Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 18.167
Filtrer
1.
Islets ; 16(1): 2379650, 2024 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-39028826

RÉSUMÉ

Islet amyloid polypeptide (IAPP) is a factor that regulates food intake and is secreted from both pancreatic islets and insulinoma cells. Here, we aimed to evaluate IAPP immunohistochemically in islets or insulinoma cells in association with clinical characteristics. We recruited six insulinoma patients and six body mass index-matched control patients with pancreatic diseases other than insulinoma whose glucose tolerance was confirmed to be normal preoperatively. IAPP and IAPP-insulin double staining were performed on pancreatic surgical specimens. We observed that the IAPP staining level and percentage of IAPP-positive beta cells tended to be lower (p = 0.1699) in the islets of insulinoma patients than in those of control patients, which might represent a novel IAPP expression pattern under persistent hyperinsulinemia and hypoglycemia.


Sujet(s)
Insulinome , Polypeptide amyloïde des ilots , Ilots pancréatiques , Tumeurs du pancréas , Insulinome/métabolisme , Insulinome/anatomopathologie , Humains , Mâle , Femelle , Polypeptide amyloïde des ilots/métabolisme , Adulte d'âge moyen , Tumeurs du pancréas/métabolisme , Tumeurs du pancréas/anatomopathologie , Ilots pancréatiques/métabolisme , Ilots pancréatiques/anatomopathologie , Adulte , Sujet âgé , Immunohistochimie , Insuline/métabolisme
2.
Endocrinology ; 165(8)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38970533

RÉSUMÉ

Dietary carbohydrates raise blood glucose levels, and limiting carbohydrate intake improves glycemia in patients with type 2 diabetes. Low carbohydrate intake (< 25 g) allows the body to utilize fat as its primary fuel. As a consequence of increased fatty acid oxidation, the liver produces ketones to serve as an alternative energy source. ß-Hydroxybutyrate (ßHB) is the most abundant ketone. While ßHB has a wide range of functions outside of the pancreas, its direct effects on islet cell function remain understudied. We examined human islet secretory response to acute racemic ßHB treatment and observed increased insulin secretion at a low glucose concentration of 3 mM. Because ßHB is a chiral molecule, existing as both R and S forms, we further studied insulin and glucagon secretion following acute treatment with individual ßHB enantiomers in human and C57BL/6J mouse islets. We found that acute treatment with R-ßHB increased insulin secretion and decreased glucagon secretion at physiological glucose concentrations in both human and mouse islets. Proteomic analysis of human islets treated with R-ßHB over 72 hours showed altered abundance of proteins that may promote islet cell health and survival. Collectively, our data show that physiological concentrations of ßHB influence hormone secretion and signaling within pancreatic islets.


Sujet(s)
Acide 3-hydroxy-butyrique , Glucagon , Sécrétion d'insuline , Insuline , Ilots pancréatiques , Souris de lignée C57BL , Acide 3-hydroxy-butyrique/pharmacologie , Animaux , Humains , Glucagon/métabolisme , Sécrétion d'insuline/effets des médicaments et des substances chimiques , Ilots pancréatiques/métabolisme , Ilots pancréatiques/effets des médicaments et des substances chimiques , Souris , Insuline/métabolisme , Mâle , Glucose/métabolisme , Femelle
3.
Immunity ; 57(7): 1448-1451, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38986438

RÉSUMÉ

Autoreactive lymphocytes that infiltrate the pancreatic islet environment and target ß cells are primary drivers of type 1 diabetes. In this issue of Immunity, Srivastava et al.1 examine the role of the islet microenvironment in autoimmunity and find that the scavenging receptor CXCL16 on islet-resident macrophages uptakes oxidized low-density lipoproteins and promotes the differentiation and survival of infiltrating pathogenic CD8+ T cells.


Sujet(s)
Auto-immunité , Lymphocytes T CD8+ , Diabète de type 1 , Ilots pancréatiques , Macrophages , Auto-immunité/immunologie , Diabète de type 1/immunologie , Ilots pancréatiques/immunologie , Ilots pancréatiques/métabolisme , Humains , Animaux , Macrophages/immunologie , Macrophages/métabolisme , Lymphocytes T CD8+/immunologie , Cellules à insuline/immunologie , Cellules à insuline/métabolisme , Lipoprotéines LDL/métabolisme , Lipoprotéines LDL/immunologie
4.
Front Immunol ; 15: 1415102, 2024.
Article de Anglais | MEDLINE | ID: mdl-39007132

RÉSUMÉ

Human regulatory T cells (Treg) suppress other immune cells. Their dysfunction contributes to the pathophysiology of autoimmune diseases, including type 1 diabetes (T1D). Infusion of Tregs is being clinically evaluated as a novel way to prevent or treat T1D. Genetic modification of Tregs, most notably through the introduction of a chimeric antigen receptor (CAR) targeting Tregs to pancreatic islets, may improve their efficacy. We evaluated CAR targeting of human Tregs to monocytes, a human ß cell line and human islet ß cells in vitro. Targeting of HLA-A2-CAR (A2-CAR) bulk Tregs to HLA-A2+ cells resulted in dichotomous cytotoxic killing of human monocytes and islet ß cells. In exploring subsets and mechanisms that may explain this pattern, we found that CD39 expression segregated CAR Treg cytotoxicity. CAR Tregs from individuals with more CD39low/- Tregs and from individuals with genetic polymorphism associated with lower CD39 expression (rs10748643) had more cytotoxicity. Isolated CD39- CAR Tregs had elevated granzyme B expression and cytotoxicity compared to the CD39+ CAR Treg subset. Genetic overexpression of CD39 in CD39low CAR Tregs reduced their cytotoxicity. Importantly, ß cells upregulated protein surface expression of PD-L1 and PD-L2 in response to A2-CAR Tregs. Blockade of PD-L1/PD-L2 increased ß cell death in A2-CAR Treg co-cultures suggesting that the PD-1/PD-L1 pathway is important in protecting islet ß cells in the setting of CAR immunotherapy. In summary, introduction of CAR can enhance biological differences in subsets of Tregs. CD39+ Tregs represent a safer choice for CAR Treg therapies targeting tissues for tolerance induction.


Sujet(s)
Apyrase , Récepteurs chimériques pour l'antigène , Lymphocytes T régulateurs , Humains , Apyrase/immunologie , Apyrase/métabolisme , Lymphocytes T régulateurs/immunologie , Récepteurs chimériques pour l'antigène/immunologie , Récepteurs chimériques pour l'antigène/génétique , Récepteurs chimériques pour l'antigène/métabolisme , Cytotoxicité immunologique , Ilots pancréatiques/immunologie , Ilots pancréatiques/métabolisme , Diabète de type 1/immunologie , Diabète de type 1/thérapie , Antigène HLA-A2/immunologie , Antigène HLA-A2/génétique , Antigène HLA-A2/métabolisme , Sous-populations de lymphocytes T/immunologie , Sous-populations de lymphocytes T/métabolisme , Cellules à insuline/immunologie , Cellules à insuline/métabolisme , Antigènes CD
5.
Function (Oxf) ; 5(4)2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38985000

RÉSUMÉ

Pancreatic ß-cells are essential for survival, being the only cell type capable of insulin secretion. While they are believed to be vulnerable to damage by inflammatory cytokines such as interleukin-1 beta (IL-1ß) and interferon-gamma, we have recently identified physiological roles for cytokine signaling in rodent ß-cells that include the stimulation of antiviral and antimicrobial gene expression and the inhibition of viral replication. In this study, we examine cytokine-stimulated changes in gene expression in human islets using single-cell RNA sequencing. Surprisingly, the global responses of human islets to cytokine exposure were remarkably blunted compared to our previous observations in the mouse. The small population of human islet cells that were cytokine responsive exhibited increased expression of IL-1ß-stimulated antiviral guanylate-binding proteins, just like in the mouse. Most human islet cells were not responsive to cytokines, and this lack of responsiveness was associated with high expression of genes encoding ribosomal proteins. We further correlated the expression levels of RPL5 with stress response genes, and when expressed at high levels, RPL5 is predictive of failure to respond to cytokines in all endocrine cells. We postulate that donor causes of death and isolation methodologies may contribute to stress of the islet preparation. Our findings indicate that activation of stress responses in human islets limits cytokine-stimulated gene expression, and we urge caution in the evaluation of studies that have examined cytokine-stimulated gene expression in human islets without evaluation of stress-related gene expression.


Sujet(s)
Cytokines , Ilots pancréatiques , Analyse sur cellule unique , Humains , Analyse sur cellule unique/méthodes , Ilots pancréatiques/métabolisme , Ilots pancréatiques/effets des médicaments et des substances chimiques , Cytokines/métabolisme , Cytokines/génétique , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Analyse de séquence d'ARN , Stress physiologique/effets des médicaments et des substances chimiques , Interleukine-1 bêta/métabolisme , Protéines ribosomiques/génétique , Protéines ribosomiques/métabolisme , Mâle , Souris , Animaux , RNA-Seq , Femelle , Adulte d'âge moyen , Analyse de l'expression du gène de la cellule unique
6.
Nat Commun ; 15(1): 5567, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956087

RÉSUMÉ

Diabetes involves the death or dysfunction of pancreatic ß-cells. Analysis of bulk sequencing from human samples and studies using in vitro and in vivo models suggest that endoplasmic reticulum and inflammatory signaling play an important role in diabetes progression. To better characterize cell type-specific stress response, we perform multiplexed single-cell RNA sequencing to define the transcriptional signature of primary human islet cells exposed to endoplasmic reticulum and inflammatory stress. Through comprehensive pair-wise analysis of stress responses across pancreatic endocrine and exocrine cell types, we define changes in gene expression for each cell type under different diabetes-associated stressors. We find that ß-, α-, and ductal cells have the greatest transcriptional response. We utilize stem cell-derived islets to study islet health through the candidate gene CIB1, which was upregulated under stress in primary human islets. Our findings provide insights into cell type-specific responses to diabetes-associated stress and establish a resource to identify targets for diabetes therapeutics.


Sujet(s)
Stress du réticulum endoplasmique , Cellules à insuline , Ilots pancréatiques , Humains , Stress du réticulum endoplasmique/génétique , Ilots pancréatiques/métabolisme , Cellules à insuline/métabolisme , Protéines de liaison au calcium/métabolisme , Protéines de liaison au calcium/génétique , Analyse sur cellule unique , Cellules à glucagon/métabolisme , Analyse de séquence d'ARN , Transcriptome , Stress physiologique
7.
Cell Metab ; 36(7): 1619-1633.e5, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38959864

RÉSUMÉ

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.


Sujet(s)
Diabète de type 2 , Sécrétion d'insuline , Insuline , Ilots pancréatiques , Protéomique , Humains , Diabète de type 2/métabolisme , Mâle , Femelle , Insuline/métabolisme , Ilots pancréatiques/métabolisme , Adulte d'âge moyen , Nutriments/métabolisme , Adulte , Glucose/métabolisme , Sujet âgé , Acides gras/métabolisme
8.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39062940

RÉSUMÉ

Diabetes mellitus, as a chronic metabolic disorder, significantly impacts the pancreas and among other organs, affects duodenal function. Emerging evidence suggests that probiotics can exert beneficial effects on gut health and metabolism. In our previous research, we evaluated the probiotic Lactobacillus paraplantarum BGCG11 primarily for its protective properties against diabetic rats' damaged liver and kidneys. In this work, we further examined the effects of probiotic strain BGCG11 on the function of the duodenum and pancreas in diabetic rats. We explored the potential mechanisms underlying the probiotic's effects, focusing on general indicators of diabetes, the architecture and morphology of pancreatic islets, duodenal integrity (measuring the transfer of fluid and serum zonulin level), and the modulation of gut microbiota composition. Our findings reveal the protective and regulatory roles of L. paraplantarum BGCG11 in mitigating diabetes-induced pancreatic and duodenal dysfunction regardless of its application time (pre- or post-treatment), highlighting its therapeutic potential in managing diabetes-related gastrointestinal complications.


Sujet(s)
Diabète expérimental , Duodénum , Microbiome gastro-intestinal , Lactobacillus , Pancréas , Probiotiques , Animaux , Probiotiques/pharmacologie , Duodénum/microbiologie , Duodénum/métabolisme , Rats , Diabète expérimental/thérapie , Mâle , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Pancréas/anatomopathologie , Pancréas/métabolisme , Pancréas/effets des médicaments et des substances chimiques , Ilots pancréatiques/métabolisme , Ilots pancréatiques/effets des médicaments et des substances chimiques
9.
Nat Commun ; 15(1): 5894, 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39003281

RÉSUMÉ

Remarkable advances in protocol development have been achieved to manufacture insulin-secreting islets from human pluripotent stem cells (hPSCs). Distinct from current approaches, we devised a tunable strategy to generate islet spheroids enriched for major islet cell types by incorporating PDX1+ cell budding morphogenesis into staged differentiation. In this process that appears to mimic normal islet morphogenesis, the differentiating islet spheroids organize with endocrine cells that are intermingled or arranged in a core-mantle architecture, accompanied with functional heterogeneity. Through in vitro modelling of human pancreas development, we illustrate the importance of PDX1 and the requirement for EphB3/4 signaling in eliciting cell budding morphogenesis. Using this new approach, we model Mitchell-Riley syndrome with RFX6 knockout hPSCs illustrating unexpected morphogenesis defects in the differentiation towards islet cells. The tunable differentiation system and stem cell-derived islet models described in this work may facilitate addressing fundamental questions in islet biology and probing human pancreas diseases.


Sujet(s)
Différenciation cellulaire , Protéines à homéodomaine , Ilots pancréatiques , Morphogenèse , Cellules souches pluripotentes , Sphéroïdes de cellules , Transactivateurs , Humains , Protéines à homéodomaine/métabolisme , Protéines à homéodomaine/génétique , Sphéroïdes de cellules/cytologie , Sphéroïdes de cellules/métabolisme , Transactivateurs/métabolisme , Transactivateurs/génétique , Ilots pancréatiques/cytologie , Ilots pancréatiques/métabolisme , Cellules souches pluripotentes/cytologie , Cellules souches pluripotentes/métabolisme , Transduction du signal , Famille des récepteurs Eph/métabolisme , Famille des récepteurs Eph/génétique
10.
Methods Mol Biol ; 2805: 51-87, 2024.
Article de Anglais | MEDLINE | ID: mdl-39008174

RÉSUMÉ

We describe a scalable method for the robust generation of 3D pancreatic islet-like organoids from human pluripotent stem cells using suspension bioreactors. Our protocol involves a 6-stage, 20-day directed differentiation process, resulting in the production of 104-105 organoids. These organoids comprise α- and ß-like cells that exhibit glucose-responsive insulin and glucagon secretion. We detail methods for culturing, passaging, and cryopreserving stem cells as suspended clusters and for differentiating them through specific growth media and exogenous factors added in a stepwise manner. Additionally, we address quality control measures, troubleshooting strategies, and functional assays for research applications.


Sujet(s)
Bioréacteurs , Techniques de culture cellulaire , Différenciation cellulaire , Ilots pancréatiques , Organoïdes , Cellules souches pluripotentes , Humains , Organoïdes/cytologie , Organoïdes/métabolisme , Ilots pancréatiques/cytologie , Ilots pancréatiques/métabolisme , Cellules souches pluripotentes/cytologie , Cellules souches pluripotentes/métabolisme , Techniques de culture cellulaire/méthodes , Cryoconservation/méthodes
11.
Elife ; 132024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39051998

RÉSUMÉ

The Hippo pathway plays a central role in tissue development and homeostasis. However, the function of Hippo in pancreatic endocrine development remains obscure. Here, we generated novel conditional genetically engineered mouse models to examine the roles of Hippo pathway-mediated YAP1/TAZ inhibition in the development stages of endocrine specification and differentiation. While YAP1 protein was localized to the nuclei in bipotent progenitor cells, Neurogenin 3 expressing endocrine progenitors completely lost YAP1 expression. Using genetically engineered mouse models, we found that inactivation of YAP1 requires both an intact Hippo pathway and Neurogenin 3 protein. Gene deletion of Lats1 and 2 kinases (Lats1&2) in endocrine progenitor cells of developing mouse pancreas using Neurog3Cre blocked endocrine progenitor cell differentiation and specification, resulting in reduced islets size and a disorganized pancreas at birth. Loss of Lats1&2 in Neurogenin 3 expressing cells activated YAP1/TAZ transcriptional activity and recruited macrophages to the developing pancreas. These defects were rescued by deletion of Yap1/Wwtr1 genes, suggesting that tight regulation of YAP1/TAZ by Hippo signaling is crucial for pancreatic endocrine specification. In contrast, deletion of Lats1&2 using ß-cell-specific Ins1CreER resulted in a phenotypically normal pancreas, indicating that Lats1&2 are indispensable for differentiation of endocrine progenitors but not for that of ß-cells. Our results demonstrate that loss of YAP1/TAZ expression in the pancreatic endocrine compartment is not a passive consequence of endocrine specification. Rather, Hippo pathway-mediated inhibition of YAP1/TAZ in endocrine progenitors is a prerequisite for endocrine specification and differentiation.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Différenciation cellulaire , Protein-Serine-Threonine Kinases , Transduction du signal , Protéines de signalisation YAP , Animaux , Protéines de signalisation YAP/métabolisme , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Souris , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Voie de signalisation Hippo , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Protéines de tissu nerveux/métabolisme , Protéines de tissu nerveux/génétique , Transactivateurs/métabolisme , Transactivateurs/génétique , Ilots pancréatiques/métabolisme , Ilots pancréatiques/embryologie , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Transcriptional coactivator with PDZ-binding motif proteins/métabolisme , Phosphoprotéines/métabolisme , Phosphoprotéines/génétique , Acyltransferases , Protéines suppresseurs de tumeurs
12.
Front Endocrinol (Lausanne) ; 15: 1395028, 2024.
Article de Anglais | MEDLINE | ID: mdl-38989001

RÉSUMÉ

Introduction: Biphasic insulin secretion is an intrinsic characteristic of the pancreatic islet and has clinical relevance due to the loss of first-phase in patients with Type 2 diabetes. As it has long been shown that first-phase insulin secretion only occurs in response to rapid changes in glucose, we tested the hypothesis that islet response to an increase in glucose is a combination of metabolism plus an osmotic effect where hypertonicity is driving first-phase insulin secretion. Methods: Experiments were performed using perifusion analysis of rat, mouse, and human islets. Insulin secretion rate (ISR) and other parameters associated with its regulation were measured in response to combinations of D-glucose and membrane-impermeable carbohydrates (L-glucose or mannitol) designed to dissect the effect of hypertonicity from that of glucose metabolism. Results: Remarkably, the appearance of first-phase responses was wholly dependent on changes in tonicity: no first-phase in NAD(P)H, cytosolic calcium, cAMP secretion rate (cAMP SR), or ISR was observed when increased D-glucose concentration was counterbalanced by decreases in membrane-impermeable carbohydrates. When D-glucose was greater than 8 mM, rapid increases in L-glucose without any change in D-glucose resulted in first-phase responses in all measured parameters that were kinetically similar to D-glucose. First-phase ISR was completely abolished by H89 (a non-specific inhibitor of protein kinases) without affecting first-phase calcium response. Defining first-phase ISR as the difference between glucose-stimulated ISR with and without a change in hypertonicity, the peak of first-phase ISR occurred after second-phase ISR had reached steady state, consistent with the well-established glucose-dependency of mechanisms that potentiate glucose-stimulated ISR. Discussion: The data collected in this study suggests a new model of glucose-stimulated biphasic ISR where first-phase ISR derives from (and after) a transitory amplification of second-phase ISR and driven by hypertonicity-induced rise in H89-inhibitable kinases likely driven by first-phase responses in cAMP, calcium, or a combination of both.


Sujet(s)
Glucose , Sécrétion d'insuline , Insuline , Animaux , Sécrétion d'insuline/effets des médicaments et des substances chimiques , Glucose/métabolisme , Rats , Humains , Insuline/métabolisme , Souris , Mâle , Ilots pancréatiques/métabolisme , Ilots pancréatiques/effets des médicaments et des substances chimiques , AMP cyclique/métabolisme , Calcium/métabolisme
13.
Int J Mol Sci ; 25(11)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38892122

RÉSUMÉ

Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.


Sujet(s)
Séparation cellulaire , Ilots pancréatiques , Humains , Ilots pancréatiques/métabolisme , Ilots pancréatiques/cytologie , Séparation cellulaire/méthodes , Donneur vivant , Diabète de type 2/métabolisme , Diabète de type 2/anatomopathologie , Mâle , Femelle , Adulte d'âge moyen , Adulte , Insuline/métabolisme , Glucose/métabolisme , Sécrétion d'insuline
14.
Anat Histol Embryol ; 53(4): e13074, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38864153

RÉSUMÉ

In this study, we investigated amylin-like substance distribution in the pancreas of Japanese quail (Coturnix japonica) using a specific anti-rat amylin serum. We detected amylin-immunoreactive cells dispersed in the pancreatic extra-islet region but not in the islet region. The synthetic rat amylin-containing serum pre-absorption abolished the staining profile. Almost all amylin-immunoreactive cells were immuno-positive for peptide YY (PYY). In addition, certain amylin-immunoreactive cells stained immuno-positive for glucagon. Amylin and PYY co-secreted from the extra-islet cells might participate in the insulin and glucagon release regulation in the pancreas and food intake modulation through the central nervous system.


Sujet(s)
Coturnix , Glucagon , Polypeptide amyloïde des ilots , Pancréas , Peptide YY , Animaux , Peptide YY/métabolisme , Polypeptide amyloïde des ilots/métabolisme , Coturnix/métabolisme , Glucagon/métabolisme , Pancréas/métabolisme , Immunohistochimie/médecine vétérinaire , Ilots pancréatiques/métabolisme , Mâle , Rats
16.
Sci Rep ; 14(1): 14235, 2024 06 20.
Article de Anglais | MEDLINE | ID: mdl-38902357

RÉSUMÉ

Human islets of Langerhans are composed mostly of glucagon-secreting α cells and insulin-secreting ß cells closely intermingled one another. Current methods for identifying α and ß cells involve either fixing islets and using immunostaining or disaggregating islets and employing flow cytometry for classifying α and ß cells based on their size and autofluorescence. Neither approach, however, allows investigating the dynamic behavior of α and ß cells in a living and intact islet. To tackle this issue, we present a machine-learning-based strategy for identification α and ß cells in label-free infrared micrographs of living human islets without immunostaining. Intrinsic autofluorescence is stimulated by infrared light and collected both in intensity and lifetime in the visible range, dominated by NAD(P)H and lipofuscin signals. Descriptive parameters are derived from micrographs for ~ 103 cells. These parameters are used as input for a boosted decision-tree model (XGBoost) pre-trained with immunofluorescence-derived cell-type information. The model displays an optimized-metrics performance of 0.86 (i.e. area under a ROC curve), with an associated precision of 0.94 for the recognition of ß cells and 0.75 for α cells. This tool promises to enable longitudinal studies on the dynamic behavior of individual cell types at single-cell resolution within the intact tissue.


Sujet(s)
Cellules à insuline , Apprentissage machine , Humains , Cellules à insuline/métabolisme , Cellules à glucagon/métabolisme , Ilots pancréatiques/métabolisme , Rayons infrarouges
17.
Int J Mol Sci ; 25(11)2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38892240

RÉSUMÉ

A detailed study of palmitate metabolism in pancreatic islets subject to different experimental conditions, like varying concentrations of glucose, as well as fed or starved conditions, has allowed us to explore the interaction between the two main plasma nutrients and its consequences on hormone secretion. Palmitate potentiates glucose-induced insulin secretion in a concentration-dependent manner, in a physiological range of both palmitate (0-2 mM) and glucose (6-20 mM) concentrations; at glucose concentrations lower than 6 mM, no metabolic interaction with palmitate was apparent. Starvation (48 h) increased islet palmitate oxidation two-fold, and the effect was resistant to its inhibition by glucose (6-20 mM). Consequently, labelled palmitate and glucose incorporation into complex lipids were strongly suppressed, as well as glucose-induced insulin secretion and its potentiation by palmitate. 2-bromostearate, a palmitate oxidation inhibitor, fully recovered the synthesis of complex lipids and insulin secretion. We concluded that palmitate potentiation of the insulin response to glucose is not attributable to its catabolic mitochondrial oxidation but to its anabolism to complex lipids: islet lipid biosynthesis is dependent on the uptake of plasma fatty acids and the supply of α-glycerol phosphate from glycolysis. Islet secretion of glucagon and somatostatin showed a similar dependence on palmitate anabolism as insulin. The possible mechanisms implicated in the metabolic coupling between glucose and palmitate were commented on. Moreover, possible mechanisms responsible for islet gluco- or lipotoxicity after a long-term stimulation of insulin secretion were also discussed. Our own data on the simultaneous stimulation of insulin, glucagon, and somatostatin by glucose, as well as their modification by 2-bromostearate in perifused rat islets, give support to the conclusion that increased FFA anabolism, rather than its mitochondrial oxidation, results in a potentiation of their stimulated release. Starvation, besides suppressing glucose stimulation of insulin secretion, also blocks the inhibitory effect of glucose on glucagon secretion: this suggests that glucagon inhibition might be an indirect or direct effect of insulin, but not of glucose. In summary, there seems to exist three mechanisms of glucagon secretion stimulation: 1. glucagon stimulation through the same secretion coupling mechanism as insulin, but in a different range of glucose concentrations (0 to 5 mM). 2. Direct or indirect inhibition by secreted insulin in response to glucose (5-20 mM). 3. Stimulation by increased FFA anabolism in glucose intolerance or diabetes in the context of hyperlipidemia, hyperglycemia, and hypo-insulinemia. These conclusions were discussed and compared with previous published data in the literature. Specially, we discussed the mechanism for inhibition of glucagon release by glucose, which was apparently contradictory with the secretion coupling mechanism of its stimulation.


Sujet(s)
Glucagon , Glucose , Sécrétion d'insuline , Insuline , Ilots pancréatiques , Glucose/métabolisme , Animaux , Insuline/métabolisme , Glucagon/métabolisme , Ilots pancréatiques/métabolisme , Ilots pancréatiques/effets des médicaments et des substances chimiques , Sécrétion d'insuline/effets des médicaments et des substances chimiques , Acides gras/métabolisme , Rats , Palmitates/métabolisme , Palmitates/pharmacologie , Oxydoréduction/effets des médicaments et des substances chimiques
18.
Sci Rep ; 14(1): 14637, 2024 06 25.
Article de Anglais | MEDLINE | ID: mdl-38918439

RÉSUMÉ

Type 2 diabetes (T2D) is the fastest growing non-infectious disease worldwide. Impaired insulin secretion from pancreatic beta-cells is a hallmark of T2D, but the mechanisms behind this defect are insufficiently characterized. Integrating multiple layers of biomedical information, such as different Omics, may allow more accurate understanding of complex diseases such as T2D. Our aim was to explore and use Machine Learning to integrate multiple sources of biological/molecular information (multiOmics), in our case RNA-sequening, DNA methylation, SNP and phenotypic data from islet donors with T2D and non-diabetic controls. We exploited Machine Learning to perform multiOmics integration of DNA methylation, expression, SNPs, and phenotypes from pancreatic islets of 110 individuals, with ~ 30% being T2D cases. DNA methylation was analyzed using Infinium MethylationEPIC array, expression was analyzed using RNA-sequencing, and SNPs were analyzed using HumanOmniExpress arrays. Supervised linear multiOmics integration via DIABLO based on Partial Least Squares (PLS) achieved an accuracy of 91 ± 15% of T2D prediction with an area under the curve of 0.96 ± 0.08 on the test dataset after cross-validation. Biomarkers identified by this multiOmics integration, including SACS and TXNIP DNA methylation, OPRD1 and RHOT1 expression and a SNP annotated to ANO1, provide novel insights into the interplay between different biological mechanisms contributing to T2D. This Machine Learning approach of multiOmics cross-sectional data from human pancreatic islets achieved a promising accuracy of T2D prediction, which may potentially find broad applications in clinical diagnostics. In addition, it delivered novel candidate biomarkers for T2D and links between them across the different Omics.


Sujet(s)
Méthylation de l'ADN , Diabète de type 2 , Ilots pancréatiques , Apprentissage machine , Polymorphisme de nucléotide simple , Humains , Diabète de type 2/génétique , Diabète de type 2/métabolisme , Ilots pancréatiques/métabolisme , Mâle , Femelle , Adulte d'âge moyen , Marqueurs biologiques , Adulte , Sujet âgé
19.
Sci Rep ; 14(1): 14669, 2024 06 25.
Article de Anglais | MEDLINE | ID: mdl-38918575

RÉSUMÉ

Non-obese diabetes (NOD) mice are an established, spontaneous model of type 1 diabetes in which diabetes develops through insulitis. Using next-generation sequencing, coupled with pathway analysis, the molecular fingerprint of early insulitis was mapped in a cohort of mice ranging from 4 to 12 weeks of age. The resulting dynamic timeline revealed an initial decrease in proliferative capacity followed by the emergence of an inflammatory signature between 6 and 8 weeks that increased to a regulatory plateau between 10 and 12 weeks. The inflammatory signature is identified by the activation of central immunogenic factors such as Infg, Il1b, and Tnfa, and activation of canonical inflammatory signaling. Analysis of the regulatory landscape revealed the transcription factor Atf3 as a potential novel modulator of inflammatory signaling in the NOD islets. Furthermore, the Hedgehog signaling pathway correlated with Atf3 regulation, suggesting that the two play a role in regulating islet inflammation; however, further studies are needed to establish the nature of this connection.


Sujet(s)
Facteur de transcription ATF-3 , Diabète de type 1 , Ilots pancréatiques , Souris de lignée NOD , Transduction du signal , Animaux , Ilots pancréatiques/métabolisme , Ilots pancréatiques/anatomopathologie , Facteur de transcription ATF-3/métabolisme , Facteur de transcription ATF-3/génétique , Souris , Diabète de type 1/génétique , Diabète de type 1/métabolisme , Diabète de type 1/anatomopathologie , Femelle , Inflammation/génétique , Inflammation/anatomopathologie , Inflammation/métabolisme , Protéines Hedgehog/métabolisme , Protéines Hedgehog/génétique , Analyse de profil d'expression de gènes , Modèles animaux de maladie humaine
20.
Sci Adv ; 10(23): eadk3081, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38848367

RÉSUMÉ

Clinical outcomes for total-pancreatectomy followed by intraportal islet autotransplantation (TP-IAT) to treat chronic pancreatitis (CP) are suboptimal due to pancreas inflammation, oxidative stress during islet isolation, and harsh engraftment conditions in the liver's vasculature. We describe a thermoresponsive, antioxidant macromolecule poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) to protect islet redox status and function and to enable extrahepatic omentum islet engraftment. PPCN solution transitions from a liquid to a hydrogel at body temperature. Islets entrapped in PPCN and exposed to oxidative stress remain functional and support long-term euglycemia, in contrast to islets entrapped in a plasma-thrombin biologic scaffold. In the nonhuman primate (NHP) omentum, PPCN is well-tolerated and mostly resorbed without fibrosis at 3 months after implantation. In NHPs, autologous omentum islet transplantation using PPCN restores normoglycemia with minimal exogenous insulin requirements for >100 days. This preclinical study supports TP-IAT with PPCN in patients with CP and highlights antioxidant properties as a mechanism for islet function preservation.


Sujet(s)
Transplantation d'ilots de Langerhans , Ilots pancréatiques , Omentum , Stress oxydatif , Transplantation d'ilots de Langerhans/méthodes , Omentum/métabolisme , Animaux , Ilots pancréatiques/métabolisme , Ilots pancréatiques/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Acide citrique/pharmacologie , Humains , Antioxydants/pharmacologie , Pancréatite chronique/métabolisme , Pancréatite chronique/chirurgie , Pancréatite chronique/anatomopathologie , Polyéthylène glycols/composition chimique , Polyéthylène glycols/pharmacologie , Mâle , Transition de phase
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE