Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 546
Filtrer
1.
Epilepsia ; 64(1): 208-217, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36398398

RÉSUMÉ

OBJECTIVE: Progressive myoclonic epilepsy type 1 (EPM1) is caused by biallelic alterations in the CSTB gene, most commonly dodecamer repeat expansions. Although transcranial magnetic stimulation (TMS)-induced long-interval intracortical inhibition (LICI) was previously reported to be normal in EPM1, short-interval intracortical inhibition (SICI) was reduced. We explored the association between these measures and the clinical and genetic features in a separate group of patients with EPM1. METHODS: TMS combined with electromyography was performed under neuronavigation. LICI was induced with an inter-stimulus interval (ISI) of 100 ms, and SICI with ISIs of 2 and 3 ms, and their means (mSICIs) were expressed as the ratio of conditioned to unconditioned stimuli. LICI and mSICI were compared between patients and controls. Nonparametric correlation was used to study the association between inhibition and parameters of clinical severity, including the Unified Myoclonus Rating Scale (UMRS); among patients with EPM1 due to biallelic expansion repeats, also the association with the number of repeats was assessed. RESULTS: The study protocol was completed in 19 patients (15 with biallelic expansion repeats and 4 compound heterozygotes), and 7 healthy, age- and sex-matched control participants. Compared to controls, patients demonstrated significantly less SICI (median mSICI ratio 1.18 vs 0.38; p < .001). Neither LICI nor SICI was associated with parameters of clinical severity. In participants with biallelic repeat expansions, the number of repeats in the more affected allele (greater repeat number [GRN]) correlated with LICI (rho = 0.872; p < .001) and SICI (rho = 0.689; p = .006). SIGNIFICANCE: Our results strengthen the finding of deranged γ-aminobutyric acid (GABA)ergic inhibition in EPM1. LICI and SICI may have use as markers of GABAergic impairment in future trials of disease-modifying treatment in this condition. Whether a higher number of expansion repeats leads to greater GABAergic impairment warrants further study.


Sujet(s)
Cortex moteur , Inhibition nerveuse , Humains , Inhibition nerveuse/génétique , Électromyographie , Génotype , Stimulation magnétique transcrânienne/méthodes , Cortex moteur/physiologie , Potentiels évoqués moteurs/physiologie
2.
Nature ; 607(7918): 330-338, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35794483

RÉSUMÉ

Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes1-6, but it is not known whether these subtypes have correspondingly diverse patterns of activity in the living brain. Here we show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, which are organized by a single factor: position along the main axis of transcriptomic variation. We combined in vivo two-photon calcium imaging of mouse V1 with a transcriptomic method to identify mRNA for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 subclasses, 11 types and 35 subtypes using previously defined transcriptomic clusters3. Responses to visual stimuli differed significantly only between subclasses, with cells in the Sncg subclass uniformly suppressed, and cells in the other subclasses predominantly excited. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory subtypes that fired more in resting, oscillatory brain states had a smaller fraction of their axonal projections in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro7, and expressed more inhibitory cholinergic receptors. Subtypes that fired more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 subtypes shape state-dependent cortical processing.


Sujet(s)
Interneurones , Inhibition nerveuse , Transcriptome , Cortex visuel , Animaux , Éveil , Axones/physiologie , Calcium/analyse , Interneurones/physiologie , Souris , Inhibition nerveuse/génétique , Récepteurs cholinergiques , Transcriptome/génétique , Cortex visuel/cytologie , Cortex visuel/métabolisme , Cortex visuel/physiologie
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article de Anglais | MEDLINE | ID: mdl-35074912

RÉSUMÉ

Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.


Sujet(s)
Précurseur de la protéine bêta-amyloïde/métabolisme , Hippocampe/métabolisme , Hippocampe/physiopathologie , Molécules d'adhérence cellulaire neurales/génétique , Inhibition nerveuse , Synapses/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Région CA1 de l'hippocampe , Protéines de transport , Dendrites/métabolisme , Neurones GABAergiques/métabolisme , Interneurones , Modèles biologiques , Molécules d'adhérence cellulaire neurales/composition chimique , Molécules d'adhérence cellulaire neurales/métabolisme , Inhibition nerveuse/génétique , Liaison aux protéines , Motifs et domaines d'intéraction protéique , Cellules pyramidales/métabolisme , Récepteurs GABA-B/métabolisme , Transmission synaptique
4.
Neuron ; 109(20): 3283-3297.e11, 2021 10 20.
Article de Anglais | MEDLINE | ID: mdl-34672983

RÉSUMÉ

Deep brain temperature detection by hypothalamic warm-sensitive neurons (WSNs) has been proposed to provide feedback information relevant for thermoregulation. WSNs increase their action potential firing rates upon warming, a property that has been presumed to rely on the composition of thermosensitive ion channels within WSNs. Here, we describe a synaptic mechanism that regulates temperature sensitivity of preoptic WSNs and body temperature. Experimentally induced warming of the mouse hypothalamic preoptic area in vivo triggers body cooling. TRPM2 ion channels facilitate this homeostatic response and, at the cellular level, enhance temperature responses of WSNs, thereby linking WSN function with thermoregulation for the first time. Rather than acting within WSNs, we-unexpectedly-find TRPM2 to temperature-dependently increase synaptic drive onto WSNs by disinhibition. Our data emphasize a network-based interoceptive paradigm that likely plays a key role in encoding body temperature and that may facilitate integration of diverse inputs into thermoregulatory pathways.


Sujet(s)
Régulation de la température corporelle/génétique , Inhibition nerveuse/génétique , Neurones/métabolisme , Aire préoptique/métabolisme , Canaux cationiques TRPM/génétique , Thermoception/génétique , Animaux , Température du corps , Régulation de la température corporelle/physiologie , Intéroception/physiologie , Souris , Souris knockout , Aire préoptique/cytologie , Synapses , Canaux cationiques TRPM/métabolisme
5.
J Neurosci ; 41(39): 8111-8125, 2021 09 29.
Article de Anglais | MEDLINE | ID: mdl-34400520

RÉSUMÉ

The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. However, its function in neurons is unknown. We show that, during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ third-order dendrites both in male and in female mice. Moreover, we demonstrate that SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown caused a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, whereas excitatory neurotransmission was unaffected. Finally, we show that this mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations revealed significant loss of SLK expression. Overall, the present data identify SLK as a key regulator of both dendritic complexity during development and inhibitory synapse maintenance.SIGNIFICANCE STATEMENT We show that dysmorphic neurons of human epileptogenic brain lesions have decreased levels of the Ste20-like kinase (SLK). Decreasing SLK expression in mouse neurons revealed that SLK has essential functions in forming the neuronal dendritic tree and in maintaining inhibitory connections with neighboring neurons.


Sujet(s)
Cortex cérébral/métabolisme , Dendrites/génétique , Inhibition nerveuse/génétique , Protein-Serine-Threonine Kinases/génétique , Synapses/génétique , Transmission synaptique/physiologie , Adolescent , Adulte , Sujet âgé , Animaux , Cortex cérébral/anatomopathologie , Enfant , Enfant d'âge préscolaire , Dendrites/métabolisme , Dendrites/anatomopathologie , Femelle , Cellules HEK293 , Humains , Mâle , Souris , Adulte d'âge moyen , Protein-Serine-Threonine Kinases/métabolisme , Synapses/métabolisme , Synapses/anatomopathologie , Jeune adulte
6.
Neurobiol Dis ; 157: 105442, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-34246770

RÉSUMÉ

Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1tm1Lex). These mice display SZ-like behavioral deficits. The cellular and molecular underpinnings of the behavioral deficits in Nrg1tm1Lex mice remain to be established. With multiple approaches including Magnetic Resonance Spectroscopy (MRS), electrophysiology, quantitative imaging and molecular analysis we found that Nrg1 haploinsufficiency impairs the inhibitory cortical circuits. We observed changes in the expression of molecules involved in GABAergic neurotransmission, decreased density of Vglut1 excitatory buttons onto Parvalbumin interneurons and decreased frequency of spontaneous inhibitory postsynaptic currents. Moreover, we found a decreased number of Parvalbumin positive interneurons in the cortex and altered expression of Calretinin. Interestingly, we failed to detect other alterations in excitatory neurons that were previously reported in ErbB4 null mice suggesting that the Nrg1 haploinsufficiency does not entirely phenocopies ErbB4 deletions. Altogether, this study suggests that Nrg1 haploinsufficiency primarily affects the cortical inhibitory circuits in the cortex and provides new insights into the structural and molecular synaptic impairment caused by NRG1 hypofunction in a preclinical model of SZ.


Sujet(s)
Cortex cérébral/métabolisme , Neurones GABAergiques/métabolisme , Hippocampe/métabolisme , Potentiels post-synaptiques inhibiteurs/génétique , Interneurones/métabolisme , Inhibition nerveuse/génétique , Neuréguline-1/génétique , Transporteur vésiculaire-1 du glutamate/métabolisme , Animaux , Calbindine-2/métabolisme , Cortex cérébral/imagerie diagnostique , Cortex cérébral/anatomopathologie , Cortex cérébral/physiopathologie , Neurones GABAergiques/anatomopathologie , Expression des gènes , Haploinsuffisance , Hippocampe/imagerie diagnostique , Hippocampe/anatomopathologie , Hippocampe/physiopathologie , Interneurones/anatomopathologie , Imagerie par résonance magnétique , Spectroscopie par résonance magnétique , Souris , Parvalbumines/métabolisme , ARN messager/métabolisme , Récepteur ErbB-4/génétique , Acide gamma-amino-butyrique/métabolisme
7.
Cereb Cortex ; 31(7): 3506-3521, 2021 06 10.
Article de Anglais | MEDLINE | ID: mdl-33693675

RÉSUMÉ

Genes involved in pain and touch sensations have been studied extensively, but very few studies have tried to link them with neural activities in the brain. Here, we aimed to identify genes preferentially correlated to painful activation patterns by linking the spatial patterns of gene expression of Allen Human Brain Atlas with the pain-elicited neural responses in the human brain, with a parallel, control analysis for identification of genes preferentially correlated to tactile activation patterns. We identified 1828 genes whose expression patterns preferentially correlated to painful activation patterns and 411 genes whose expression patterns preferentially correlated to tactile activation pattern at the cortical level. In contrast to the enrichment for astrocyte and inhibitory synaptic transmission of genes preferentially correlated to tactile activation, the genes preferentially correlated to painful activation were mainly enriched for neuron and opioid- and addiction-related pathways and showed significant overlap with pain-related genes identified in previous studies. These findings not only provide important evidence for the differential genetic architectures of specific brain activation patterns elicited by painful and tactile stimuli but also validate a new approach to studying pain- and touch-related genes more directly from the perspective of neural responses in the human brain.


Sujet(s)
Encéphale/métabolisme , Douleur/génétique , Toucher/génétique , Astrocytes/métabolisme , Encéphale/imagerie diagnostique , Encéphale/physiologie , Neuroimagerie fonctionnelle , Analyse de profil d'expression de gènes , Humains , Imagerie par résonance magnétique , Inhibition nerveuse/génétique , Neurones/métabolisme , Douleur/imagerie diagnostique , Perception de la douleur , Analyse spatio-temporelle , Transmission synaptique/génétique
8.
Nature ; 590(7845): 315-319, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-33328636

RÉSUMÉ

Effective pharmacotherapy for major depressive disorder remains a major challenge, as more than 30% of patients are resistant to the first line of treatment (selective serotonin reuptake inhibitors)1. Sub-anaesthetic doses of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist2,3, provide rapid and long-lasting antidepressant effects in these patients4-6, but the molecular mechanism of these effects remains unclear7,8. Ketamine has been proposed to exert its antidepressant effects through its metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK)9. The antidepressant effects of ketamine and (2R,6R)-HNK in rodents require activation of the mTORC1 kinase10,11. mTORC1 controls various neuronal functions12, particularly through cap-dependent initiation of mRNA translation via the phosphorylation and inactivation of eukaryotic initiation factor 4E-binding proteins (4E-BPs)13. Here we show that 4E-BP1 and 4E-BP2 are key effectors of the antidepressant activity of ketamine and (2R,6R)-HNK, and that ketamine-induced hippocampal synaptic plasticity depends on 4E-BP2 and, to a lesser extent, 4E-BP1. It has been hypothesized that ketamine activates mTORC1-4E-BP signalling in pyramidal excitatory cells of the cortex8,14. To test this hypothesis, we studied the behavioural response to ketamine and (2R,6R)-HNK in mice lacking 4E-BPs in either excitatory or inhibitory neurons. The antidepressant activity of the drugs is mediated by 4E-BP2 in excitatory neurons, and 4E-BP1 and 4E-BP2 in inhibitory neurons. Notably, genetic deletion of 4E-BP2 in inhibitory neurons induced a reduction in baseline immobility in the forced swim test, mimicking an antidepressant effect. Deletion of 4E-BP2 specifically in inhibitory neurons also prevented the ketamine-induced increase in hippocampal excitatory neurotransmission, and this effect concurred with the inability of ketamine to induce a long-lasting decrease in inhibitory neurotransmission. Overall, our data show that 4E-BPs are central to the antidepressant activity of ketamine.


Sujet(s)
Antidépresseurs/pharmacologie , Facteur-4E d'initiation eucaryote/métabolisme , Kétamine/pharmacologie , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Biosynthèse des protéines/effets des médicaments et des substances chimiques , Protéines adaptatrices de la transduction du signal/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Animaux , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Trouble dépressif majeur/traitement médicamenteux , Facteurs d'initiation eucaryotes/génétique , Facteurs d'initiation eucaryotes/métabolisme , Potentiels post-synaptiques excitateurs/effets des médicaments et des substances chimiques , Hippocampe/cytologie , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Potentiels post-synaptiques inhibiteurs/effets des médicaments et des substances chimiques , Interneurones/effets des médicaments et des substances chimiques , Interneurones/métabolisme , Kétamine/analogues et dérivés , Kétamine/métabolisme , Mâle , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Souris , Mutation , Inhibition nerveuse/effets des médicaments et des substances chimiques , Inhibition nerveuse/génétique , Neurones/classification , Neurones/cytologie , Cellules pyramidales/effets des médicaments et des substances chimiques , Cellules pyramidales/métabolisme , Transmission synaptique/effets des médicaments et des substances chimiques
9.
Cell Mol Life Sci ; 78(5): 2279-2298, 2021 Mar.
Article de Anglais | MEDLINE | ID: mdl-32959071

RÉSUMÉ

Learning and memory are known to depend on synaptic plasticity. Whereas the involvement of plastic changes at excitatory synapses is well established, plasticity mechanisms at inhibitory synapses only start to be discovered. Extracellular proteolysis is known to be a key factor in glutamatergic plasticity but nothing is known about its role at GABAergic synapses. We reveal that pharmacological inhibition of MMP3 activity or genetic knockout of the Mmp3 gene abolishes induction of postsynaptic iLTP. Moreover, the application of exogenous active MMP3 mimics major iLTP manifestations: increased mIPSCs amplitude, enlargement of synaptic gephyrin clusters, and a decrease in the diffusion coefficient of synaptic GABAA receptors that favors their entrapment within the synapse. Finally, we found that MMP3 deficient mice show faster spatial learning in Morris water maze and enhanced contextual fear conditioning. We conclude that MMP3 plays a key role in iLTP mechanisms and in the behaviors that presumably in part depend on GABAergic plasticity.


Sujet(s)
Hippocampe/physiologie , Matrix metalloproteinase 3/métabolisme , Inhibition nerveuse/physiologie , Plasticité neuronale/physiologie , Apprentissage spatial/physiologie , Synapses/physiologie , Animaux , Femelle , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Humains , Potentialisation à long terme/génétique , Potentialisation à long terme/physiologie , Mâle , Matrix metalloproteinase 3/génétique , Apprentissage du labyrinthe/physiologie , Souris de lignée C57BL , Souris knockout , N-Méthyl-aspartate/pharmacologie , Inhibition nerveuse/génétique , Plasticité neuronale/génétique , Récepteurs GABA-A/génétique , Récepteurs GABA-A/métabolisme , Synapses/génétique
10.
Nature ; 586(7829): 417-423, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32999463

RÉSUMÉ

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Sujet(s)
Rétrocontrôle physiologique , Microglie/physiologie , Inhibition nerveuse , Neurones/physiologie , 5'-Nucleotidase/métabolisme , Potentiels d'action , Adénosine/métabolisme , AMP/métabolisme , Adénosine triphosphate/métabolisme , Animaux , Antigènes CD/métabolisme , Apyrase/métabolisme , Calcium/métabolisme , Corps strié/cytologie , Corps strié/physiologie , Femelle , Humains , Mâle , Souris , Souris de lignée C57BL , Microglie/cytologie , Inhibition nerveuse/génétique , Récepteur A1 à l'adénosine/métabolisme , Récepteur muscarinique de type M3/génétique , Récepteur muscarinique de type M3/métabolisme , Facteurs temps
11.
J Alzheimers Dis ; 78(3): 951-964, 2020.
Article de Anglais | MEDLINE | ID: mdl-33074225

RÉSUMÉ

BACKGROUND: In an early stage of Alzheimer's disease (AD), before the formation of amyloid plaques, neuronal network hyperactivity has been reported in both patients and animal models. This suggests an underlying disturbance of the balance between excitation and inhibition. Several studies have highlighted the role of somatic inhibition in early AD, while less is known about dendritic inhibition. OBJECTIVE: In this study we investigated how inhibitory synaptic currents are affected by elevated Aß levels. METHODS: We performed whole-cell patch clamp recordings of CA1 pyramidal neurons in organotypic hippocampal slice cultures after treatment with Aß-oligomers and in hippocampal brain slices from AppNL-F-G mice (APP-KI). RESULTS: We found a reduction of spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons in organotypic slices after 24 h Aß treatment. sIPSCs with slow rise times were reduced, suggesting a specific loss of dendritic inhibitory inputs. As miniature IPSCs and synaptic density were unaffected, these results suggest a decrease in activity-dependent transmission after Aß treatment. We observed a similar, although weaker, reduction in sIPSCs in CA1 pyramidal neurons from APP-KI mice compared to control. When separated by sex, the strongest reduction in sIPSC frequency was found in slices from male APP-KI mice. Consistent with hyperexcitability in pyramidal cells, dendritically targeting interneurons received slightly more excitatory input. GABAergic action potentials had faster kinetics in APP-KI slices. CONCLUSION: Our results show that Aß affects dendritic inhibition via impaired action potential driven release, possibly due to altered kinetics of GABAergic action potentials. Reduced dendritic inhibition may contribute to neuronal hyperactivity in early AD.


Sujet(s)
Maladie d'Alzheimer/génétique , Peptides bêta-amyloïdes/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Dendrites/métabolisme , Potentiels post-synaptiques inhibiteurs/génétique , Fragments peptidiques/métabolisme , Cellules pyramidales/métabolisme , Potentiels d'action/effets des médicaments et des substances chimiques , Potentiels d'action/génétique , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Peptides bêta-amyloïdes/pharmacologie , Amyloïdose , Animaux , Région CA1 de l'hippocampe/cytologie , Dendrites/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Humains , Immunohistochimie , Potentiels post-synaptiques inhibiteurs/effets des médicaments et des substances chimiques , Souris , Souris transgéniques , Microscopie confocale , Inhibition nerveuse/effets des médicaments et des substances chimiques , Inhibition nerveuse/génétique , Techniques de patch-clamp , Cellules pyramidales/effets des médicaments et des substances chimiques
12.
Cereb Cortex ; 30(7): 3921-3937, 2020 06 01.
Article de Anglais | MEDLINE | ID: mdl-32147726

RÉSUMÉ

The balance of excitation and inhibition is essential for cortical information processing, relying on the tight orchestration of the underlying subcellular processes. Dynamic transcriptional control by DNA methylation, catalyzed by DNA methyltransferases (DNMTs), and DNA demethylation, achieved by ten-eleven translocation (TET)-dependent mechanisms, is proposed to regulate synaptic function in the adult brain with implications for learning and memory. However, focus so far is laid on excitatory neurons. Given the crucial role of inhibitory cortical interneurons in cortical information processing and in disease, deciphering the cellular and molecular mechanisms of GABAergic transmission is fundamental. The emerging relevance of DNMT and TET-mediated functions for synaptic regulation irrevocably raises the question for the targeted subcellular processes and mechanisms. In this study, we analyzed the role dynamic DNA methylation has in regulating cortical interneuron function. We found that DNMT1 and TET1/TET3 contrarily modulate clathrin-mediated endocytosis. Moreover, we provide evidence that DNMT1 influences synaptic vesicle replenishment and GABAergic transmission, presumably through the DNA methylation-dependent transcriptional control over endocytosis-related genes. The relevance of our findings is supported by human brain sample analysis, pointing to a potential implication of DNA methylation-dependent endocytosis regulation in the pathophysiology of temporal lobe epilepsy, a disease characterized by disturbed synaptic transmission.


Sujet(s)
Méthylation de l'ADN/génétique , Endocytose/génétique , Neurones GABAergiques/métabolisme , Interneurones/métabolisme , Inhibition nerveuse/génétique , Synapses/métabolisme , Animaux , Clathrine , Protéines du cytosquelette/génétique , DNA (Cytosine-5-)-methyltransferase 1/génétique , DNA (Cytosine-5-)-methyltransferase 1/métabolisme , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Dioxygenases/génétique , Dioxygenases/métabolisme , Épigénome , Épilepsie temporale/génétique , Humains , Potentiels post-synaptiques inhibiteurs , Protéines et peptides de signalisation intracellulaire/génétique , Souris , Techniques de patch-clamp , Protéines proto-oncogènes/génétique , Protéines proto-oncogènes/métabolisme , RT-PCR , Vésicules synaptiques/métabolisme , Transcriptome
13.
Elife ; 82019 12 23.
Article de Anglais | MEDLINE | ID: mdl-31868588

RÉSUMÉ

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons (MNs) during late adulthood. Here, with the aim of identifying early changes underpinning ALS neurodegeneration, we analyzed the GABAergic/glycinergic inputs to E17.5 fetal MNs from SOD1G93A (SOD) mice in parallel with chloride homeostasis. Our results show that IPSCs are less frequent in SOD animals in accordance with a reduction of synaptic VIAAT-positive terminals. SOD MNs exhibited an EGABAAR10 mV more depolarized than in WT MNs associated with a KCC2 reduction. Interestingly, SOD GABAergic/glycinergic IPSCs and evoked GABAAR-currents exhibited a slower decay correlated to elevated [Cl-]i. Computer simulations revealed that a slower relaxation of synaptic inhibitory events acts as compensatory mechanism to strengthen GABA/glycine inhibition when EGABAAR is more depolarized. How such mechanisms evolve during pathophysiological processes remain to be determined, but our data indicate that at least SOD1 familial ALS may be considered as a neurodevelopmental disease.


Sujet(s)
Sclérose latérale amyotrophique/génétique , Neurones GABAergiques/métabolisme , Motoneurones/métabolisme , Superoxide dismutase-1/génétique , Sclérose latérale amyotrophique/métabolisme , Sclérose latérale amyotrophique/anatomopathologie , Animaux , Chlorures/métabolisme , Modèles animaux de maladie humaine , Foetus , Neurones GABAergiques/anatomopathologie , Glycine/métabolisme , Humains , Souris , Souris transgéniques , Motoneurones/anatomopathologie , Inhibition nerveuse/génétique , Moelle spinale/métabolisme , Moelle spinale/anatomopathologie , Symporteurs/génétique , Transmission synaptique/génétique , Acide gamma-amino-butyrique/génétique , Acide gamma-amino-butyrique/métabolisme ,
14.
Nat Commun ; 10(1): 3369, 2019 07 29.
Article de Anglais | MEDLINE | ID: mdl-31358754

RÉSUMÉ

Inhibitory interneurons are integral to sensory processing, yet revealing their cell type-specific roles in sensory circuits remains an ongoing focus. To Investigate the mouse olfactory system, we selectively remove GABAergic transmission from a subset of olfactory bulb interneurons, EPL interneurons (EPL-INs), and assay odor responses from their downstream synaptic partners - tufted cells and mitral cells. Using a combination of in vivo electrophysiological and imaging analyses, we find that inactivating this single node of inhibition leads to differential effects in magnitude, reliability, tuning width, and temporal dynamics between the two principal neurons. Furthermore, tufted and not mitral cell responses to odor mixtures become more linearly predictable without EPL-IN inhibition. Our data suggest that olfactory bulb interneurons, through exerting distinct inhibitory functions onto their different synaptic partners, play a significant role in the processing of odor information.


Sujet(s)
Interneurones/physiologie , Inhibition nerveuse/physiologie , Neurones/physiologie , Bulbe olfactif/physiologie , Voies olfactives/physiologie , Animaux , Interneurones/cytologie , Interneurones/métabolisme , Souris knockout , Souris transgéniques , Inhibition nerveuse/génétique , Neurones/cytologie , Neurones/métabolisme , Odorisants , Bulbe olfactif/cytologie , Bulbe olfactif/métabolisme , Odorat , Transmission synaptique/génétique , Transmission synaptique/physiologie
15.
Mol Brain ; 12(1): 60, 2019 06 24.
Article de Anglais | MEDLINE | ID: mdl-31234911

RÉSUMÉ

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by loss-of-function mutations in NF1 gene, which encodes a GTPase activating protein for RAS. NF1 affects multiple systems including brain and is highly associated with cognitive deficits such as learning difficulties and attention deficits. Previous studies have suggested that GABAergic inhibitory neuron is the cell type primarily responsible for the learning deficits in mouse models of NF1. However, it is not clear how NF1 mutations selectively affect inhibitory neurons in the central nervous system. In this study, we show that the expression level of Nf1 is significantly higher in inhibitory neurons than in excitatory neurons in mouse hippocampus and cortex by using in situ hybridization. Furthermore, we also found that NF1 is enriched in inhibitory neurons in the human cortex, confirming that the differential expressions of NF1 between two cell types are evolutionarily conserved. Our results suggest that the enriched expression of NF1 in inhibitory neurons may underlie inhibitory neuron-specific deficits in NF1.


Sujet(s)
Inhibition nerveuse , Neurofibromine-1/génétique , Neurones/métabolisme , Animaux , Encéphale/métabolisme , Humains , Mâle , Souris de lignée C57BL , Inhibition nerveuse/génétique , Neurofibromine-1/métabolisme , Transduction du signal
16.
Mol Neurobiol ; 56(9): 6134-6141, 2019 Sep.
Article de Anglais | MEDLINE | ID: mdl-30729426

RÉSUMÉ

The cholinergic system is one of the most important neurotransmitter systems, but knowledge about the relevance of the cholinergic muscarinergic receptor system for cognitive functions is still scarce. Evidence suggests that the cholinergic muscarinic 2 receptor (CHRM2) plays an important role in the processing of cueing/prior information that help to increase the efficacy of lower-level attentional processes. In the current study, we investigated whether this is also the case for higher-level cognitive flexibility mechanisms. To this end, we tested N = 210 healthy adults with a backward inhibition task, in which prior information needs to be used to guide cognitive flexibility mechanisms. Testing different polymorphisms of the CHRM2 gene, we found that variation in this gene play a role in cognitive flexibility. It could be demonstrated that rs8191992 TT genotype carriers are better able to suppress no longer relevant information and to use prior information for cognitive flexibility, compared to A allele carriers. We further found that rs2350780 GG genotype carriers performed worse than A allele carriers. The results broaden the relevance of the CHRM2 system for cognitive functions beyond attentional selection processes. Corroborating recent theories on the relevance of the cholinergic system for cognitive processes, these results suggest that CHRM2 is important to process of "prior information" needed to inform subsequent cognitive operations. Considering the importance of prior information for adaptive behavioral control, it is possible that CHRM2 also modulates other instances of higher-level cognitive processes as long as these require the processing of "prior information."


Sujet(s)
Cognition/physiologie , Inhibition nerveuse/génétique , Récepteur muscarinique de type M2/génétique , Adolescent , Adulte , Comportement , Femelle , Génotype , Humains , Mâle , Analyse et exécution des tâches , Jeune adulte
17.
Acta Neuropathol Commun ; 6(1): 121, 2018 11 08.
Article de Anglais | MEDLINE | ID: mdl-30409172

RÉSUMÉ

Pathologic, biochemical and genetic evidence indicates that accumulation and aggregation of amyloid ß-proteins (Aß) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Several therapeutic interventions attempting to lower Aß have failed to ameliorate cognitive decline in patients with clinical AD significantly, but most such approaches target only one or two facets of Aß production/clearance/toxicity and do not consider the heterogeneity of human Aß species. As synaptic dysfunction may be among the earliest deficits in AD, we used hippocampal long-term potentiation (LTP) as a sensitive indicator of the early neurotoxic effects of Aß species. Here we confirmed prior findings that soluble Aß oligomers, much more than fibrillar amyloid plaque cores or Aß monomers, disrupt synaptic function. Interestingly, not all (84%) human AD brain extracts are able to inhibit LTP and the degree of LTP impairment by AD brain extracts does not correlate with Aß levels detected by standard ELISAs. Bioactive AD brain extracts also induce neurotoxicity in iPSC-derived human neurons. Shorter forms of Aß (including Aß1-37, Aß1-38, Aß1-39), pre-Aß APP fragments (- 30 to - 1) and N-terminally extended Aßs (- 30 to + 40) each showed much less synaptotoxicity than longer Aßs (Aß1-42 - Aß1-46). We found that antibodies which target the N-terminus, not the C-terminus, efficiently rescued Aß oligomer-impaired LTP and oligomer-facilitated LTD. Our data suggest that preventing soluble Aß oligomer formation and targeting their N-terminal residues with antibodies could be an attractive combined therapeutic approach.


Sujet(s)
Maladie d'Alzheimer/anatomopathologie , Hippocampe/anatomopathologie , Synapses/anatomopathologie , Synapses/physiologie , Maladie d'Alzheimer/liquide cérébrospinal , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Peptides bêta-amyloïdes/immunologie , Peptides bêta-amyloïdes/métabolisme , Peptides bêta-amyloïdes/pharmacologie , Précurseur de la protéine bêta-amyloïde/génétique , Animaux , Anticorps/pharmacologie , Facteurs de transcription à motif basique hélice-boucle-hélice/pharmacologie , Modèles animaux de maladie humaine , Femelle , Humains , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Cellules souches pluripotentes induites/métabolisme , Potentialisation à long terme/effets des médicaments et des substances chimiques , Potentialisation à long terme/génétique , Mâle , Souris , Souris de lignée C57BL , Souris transgéniques , Protéines de tissu nerveux/métabolisme , Protéines de tissu nerveux/pharmacologie , Inhibition nerveuse/effets des médicaments et des substances chimiques , Inhibition nerveuse/génétique , Fragments peptidiques/pharmacologie , Tyrosine/analogues et dérivés , Tyrosine/pharmacologie
18.
Neuron ; 98(4): 718-725.e3, 2018 05 16.
Article de Anglais | MEDLINE | ID: mdl-29706582

RÉSUMÉ

While the canonical assembly of a GABAA receptor contains two α subunits, two ß subunits, and a fifth subunit, it is unclear which variants of each subunit are necessary for native receptors. We used CRISPR/Cas9 to dissect the role of the GABAA receptor ß subunits in inhibitory transmission onto hippocampal CA1 pyramidal cells and found that deletion of all ß subunits 1, 2, and 3 completely eliminated inhibitory responses. In addition, only knockout of ß3, alone or in combination with another ß subunit, impaired inhibitory synaptic transmission. We found that ß3 knockout impairs inhibitory input from PV but not SOM expressing interneurons. Furthermore, expression of ß3 alone on the background of the ß1-3 subunit knockout was sufficient to restore synaptic and extrasynaptic inhibitory transmission. These findings reveal a crucial role for the ß3 subunit in inhibitory transmission and identify a synapse-specific role of the ß3 subunit in GABAergic synaptic transmission.


Sujet(s)
Inhibition nerveuse/génétique , Cellules pyramidales/métabolisme , Récepteurs GABA-A/génétique , Animaux , Région CA1 de l'hippocampe/cytologie , Région CA1 de l'hippocampe/métabolisme , Systèmes CRISPR-Cas , Techniques de knock-out de gènes , Potentiels post-synaptiques inhibiteurs/génétique , Interneurones/métabolisme , Souris , Souris transgéniques , Parvalbumines/métabolisme , Rats , Récepteurs GABA/génétique , Somatostatine/métabolisme , Transmission synaptique
19.
Cell Rep ; 22(3): 679-692, 2018 01 16.
Article de Anglais | MEDLINE | ID: mdl-29346766

RÉSUMÉ

Excitation and inhibition are highly specific in the cortex, with distinct synaptic connections made onto subtypes of projection neurons. The functional consequences of this selective connectivity depend on both synaptic strength and the intrinsic properties of targeted neurons but remain poorly understood. Here, we examine responses to callosal inputs at cortico-cortical (CC) and cortico-thalamic (CT) neurons in layer 5 of mouse prelimbic prefrontal cortex (PFC). We find callosally evoked excitation and feedforward inhibition are much stronger at CT neurons compared to neighboring CC neurons. Elevated inhibition at CT neurons reflects biased synaptic inputs from parvalbumin and somatostatin positive interneurons. The intrinsic properties of postsynaptic targets equalize excitatory and inhibitory response amplitudes but selectively accelerate decays at CT neurons. Feedforward inhibition further reduces response amplitude and balances action potential firing across these projection neurons. Our findings highlight the synaptic and cellular mechanisms regulating callosal recruitment of layer 5 microcircuits in PFC.


Sujet(s)
Corps calleux/physiopathologie , Inhibition nerveuse/génétique , Cortex préfrontal/physiopathologie , Animaux , Souris , Souris transgéniques
20.
Cereb Cortex ; 28(5): 1625-1644, 2018 05 01.
Article de Anglais | MEDLINE | ID: mdl-28334184

RÉSUMÉ

Diffuse axonal injury (DAI) plays a major role in cortical network dysfunction posited to cause excitatory/inhibitory imbalance after mild traumatic brain injury (mTBI). Current thought holds that white matter (WM) is uniquely vulnerable to DAI. However, clinically diagnosed mTBI is not always associated with WM DAI. This suggests an undetected neocortical pathophysiology, implicating GABAergic interneurons. To evaluate this possibility, we used mild central fluid percussion injury to generate DAI in mice with Cre-driven tdTomato labeling of parvalbumin (PV) interneurons. We followed tdTomato+ profiles using confocal and electron microscopy, together with patch-clamp analysis to probe for DAI-mediated neocortical GABAergic interneuron disruption. Within 3 h post-mTBI tdTomato+ perisomatic axonal injury (PSAI) was found across somatosensory layers 2-6. The DAI marker amyloid precursor protein colocalized with GAD67 immunoreactivity within tdTomato+ PSAI, representing the majority of GABAergic interneuron DAI. At 24 h post-mTBI, we used phospho-c-Jun, a surrogate DAI marker, for retrograde assessments of sustaining somas. Via this approach, we estimated DAI occurs in ~9% of total tdTomato+ interneurons, representing ~14% of pan-neuronal DAI. Patch-clamp recordings of tdTomato+ interneurons revealed decreased inhibitory transmission. Overall, these data show that PV interneuron DAI is a consistent and significant feature of experimental mTBI with important implications for cortical network dysfunction.


Sujet(s)
Lésions traumatiques de l'encéphale/complications , Lésion axonale diffuse/étiologie , Néocortex/anatomopathologie , Inhibition nerveuse/physiologie , Voies nerveuses/anatomopathologie , Parvalbumines/métabolisme , Potentiels d'action/physiologie , Animaux , Lésions traumatiques de l'encéphale/anatomopathologie , Lésion axonale diffuse/anatomopathologie , Modèles animaux de maladie humaine , Antagonistes des acides aminés excitateurs/pharmacologie , Glutamate decarboxylase/métabolisme , Potentiels post-synaptiques inhibiteurs/effets des médicaments et des substances chimiques , Potentiels post-synaptiques inhibiteurs/génétique , Protéines luminescentes/génétique , Protéines luminescentes/métabolisme , Mâle , Souris , Souris transgéniques , Néocortex/ultrastructure , Protéines de tissu nerveux/métabolisme , Inhibition nerveuse/génétique , Voies nerveuses/ultrastructure , Parvalbumines/génétique , Quinoxalines/pharmacologie , Valine/analogues et dérivés , Valine/pharmacologie , Transporteurs vésiculaires des acides aminés inhibiteurs/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...