus de la grippe A/immunologie , Sous-type H2N2 du virus de la grippe A/génétique , Mâle , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/virologie , Infections à Orthomyxoviridae/épidémiologie , Infections à Orthomyxoviridae/médecine vétérinaire , Oiseaux/virologie , Adulte d'âge moyen , Grippe chez les oiseaux/épidémiologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Sous-type H9N2 du virus de la grippe A/immunologie , Adulte , Protéines virales/immunologie , Protéines virales/génétique
3.
PLoS One ; 19(7): e0307100, 2024.
Article de Anglais | MEDLINE | ID: mdl-39012858

RÉSUMÉ

The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.


Sujet(s)
Poulets , Sous-type H5N1 du virus de la grippe A , Vaccins antigrippaux , Grippe chez les oiseaux , Animaux , Poulets/virologie , Poulets/immunologie , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/virologie , Grippe chez les oiseaux/immunologie , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Vaccins synthétiques/immunologie , Vaccins synthétiques/administration et posologie , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Anticorps antiviraux/immunologie , Anticorps antiviraux/sang , Amérique du Nord , Vaccination , Maladies de la volaille/prévention et contrôle , Maladies de la volaille/virologie , Maladies de la volaille/immunologie , Herpèsvirus de type 1 du dindon/immunologie , Herpèsvirus de type 1 du dindon/génétique
4.
J Infect ; 89(2): 106199, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38901571

RÉSUMÉ

The sustained circulation of H9N2 avian influenza viruses (AIVs) poses a significant threat for contributing to a new pandemic. Given the temporal and spatial uncertainty in the antigenicity of H9N2 AIVs, the immune protection efficiency of vaccines remains challenging. By developing an antigenicity prediction method for H9N2 AIVs, named PREDAC-H9, the global antigenic landscape of H9N2 AIVs was mapped. PREDAC-H9 utilizes the XGBoost model with 14 well-designed features. The XGBoost model was built and evaluated to predict the antigenic relationship between any two viruses with high values of 81.1 %, 81.4 %, 81.3 %, 81.1 %, and 89.4 % in accuracy, precision, recall, F1 value, and area under curve (AUC), respectively. Then the antigenic correlation network (ACnet) was constructed based on the predicted antigenic relationship for H9N2 AIVs from 1966 to 2022, and ten major antigenic clusters were identified. Of these, four novel clusters were generated in China in the past decade, demonstrating the unique complex situation there. To help tackle this situation, we applied PREDAC-H9 to calculate the cluster-transition determining sites and screen out virus strains with the high cross-protective spectrum, thus providing an in silico reference for vaccine recommendation. The proposed model will reduce the clinical monitoring workload and provide a useful tool for surveillance and control of H9N2 AIVs.


Sujet(s)
Antigènes viraux , Sous-type H9N2 du virus de la grippe A , Vaccins antigrippaux , Grippe chez les oiseaux , Sous-type H9N2 du virus de la grippe A/immunologie , Sous-type H9N2 du virus de la grippe A/génétique , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/immunologie , Animaux , Antigènes viraux/immunologie , Chine , Oiseaux
5.
Viruses ; 16(6)2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38932122

RÉSUMÉ

In this study, we pioneered an alternative technology for manufacturing subunit influenza hemagglutinin (HA)-based vaccines. This innovative method involves harnessing the pupae of the Lepidoptera Trichoplusia ni (T. ni) as natural biofactories in combination with baculovirus vectors (using CrisBio® technology). We engineered recombinant baculoviruses encoding two versions of the HA protein (trimeric or monomeric) derived from a pandemic avian H7N1 virus A strain (A/chicken/Italy/5093/99). These were then used to infect T. ni pupae, resulting in the production of the desired recombinant antigens. The obtained HA proteins were purified using affinity chromatography, consistently yielding approximately 75 mg/L of insect extract. The vaccine antigen effectively immunized poultry, which were subsequently challenged with a virulent H7N1 avian influenza virus. Following infection, all vaccinated animals survived without displaying any clinical symptoms, while none of the mock-vaccinated control animals survived. The CrisBio®-derived antigens induced high titers of HA-specific antibodies in the vaccinated poultry, demonstrating hemagglutination inhibition activity against avian H7N1 and human H7N9 viruses. These results suggest that the CrisBio® technology platform has the potential to address major industry challenges associated with producing recombinant influenza subunit vaccines, such as enhancing production yields, scalability, and the speed of development, facilitating the global deployment of highly effective influenza vaccines.


Sujet(s)
Anticorps antiviraux , Poulets , Glycoprotéine hémagglutinine du virus influenza , Vaccins antigrippaux , Grippe chez les oiseaux , Pupe , Vaccins sous-unitaires , Animaux , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/génétique , Vaccins antigrippaux/administration et posologie , Pupe/immunologie , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/immunologie , Vaccins sous-unitaires/immunologie , Vaccins sous-unitaires/génétique , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Anticorps antiviraux/immunologie , Anticorps antiviraux/sang , Sous-type H7N1 du virus de la grippe A/immunologie , Sous-type H7N1 du virus de la grippe A/génétique , Baculoviridae/génétique , Sous-type H7N9 du virus de la grippe A/immunologie , Sous-type H7N9 du virus de la grippe A/génétique , Humains , Développement de vaccin , Papillons de nuit/immunologie , Pandémies/prévention et contrôle
6.
J Immunol ; 213(2): 187-203, 2024 07 15.
Article de Anglais | MEDLINE | ID: mdl-38829131

RÉSUMÉ

The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-ß expression during virus infection, the expression level of IFN-ß in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.


Sujet(s)
Canards , Immunité innée , Sous-type H5N1 du virus de la grippe A , Grippe chez les oiseaux , Transduction du signal , Ubiquitin-protein ligases , Réplication virale , Animaux , Canards/immunologie , Canards/virologie , Réplication virale/immunologie , Transduction du signal/immunologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/physiologie , Immunité innée/immunologie , Ubiquitin-protein ligases/génétique , Ubiquitin-protein ligases/immunologie , Fibroblastes/immunologie , Fibroblastes/virologie , Protéines aviaires/immunologie , Protéines aviaires/génétique , Protéines aviaires/métabolisme , Ubiquitination , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/immunologie
7.
Int J Pharm ; 660: 124318, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-38852750

RÉSUMÉ

Avian influenza virus subtype H9N2 has the ability to infect birds and humans, further causing significant losses to the poultry industry and even posing a great threat to human health. Oral vaccine received particular interest for preventing majority infection due to its ability to elicit both mucosal and systemic immune responses, but their development is limited by the bad gastrointestinal (GI) environment, compact epithelium and mucus barrier, and the lack of effective mucosal adjuvants. Herein, we developed the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) as an adjuvant for H9N2 vaccine. Encouragingly, CDP-DFNS facilitated the proliferation of T and B cells, and further induced the activation of T lymphocytes in vitro. Moreover, CDP-DFNS/H9N2 significantly promoted the antigen-specific antibodies levels in serum and intestinal mucosal of chickens, indicating the good ability to elicit both systemic and mucosal immunity. Additional, CDP-DFNS facilitate the activation of CD4 + and CD8 + T cells both in spleen and intestinal mucosal, and the indexes of immune organs. This study suggested that CDP-DFNS may be a new avenue for development of oral vaccine against pathogens that are transmitted via mucosal route.


Sujet(s)
Adjuvants immunologiques , Poulets , Immunité muqueuse , Sous-type H9N2 du virus de la grippe A , Vaccins antigrippaux , Grippe chez les oiseaux , Nanoparticules , Polyosides , Silice , Animaux , Sous-type H9N2 du virus de la grippe A/immunologie , Sous-type H9N2 du virus de la grippe A/effets des médicaments et des substances chimiques , Polyosides/administration et posologie , Polyosides/pharmacologie , Polyosides/composition chimique , Polyosides/immunologie , Silice/administration et posologie , Silice/composition chimique , Nanoparticules/administration et posologie , Vaccins antigrippaux/administration et posologie , Vaccins antigrippaux/immunologie , Immunité muqueuse/effets des médicaments et des substances chimiques , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/immunologie , Adjuvants immunologiques/administration et posologie , Adjuvants immunologiques/pharmacologie , Administration par voie orale , Muqueuse intestinale/immunologie , Muqueuse intestinale/effets des médicaments et des substances chimiques , Anticorps antiviraux/sang , Anticorps antiviraux/immunologie
8.
Int J Biol Macromol ; 273(Pt 2): 132901, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38848854

RÉSUMÉ

H5-subtype avian influenza virus (AIV) is globally prevalent and undergoes frequent antigenic drift, necessitating regular updates to vaccines. One of the many influencing elements that cause incompatibility between vaccinations and epidemic strains is the dynamic alteration of glycosylation sites. However, the biological significance of N-glycosylation in the viral evolution and antigenic changes is unclear. Here, we performed a systematic analysis of glycosylation sites on the HA1 subunit of H5N1, providing insights into the changes of primary glycosylation sites, including 140 N, 156 N, and 170 N within the antigenic epitopes of HA1 protein. Multiple recombinant viruses were then generated based on HA genes of historical vaccine strains and deactivated for immunizing SPF chickens. Inactivated recombinant strains showed relatively closer antigenicity compared to which has identical N-glycosylation patterns. The N-glycosylation modification discrepancy highlights the inter-branch antigenic diversity of H5-subtype viruses in avian influenza and serves as a vital foundation for improving vaccination tactics.


Sujet(s)
Variation des antigènes , Poulets , Glycoprotéine hémagglutinine du virus influenza , Sous-type H5N1 du virus de la grippe A , Grippe chez les oiseaux , Glycosylation , Animaux , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Glycoprotéine hémagglutinine du virus influenza/composition chimique , Poulets/virologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Grippe chez les oiseaux/prévention et contrôle , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , Vaccins antigrippaux/immunologie , Épitopes/immunologie , Épitopes/composition chimique , Antigènes viraux/immunologie , Antigènes viraux/génétique
9.
Virology ; 595: 110094, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38692133

RÉSUMÉ

Stress-induced immunosuppression (SIIS) is one of common problems in the intensive poultry industry, affecting the effect of vaccine immunization and leading to high incidences of diseases. In this study, the expression characteristics and regulatory mechanisms of miR-214 in the processes of SIIS and its influence on the immune response to avian influenza virus (AIV) vaccine in chicken were explored. The qRT-PCR results showed that serum circulating miR-214 was significantly differentially expressed (especially on 2, 5, and 28 days post immunization (dpi)) in the processes, so had the potential as a molecular marker. MiR-214 expressions from multiple tissues were closely associated with the changes in circulating miR-214 expression levels. MiR-214-PTEN regulatory network was a potential key regulatory mechanism for the heart, bursa of Fabricius, and glandular stomach to participate in the process of SIIS affecting AIV immune response. This study can provide references for further understanding of stress affecting immune response.


Sujet(s)
Poulets , Vaccins antigrippaux , Grippe chez les oiseaux , microARN , Phosphohydrolase PTEN , Stress physiologique , Animaux , microARN/génétique , microARN/métabolisme , Poulets/virologie , Vaccins antigrippaux/immunologie , Grippe chez les oiseaux/virologie , Grippe chez les oiseaux/immunologie , Phosphohydrolase PTEN/génétique , Phosphohydrolase PTEN/métabolisme , Maladies de la volaille/virologie , Maladies de la volaille/immunologie , Tolérance immunitaire , Transduction du signal , Virus de la grippe A/immunologie
10.
Nat Commun ; 15(1): 4350, 2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38782954

RÉSUMÉ

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.


Sujet(s)
Anticorps antiviraux , Furets , Glycoprotéine hémagglutinine du virus influenza , Sous-type H5N1 du virus de la grippe A , Vaccins antigrippaux , Nanoparticules , Infections à Orthomyxoviridae , Vaccins à ARNm , Animaux , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Femelle , Souris , Nanoparticules/composition chimique , Mâle , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , Anticorps antiviraux/immunologie , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Infections à Orthomyxoviridae/prévention et contrôle , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/virologie , Vaccins à ARNm/immunologie , Anticorps neutralisants/immunologie , Souris de lignée BALB C , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Humains , ARN messager/génétique , ARN messager/immunologie , ARN messager/métabolisme , Sous-type H1N1 du virus de la grippe A/immunologie , Sous-type H1N1 du virus de la grippe A/génétique , Oiseaux/virologie , Lipides/composition chimique , Liposomes
11.
Front Immunol ; 15: 1352022, 2024.
Article de Anglais | MEDLINE | ID: mdl-38698856

RÉSUMÉ

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Sujet(s)
Facteur H du complément , Glycoprotéine hémagglutinine du virus influenza , Virus de la grippe A , Grippe humaine , Liaison aux protéines , Humains , Facteur H du complément/métabolisme , Facteur H du complément/immunologie , Animaux , Grippe humaine/immunologie , Grippe humaine/virologie , Grippe humaine/métabolisme , Virus de la grippe A/immunologie , Virus de la grippe A/physiologie , Glycoprotéine hémagglutinine du virus influenza/métabolisme , Glycoprotéine hémagglutinine du virus influenza/immunologie , Sites de fixation , Grippe chez les oiseaux/virologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/métabolisme , Oiseaux/virologie , Interactions hôte-pathogène/immunologie , Sous-type H3N2 du virus de la grippe A/immunologie , Sous-type H9N2 du virus de la grippe A/immunologie
12.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38734891

RÉSUMÉ

Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.


Sujet(s)
Oiseaux , Épitopes , Glycoprotéine hémagglutinine du virus influenza , Grippe chez les oiseaux , Sialidase , Sialidase/immunologie , Sialidase/génétique , Animaux , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Glycoprotéine hémagglutinine du virus influenza/composition chimique , Épitopes/immunologie , Épitopes/génétique , Oiseaux/virologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Dérive et cassure antigéniques/immunologie , Humains , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , Grippe humaine/immunologie , Grippe humaine/virologie , Grippe humaine/prévention et contrôle , Protéines virales/immunologie , Protéines virales/génétique , Protéines virales/composition chimique , Virus de la grippe A/immunologie , Virus de la grippe A/génétique
13.
Poult Sci ; 103(7): 103800, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38743966

RÉSUMÉ

The combination of inflammatory factors resulting from an influenza A virus infection is one of the main causes of death in host animals. Studies have shown that guinea pig guanosine monophosphate binding protein 1 (guanylate-binding protein 1, gGBP1) can downregulate cytokine production induced by the influenza virus. Therefore, exploring the innate immune defense mechanism of GBP1 in the process of H5N1 influenza virus infection has important implications for understanding the pathogenic mechanism, disease prevention, and the control of influenza A virus infections. We found that, in addition to inhibiting the early replication of influenza virus, gGBP1 also inhibited the production of CCL2 and CXCL10 cytokines induced by the influenza virus as well as the proliferation of mononuclear macrophages induced by these cytokines. These findings further confirmed that gGBP1 inhibited the production of cytokines through its GTPase activity and cell proliferation through its C-terminal α-helix structure. This study revealed the effect of gGBP1 on the production of cellular inflammatory factors during influenza virus infection and determined the key amino acid residues that assist in the inhibitory processes mediated by gGBP1.


Sujet(s)
Protéines G , Sous-type H5N1 du virus de la grippe A , Animaux , Sous-type H5N1 du virus de la grippe A/physiologie , Sous-type H5N1 du virus de la grippe A/immunologie , Protéines G/génétique , Protéines G/métabolisme , Protéines G/immunologie , Cytokines/métabolisme , Cytokines/génétique , Grippe chez les oiseaux/virologie , Grippe chez les oiseaux/immunologie , dGTPases/métabolisme , dGTPases/génétique , Immunité innée , Maladies de la volaille/virologie , Maladies de la volaille/immunologie , Poulets
14.
Vet Microbiol ; 294: 110108, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38729093

RÉSUMÉ

H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.


Sujet(s)
Anticorps antiviraux , Poulets , Glycoprotéine hémagglutinine du virus influenza , Sous-type H7N9 du virus de la grippe A , Vaccins antigrippaux , Grippe chez les oiseaux , Souris de lignée BALB C , Vaccins à pseudo-particules virales , Animaux , Poulets/immunologie , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Souris , Sous-type H7N9 du virus de la grippe A/immunologie , Vaccins à pseudo-particules virales/immunologie , Vaccins à pseudo-particules virales/administration et posologie , Glycosylation , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Anticorps antiviraux/sang , Glycoprotéine hémagglutinine du virus influenza/immunologie , Femelle , Infections à Orthomyxoviridae/prévention et contrôle , Infections à Orthomyxoviridae/médecine vétérinaire , Infections à Orthomyxoviridae/immunologie , Anticorps neutralisants/sang , Anticorps neutralisants/immunologie , Cytokines , Maladies de la volaille/prévention et contrôle , Maladies de la volaille/virologie , Maladies de la volaille/immunologie
15.
Molecules ; 29(9)2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38731436

RÉSUMÉ

In our research, we explored a natural substance called Oxymatrine, found in a traditional Chinese medicinal plant, to fight against a common bird flu virus known as H9N2. This virus not only affects birds but can also pose a threat to human health. We focused on how this natural compound can help in stopping the virus from spreading in cells that line the lungs of birds and potentially humans. Our findings show that Oxymatrine can both directly block the virus and boost the body's immune response against it. This dual-action mechanism is particularly interesting because it indicates that Oxymatrine might be a useful tool in developing new ways to prevent and treat this type of bird flu. Understanding how Oxymatrine works against the H9N2 virus could lead to safer and more natural ways to combat viral infections in animals and humans, contributing to the health and well-being of society. The H9N2 Avian Influenza Virus (AIV) is a persistent health threat because of its rapid mutation rate and the limited efficacy of vaccines, underscoring the urgent need for innovative therapies. This study investigated the H9N2 AIV antiviral properties of Oxymatrine (OMT), a compound derived from traditional Chinese medicine, particularly focusing on its interaction with pulmonary microvascular endothelial cells (PMVECs). Employing an array of in vitro assays, including 50% tissue culture infectious dose, Cell Counting Kit-8, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot, we systematically elucidated the multifaceted effects of OMT. OMT dose-dependently inhibited critical antiviral proteins (PKR and Mx1) and modulated the expression of type I interferons and key cytokines (IFN-α, IFN-ß, IL-6, and TNF-α), thereby affecting TLR3 signaling and its downstream elements (NF-κB and IRF-3). OMT's antiviral efficacy extended beyond TLR3-mediated responses, suggesting its potential as a versatile antiviral agent. This study not only contributes to the growing body of research on the use of natural compounds as antiviral agents but also underscores the importance of further investigating the broader application of OMT for combating viral infections.


Sujet(s)
Antiviraux , Sous-type H9N2 du virus de la grippe A , Grippe chez les oiseaux , , Transduction du signal , Récepteur de type Toll-3 , Animaux , Chiens , Humains , Antiviraux/pharmacologie , Sous-type H9N2 du virus de la grippe A/effets des médicaments et des substances chimiques , Grippe chez les oiseaux/traitement médicamenteux , Grippe chez les oiseaux/immunologie , Cellules rénales canines Madin-Darby , Transduction du signal/effets des médicaments et des substances chimiques , Récepteur de type Toll-3/métabolisme
16.
J Biol Chem ; 300(6): 107395, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38768812

RÉSUMÉ

B2 haplotype major histocompatibility complex (MHC) has been extensively reported to confer resistance to various avian diseases. But its peptide-binding motif is unknown, and the presenting peptide is rarely identified. Here, we identified its peptide-binding motif (X-A/V/I/L/P/S/G-X-X-X-X-X-X-V/I/L) in vitro using Random Peptide Library-based MHC I LC-MS/MS analysis. To further clarify the structure basis of motif, we determined the crystal structure of the BF2∗02:01-PB2552-560 complex at 1.9 Å resolution. We found that BF2∗02:01 had a relatively wide antigen-binding groove, and the structural characterization of pockets was consistent with the characterization of peptide-binding motif. The wider features of the peptide-binding motif and increased number of peptides bound by BF2∗02:01 than BF2∗04:01 might resolve the puzzles for the presence of potential H9N2 resistance in B2 chickens. Afterward, we explored the H9N2 avian influenza virus (AIV)-induced cellular immune response in B2 haplotype chickens in vivo. We found that ratio of CD8+ T cell and kinetic expression of cytotoxicity genes including Granzyme K, interferon-γ, NK lysin, and poly-(ADP-ribose) polymerase in peripheral blood mononuclear cells were significantly increased in defending against H9N2 AIV infection. Especially, we selected 425 epitopes as candidate epitopes based on the peptide-binding motif and further identified four CD8+ T-cell epitopes on H9N2 AIV including NS198-106, PB2552-560, NP182-190, and NP455-463 via ELI-spot interferon-γ detections after stimulating memory lymphocytes with peptides. More importantly, these epitopes were found to be conserved in H7N9 AIV and H9N2 AIV. These findings provide direction for developing effective T cell epitope vaccines using well-conserved internal viral antigens in chickens.


Sujet(s)
Poulets , Déterminants antigéniques des lymphocytes T , Sous-type H9N2 du virus de la grippe A , Grippe chez les oiseaux , Sous-type H9N2 du virus de la grippe A/immunologie , Animaux , Déterminants antigéniques des lymphocytes T/immunologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Lymphocytes T CD8+/immunologie , Antigènes d'histocompatibilité de classe I/immunologie , Antigènes d'histocompatibilité de classe I/métabolisme
17.
Vaccine ; 42(18): 3756-3767, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38724417

RÉSUMÉ

A Newcastle disease virus (NDV)-vectored vaccine expressing clade 2.3.4.4b H5 Hemagglutinin was developed and assessed for efficacy against H5N1 highly pathogenic avian influenza (HPAI) in specific pathogen-free (SPF) chickens, broilers, and domestic ducks. In SPF chickens, the live recombinant NDV-vectored vaccine, rK148/22-H5, achieved complete survival against HPAI and NDV challenges and significantly reduced viral shedding. Notably, the live rK148/22-H5 vaccine conferred good clinical protection in broilers despite the presence of maternally derived antibodies. Good clinical protection was observed in domestic ducks, with decreased viral shedding. It demonstrated complete survival and reduced cloacal viral shedding when used as an inactivated vaccine from SPF chickens. The rK148/22-H5 vaccine is potentially a viable and supportive option for biosecurity measure, effectively protecting in chickens against the deadly clade 2.3.4.4b H5 HPAI and NDV infections. Furthermore, it aligns with the strategy of Differentiating Infected from Vaccinated Animals (DIVA).


Sujet(s)
Anticorps antiviraux , Poulets , Canards , Glycoprotéine hémagglutinine du virus influenza , Sous-type H5N1 du virus de la grippe A , Grippe chez les oiseaux , Virus de la maladie de Newcastle , Vaccins inactivés , Vaccins synthétiques , Excrétion virale , Animaux , Poulets/immunologie , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/immunologie , Virus de la maladie de Newcastle/immunologie , Virus de la maladie de Newcastle/génétique , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , Sous-type H5N1 du virus de la grippe A/pathogénicité , Canards/virologie , Canards/immunologie , Vaccins inactivés/immunologie , Vaccins inactivés/administration et posologie , Vaccins synthétiques/immunologie , Vaccins synthétiques/administration et posologie , Vaccins synthétiques/génétique , Anticorps antiviraux/immunologie , Anticorps antiviraux/sang , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Vaccins antigrippaux/génétique , Organismes exempts d'organismes pathogènes spécifiques , Vaccins atténués/immunologie , Vaccins atténués/administration et posologie , Vaccins atténués/génétique , Maladies de la volaille/prévention et contrôle , Maladies de la volaille/virologie , Maladies de la volaille/immunologie , Maladie de Newcastle/prévention et contrôle , Maladie de Newcastle/immunologie , Vaccins antiviraux/immunologie , Vaccins antiviraux/administration et posologie , Vaccins antiviraux/génétique
18.
Int J Biol Macromol ; 267(Pt 2): 131458, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38593899

RÉSUMÉ

Avian influenza virus (AIV) H7N9 diseases have been recently reported, raising concerns about a potential pandemic. Thus, there is an urgent need for effective therapeutics for AIV H7N9 infections. Herein, camelid immunization and yeast two-hybrid techniques were used to identify potent neutralizing nanobodies (Nbs) targeting the H7 subtype hemagglutinin. First, we evaluated the binding specificity and hemagglutination inhibition activity of the screened Nbs against the H7 subtype hemagglutinin. Nb-Z77, with high hemagglutination inhibition activity was selected from the screened Nbs to optimize the yeast expression conditions and construct oligomeric forms of Nb-Z77 using various ligation methods. The oligomers Nb-Z77-DiGS, Nb-Z77-TriGS, Nb-Z77-Fc and Nb-Z77-Foldon were successfully constructed and expressed. Nb-Z77-DiGS and Nb-Z77-Foldon exhibited considerably greater activity than did Nb-Z77 against H7 subtype hemagglutinin, with median effective concentrations of 384.7 and 27.33 pM and binding affinity values of 213 and 5.21 pM, respectively. Nb-Z77-DiGS and Nb-Z77-Foldon completely inhibited the hemagglutination activity of the inactivated virus H7-Re1 at the lowest concentration of 0.938 µg/mL. This study screened a strain of Nb with high hemagglutination inhibition activity and enhanced its antiviral activity through oligomerization, which may have great potential for developing effective agents for the prevention, diagnosis, and treatment of AIV H7 subtype infection.


Sujet(s)
Glycoprotéine hémagglutinine du virus influenza , Anticorps à domaine unique , Anticorps à domaine unique/immunologie , Anticorps à domaine unique/composition chimique , Animaux , Glycoprotéine hémagglutinine du virus influenza/immunologie , Sous-type H7N9 du virus de la grippe A/immunologie , Humains , Tests d'inhibition de l'hémagglutination , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Grippe chez les oiseaux/prévention et contrôle , Anticorps antiviraux/immunologie , Anticorps neutralisants/immunologie
19.
Emerg Microbes Infect ; 13(1): 2343912, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38629574

RÉSUMÉ

Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.


Sujet(s)
Poulets , Sous-type H7N9 du virus de la grippe A , Vaccins antigrippaux , Grippe chez les oiseaux , Vaccination , Animaux , Sous-type H7N9 du virus de la grippe A/génétique , Sous-type H7N9 du virus de la grippe A/immunologie , Sous-type H7N9 du virus de la grippe A/pathogénicité , Poulets/virologie , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Grippe chez les oiseaux/virologie , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/immunologie , Souris , Humains , Chine , Évolution moléculaire , Grippe humaine/prévention et contrôle , Grippe humaine/virologie , Grippe humaine/immunologie , Souris de lignée BALB C , Virulence , Phylogenèse , Femelle , Maladies de la volaille/virologie , Maladies de la volaille/prévention et contrôle , Volaille/virologie
20.
Vaccine ; 42(15): 3410-3419, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38641498

RÉSUMÉ

The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.


Sujet(s)
Anticorps antiviraux , Poulets , Sous-type H9N2 du virus de la grippe A , Vaccins antigrippaux , Grippe chez les oiseaux , Excrétion virale , Animaux , Sous-type H9N2 du virus de la grippe A/immunologie , Sous-type H9N2 du virus de la grippe A/génétique , Poulets/immunologie , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/immunologie , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Anticorps antiviraux/immunologie , Anticorps antiviraux/sang , Excrétion virale/immunologie , Organismes exempts d'organismes pathogènes spécifiques , Virus de la maladie de Newcastle/immunologie , Virus de la maladie de Newcastle/génétique , Maladies de la volaille/prévention et contrôle , Maladies de la volaille/immunologie , Maladies de la volaille/virologie , Immunité cellulaire , Herpèsvirus de type 1 du dindon/immunologie , Herpèsvirus de type 1 du dindon/génétique , Vaccination/méthodes , Immunité humorale , Vecteurs génétiques/immunologie , Immunogénicité des vaccins , Vaccins synthétiques/immunologie , Vaccins synthétiques/administration et posologie , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE