Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.227
Filtrer
1.
Curr Opin Immunol ; 87: 102430, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38824869

RÉSUMÉ

Lambda interferons (IFNλs), also termed type III interferons (IFNs) or interleukins-28/29, have been in the shadow of type I IFNs for a long time. Their common induction mechanisms and signalling cascades with type I IFNs have made difficult the unwinding of their unique nonredundant functions. However, this is now changing with mounting evidence supporting a major role of IFNλs as a specialized antiviral defense system in the body, mediating protection at mucosal barrier surfaces while limiting immunopathology. Here, we review the latest progress on the complex activities of IFNλs in the respiratory tract, focusing on their multiple effects in IFNλ receptor-expressing cells, the modulation of innate and adaptive immune responses in the context of infections and respiratory diseases, and their similarities and differences with type I IFNs. We also discuss their potential in therapeutic applications and the most recent developments in that direction.


Sujet(s)
Immunité acquise , Immunité innée , Interféron lambda , Interférons , Appareil respiratoire , Humains , Animaux , Interférons/métabolisme , Interférons/immunologie , Appareil respiratoire/immunologie , Appareil respiratoire/métabolisme , Transduction du signal/immunologie , Interféron de type I/métabolisme , Interféron de type I/immunologie
2.
Viruses ; 16(5)2024 05 08.
Article de Anglais | MEDLINE | ID: mdl-38793622

RÉSUMÉ

The pathogenesis of viral infection is attributed to two folds: intrinsic cell death pathway activation due to the viral cytopathic effect, and immune-mediated extrinsic cellular injuries. The immune system, encompassing both innate and adaptive immunity, therefore acts as a double-edged sword in viral infection. Insufficient potency permits pathogens to establish lifelong persistent infection and its consequences, while excessive activation leads to organ damage beyond its mission to control viral pathogens. The innate immune response serves as the front line of defense against viral infection, which is triggered through the recognition of viral products, referred to as pathogen-associated molecular patterns (PAMPs), by host cell pattern recognition receptors (PRRs). The PRRs-PAMPs interaction results in the induction of interferon-stimulated genes (ISGs) in infected cells, as well as the secretion of interferons (IFNs), to establish a tissue-wide antiviral state in an autocrine and paracrine manner. Cumulative evidence suggests significant variability in the expression patterns of PRRs, the induction potency of ISGs and IFNs, and the IFN response across different cell types and species. Hence, in our understanding of viral hepatitis pathogenesis, insights gained through hepatoma cell lines or murine-based experimental systems are uncertain in precisely recapitulating the innate antiviral response of genuine human hepatocytes. Accordingly, this review article aims to extract and summarize evidence made possible with bona fide human hepatocytes-based study tools, along with their clinical relevance and implications, as well as to identify the remaining gaps in knowledge for future investigations.


Sujet(s)
Virus de l'hépatite delta , Hépatocytes , Immunité innée , Interférons , Récepteurs de reconnaissance de motifs moléculaires , Humains , Hépatite D/immunologie , Hépatite D/virologie , Virus de l'hépatite delta/immunologie , Virus de l'hépatite delta/physiologie , Hépatocytes/virologie , Hépatocytes/immunologie , Interactions hôte-pathogène/immunologie , Interférons/immunologie , Interférons/métabolisme , Molécules contenant des motifs associés aux pathogènes/immunologie , Récepteurs de reconnaissance de motifs moléculaires/métabolisme , Récepteurs de reconnaissance de motifs moléculaires/immunologie
3.
Viruses ; 16(5)2024 05 06.
Article de Anglais | MEDLINE | ID: mdl-38793616

RÉSUMÉ

Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.


Sujet(s)
Interférons , Protéines membranaires , Pénétration virale , Humains , Protéines membranaires/métabolisme , Protéines membranaires/immunologie , Interférons/immunologie , Interférons/métabolisme , Pénétration virale/effets des médicaments et des substances chimiques , Antiviraux/pharmacologie , Échappement immunitaire , Animaux , Maladies virales/immunologie , Maladies virales/virologie , Virus/immunologie , Virus/effets des médicaments et des substances chimiques , Interactions hôte-pathogène/immunologie , Transduction du signal , Antigènes de différenciation/métabolisme , Antigènes de différenciation/immunologie
4.
Mol Immunol ; 170: 156-169, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38692097

RÉSUMÉ

Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.


Sujet(s)
Tumeurs du sein , Protéines de liaison à l'ADN , Facteurs de transcription , Humains , Tumeurs du sein/immunologie , Tumeurs du sein/anatomopathologie , Tumeurs du sein/génétique , Femelle , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/immunologie , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Facteur-3 de régulation d'interféron/métabolisme , Facteur-3 de régulation d'interféron/génétique , Récidive tumorale locale/immunologie , Interférons/métabolisme , Interférons/immunologie , Interférons/génétique , Lignée cellulaire tumorale , Cellules épithéliales/immunologie , Cellules épithéliales/métabolisme , Animaux , ARN double brin/immunologie , Facteur de transcription RelA/métabolisme , Souris , Régulation de l'expression des gènes tumoraux , Transduction du signal/immunologie , Facteur-1 de régulation d'interféron/métabolisme , Facteur-1 de régulation d'interféron/génétique , Facteur-1 de régulation d'interféron/immunologie
5.
Proc Natl Acad Sci U S A ; 121(21): e2402540121, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38758698

RÉSUMÉ

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.


Sujet(s)
Rhume banal , Immunité innée , Interférons , Muqueuse nasale , SARS-CoV-2 , Transduction du signal , Humains , Muqueuse nasale/virologie , Muqueuse nasale/immunologie , Muqueuse nasale/métabolisme , Interférons/métabolisme , Interférons/immunologie , Rhume banal/immunologie , Rhume banal/virologie , Transduction du signal/immunologie , SARS-CoV-2/immunologie , Réplication virale , Rhinovirus/immunologie , Coronavirus humain 229E/immunologie , Infections à coronavirus/immunologie , Infections à coronavirus/virologie , Cellules épithéliales/virologie , Cellules épithéliales/immunologie , Cellules épithéliales/métabolisme , Coronavirus du syndrome respiratoire du Moyen-Orient/immunologie , Coronavirus humain NL63/immunologie
6.
Curr Opin Immunol ; 87: 102425, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38763032

RÉSUMÉ

Interferons (IFNs) are an integral component of the host innate immune response during viral infection. Recent advances in the study of type I and III IFNs suggest that though both types counteract viral infection, type III IFNs act predominantly at epithelial barrier sites, while type I IFNs drive systemic responses. The dynamics and specific roles of type I versus III IFNs have been studied in the context of infection by a variety of enteric pathogens, including reovirus, rotavirus, norovirus, astrovirus, and intestinal severe acute respiratory syndrome coronavirus 2, revealing shared patterns of regulatory influence. An important role for the gut microbiota, including the virome, in regulating homeostasis and priming of intestinal IFN responses has also recently emerged.


Sujet(s)
Tube digestif , Interactions hôte-pathogène , Interféron lambda , Interféron de type I , Interférons , Humains , Interféron de type I/métabolisme , Interféron de type I/immunologie , Interactions hôte-pathogène/immunologie , Interférons/métabolisme , Interférons/immunologie , Animaux , Tube digestif/immunologie , Tube digestif/virologie , Tube digestif/microbiologie , Immunité innée , Microbiome gastro-intestinal/immunologie , Maladies virales/immunologie
7.
J Immunol ; 212(12): 1945-1957, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38700419

RÉSUMÉ

The cytosolic detection of pathogen-derived nucleic acids has evolved as an essential strategy for host innate immune defense in mammals. One crucial component in this process is the stimulator of IFN genes (STING), which acts as a vital signaling adaptor, connecting the cytosolic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) to the downstream type I IFN signaling pathway. However, this process remains elusive in invertebrates. In this study, we present evidence demonstrating that STING, an ortholog found in a marine invertebrate (shrimp) called Litopenaeus vannamei, can directly detect DNA and initiate an IFN-like antiviral response. Unlike its homologs in other eukaryotic organisms, which exclusively function as sensors for cyclic dinucleotides, shrimp STING has the ability to bind to both double-stranded DNA and cyclic dinucleotides, including 2'3'-cGAMP. In vivo, shrimp STING can directly sense DNA nucleic acids from an infected virus, accelerate IFN regulatory factor dimerization and nuclear translocation, induce the expression of an IFN functional analog protein (Vago4), and finally establish an antiviral state. Taken together, our findings unveil a novel double-stranded DNA-STING-IKKε-IRF-Vago antiviral axis in an arthropod, providing valuable insights into the functional origins of DNA-sensing pathways in evolution.


Sujet(s)
Protéines membranaires , Animaux , Protéines membranaires/métabolisme , Protéines membranaires/immunologie , Penaeidae/immunologie , Penaeidae/virologie , Immunité innée/immunologie , Transduction du signal/immunologie , Interférons/métabolisme , Interférons/immunologie , Nucléotides cycliques/métabolisme , Nucléotides cycliques/immunologie
8.
Fish Shellfish Immunol ; 150: 109611, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38734119

RÉSUMÉ

During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.


Sujet(s)
Infections à virus à ADN , Maladies des poissons , Protéines de poisson , Facteur-3 de régulation d'interféron , Facteur-7 de régulation d'interféron , Ranavirus , Protéines virales , Animaux , Facteur-3 de régulation d'interféron/génétique , Facteur-3 de régulation d'interféron/immunologie , Facteur-3 de régulation d'interféron/métabolisme , Facteur-7 de régulation d'interféron/génétique , Facteur-7 de régulation d'interféron/métabolisme , Facteur-7 de régulation d'interféron/immunologie , Protéines de poisson/génétique , Protéines de poisson/immunologie , Protéines de poisson/métabolisme , Maladies des poissons/immunologie , Maladies des poissons/virologie , Infections à virus à ADN/immunologie , Infections à virus à ADN/médecine vétérinaire , Ranavirus/physiologie , Protéines virales/génétique , Protéines virales/métabolisme , Immunité innée/génétique , Interférons/génétique , Interférons/immunologie , Interférons/métabolisme , Échappement immunitaire , Serran/immunologie , Serran/génétique , Réplication virale , Protéines de poisson-zèbre , Facteurs de régulation d'interféron
9.
Curr Opin Immunol ; 87: 102426, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38795501

RÉSUMÉ

In this review, we provide an overview of the intricate host-virus interactions that have emerged from the study of SARS-CoV-2 infection. We focus on the antiviral mechanisms of interferon-stimulated genes (ISGs) and their modulation of viral entry, replication, and release. We explore the role of a selection ISGs, including BST2, CD74, CH25H, DAXX, IFI6, IFITM1-3, LY6E, NCOA7, PLSCR1, OAS1, RTP4, and ZC3HAV1/ZAP, in restricting SARS-CoV-2 infection and discuss the virus's countermeasures. By synthesizing the latest research on SARS-CoV-2 and host antiviral responses, this review aims to provide a deeper understanding of the antiviral state of the cell under SARS-CoV-2 and other viral infections, offering insights for the development of novel antiviral strategies and therapeutics.


Sujet(s)
COVID-19 , SARS-CoV-2 , Humains , SARS-CoV-2/immunologie , SARS-CoV-2/physiologie , COVID-19/immunologie , COVID-19/virologie , Pénétration virale , Interactions hôte-pathogène/immunologie , Réplication virale , Animaux , Antiviraux/usage thérapeutique , Interférons/métabolisme , Interférons/immunologie
10.
Microbiol Spectr ; 12(6): e0379623, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38712963

RÉSUMÉ

Cyclic GMP-AMP synthase (cGAS) is an important DNA pattern recognition receptor that senses double-stranded DNA derived from invading pathogens or self DNA in cytoplasm, leading to an antiviral interferon response. A tick-borne Bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), is an RNA virus that causes a severe emerging viral hemorrhagic fever in Asia with a high case fatality rate of up to 30%. However, it is unclear whether cGAS interacts with SFTSV infection. In this study, we found that SFTSV infection upregulated cGAS RNA transcription and protein expression, indicating that cGAS is an important innate immune response against SFTSV infection. The mechanism of cGAS recognizing SFTSV is by cGAS interacting with misplaced mitochondrial DNA in the cytoplasm. Depletion of mitochondrial DNA significantly inhibited cGAS activation under SFTSV infection. Strikingly, we found that SFTSV nucleoprotein (N) induced cGAS degradation in a dose-dependent manner. Mechanically, N interacted with the 161-382 domain of cGAS and linked the cGAS to LC3. The cGAS-N-LC3 trimer was targeted to N-induced autophagy, and the cGAS was degraded in autolysosome. Taken together, our study discovered a novel antagonistic mechanism of RNA viruses, SFTSV is able to suppress the cGAS-dependent antiviral innate immune responses through N-hijacking cGAS into N-induced autophagy. Our results indicated that SFTSV N is an important virulence factor of SFTSV in mediating host antiviral immune responses. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne RNA virus that is widespread in East and Southeast Asian countries with a high fatality rate of up to 30%. Up to now, many cytoplasmic pattern recognition receptors, such as RIG-I, MDA5, and SAFA, have been reported to recognize SFTSV genomic RNA and trigger interferon-dependent antiviral responses. However, current knowledge is not clear whether SFTSV can be recognized by DNA sensor cyclic GMP-AMP synthase (cGAS). Our study demonstrated that cGAS could recognize SFTSV infection via ectopic mitochondrial DNA, and the activated cGAS-stimulator of interferon genes signaling pathway could significantly inhibit SFTSV replication. Importantly, we further uncovered a novel mechanism of SFTSV to inhibit innate immune responses by the degradation of cGAS. cGAS was degraded in N-induced autophagy. Collectively, this study illustrated a novel virulence factor of SFTSV to suppress innate immune responses through autophagy-dependent cGAS degradation.


Sujet(s)
Immunité innée , Nucléoprotéines , Nucleotidyltransferases , Phlebovirus , Phlebovirus/génétique , Phlebovirus/immunologie , Nucleotidyltransferases/métabolisme , Nucleotidyltransferases/génétique , Humains , Nucléoprotéines/métabolisme , Nucléoprotéines/génétique , Nucléoprotéines/immunologie , Cellules HEK293 , Syndrome de fièvre sévère avec thrombocytopénie/virologie , Syndrome de fièvre sévère avec thrombocytopénie/immunologie , Syndrome de fièvre sévère avec thrombocytopénie/métabolisme , Autophagie , Animaux , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , Interférons/métabolisme , Interférons/immunologie , Interférons/génétique , Protéines virales/métabolisme , Protéines virales/génétique
11.
Curr Opin Immunol ; 87: 102424, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38761566

RÉSUMÉ

Type I and III interferons (IFN-I and IFN-III) have a central role in the early antimicrobial response against invading pathogens. Induction of IFN-Is and IFN-IIIs arises due to the sensing by pattern recognition receptors of pathogen-associated molecular patterns (from micro-organisms) or of damage-associated molecular patterns (DAMPs; produced by host cells). Here, we review recent developments on how IFN-I and IFN-III expression is stimulated by different pathogens and how the signalling pathways leading to IFN induction are tightly regulated. We also summarise the growing knowledge of the sensing pathways that lead to IFN-I and IFN-III induction in response to severe acute respiratory syndrome coronavirus 2.


Sujet(s)
COVID-19 , Interféron lambda , Interféron de type I , Interférons , SARS-CoV-2 , Transduction du signal , Humains , Interféron de type I/métabolisme , Interféron de type I/immunologie , Animaux , Transduction du signal/immunologie , SARS-CoV-2/immunologie , Interférons/métabolisme , Interférons/immunologie , COVID-19/immunologie , COVID-19/virologie , Interactions hôte-pathogène/immunologie , Récepteurs de reconnaissance de motifs moléculaires/métabolisme , Récepteurs de reconnaissance de motifs moléculaires/immunologie , Régulation de l'expression des gènes/immunologie , Immunité innée , Molécules contenant des motifs associés aux pathogènes/immunologie , Molécules contenant des motifs associés aux pathogènes/métabolisme
12.
J Virol ; 98(6): e0160423, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38780249

RÉSUMÉ

The global burden of disease caused by influenza B virus (IBV) is substantial; however, IBVs remain overlooked. Understanding host-pathogen interactions and establishing physiologically relevant models of infection are important for the development and assessment of therapeutics and vaccines against IBV. In this study, we assessed an upper respiratory tract (URT)-restricted model of mouse IBV infection, comparing it to the conventional administration of the virus to the total respiratory tract (TRT). We found that URT infections caused by different strains of IBV disseminate to the trachea but resulted in limited dissemination of IBV to the lungs. Infection of the URT did not result in weight loss or systemic inflammation even at high inoculum doses and despite robust viral replication in the nose. Dissemination of IBV to the lungs was enhanced in mice lacking functional type I IFN receptor (IFNAR2), but not IFNγ. Conversely, in mice expressing the IFN-inducible gene Mx1, we found reduced IBV replication in the lungs and reduced dissemination of IBV from the URT to the lungs. Inoculation of IBV in both the URT and TRT resulted in seroconversion against IBV. However, priming at the TRT conferred superior protection from a heterologous lethal IBV challenge compared to URT priming, as determined by improved survival rates and reduced viral replication throughout the respiratory tract. Overall, our study establishes a URT-restricted IBV infection model, highlights the critical role of IFNs in limiting dissemination of IBV to the lungs, and also demonstrates that the lack of viral replication in the lungs may impact protection from subsequent infections. IMPORTANCE: Our study investigated how influenza B virus (IBV) spreads from the nose to the lungs of mice and the impact this has on disease and protection from re-infection. We found that when applied to the nose only, IBV does not spread very efficiently to the lungs in a process controlled by the interferon response. Priming immunity at the nose only resulted in less protection from re-infection than priming immunity at both the nose and lungs. These insights can guide the development of potential therapies targeting the interferon response as well as of intranasal vaccines against IBV.


Sujet(s)
Virus influenza B , Poumon , Infections à Orthomyxoviridae , Réplication virale , Animaux , Souris , Virus influenza B/physiologie , Virus influenza B/immunologie , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/virologie , Poumon/virologie , Poumon/immunologie , Modèles animaux de maladie humaine , Interférons/métabolisme , Interférons/immunologie , Protéines de résistance aux myxovirus/métabolisme , Protéines de résistance aux myxovirus/génétique , Récepteur à l'interféron alpha-bêta/génétique , Récepteur à l'interféron alpha-bêta/déficit , Souris de lignée C57BL , Interactions hôte-pathogène/immunologie , Infections de l'appareil respiratoire/virologie , Infections de l'appareil respiratoire/immunologie , Femelle , Interféron gamma/métabolisme , Trachée/virologie
13.
Fish Shellfish Immunol ; 150: 109620, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38740229

RÉSUMÉ

Adenosine deaminases acting on RNA 1 (ADAR1) is a dsRNA adenosine (A)-to-inosine (I) editing enzyme that regulates the innate immune response against virus invasion. In the present study, a novel CgADAR1 was identified from the oyster Crassostrea gigas. The open reading frame (ORF) of CgADAR1 was of 3444 bp encoding a peptide of 1147 amino acid residues with two Zα domains, one dsRNA binding motif (DSRM) and one RNA adenosine deaminase domain (ADEAMc). The mRNA transcripts of CgADAR1 were detected in all the examined tissues, with higher expression levels in mantle and gill, which were 7.11-fold and 4.90-fold (p < 0.05) of that in labial palp, respectively. The mRNA transcripts of CgADAR1 in haemocytes were significantly induced at 24 h and 36 h after Poly (A: U) stimulation, which were 6.03-fold (p < 0.01) and 1.37-fold (p < 0.001) of that in control group, respectively. At 48 h after Poly (A:U) stimulation, the mRNA expression of CgRIG-Ⅰ, CgIRF8 and CgIFNLP significantly increased, which were 4.36-fold (p < 0.001), 1.82-fold (p < 0.05) and 1.92-fold (p < 0.05) of that in control group. After CgADAR1 expression was inhibited by RNA interference (RNAi), the mRNA expression levels of CgMDA5, CgRIG-Ⅰ, CgTBK1, CgIRF8 and CgIFNLP were significantly increased, which were 11.88-fold, 11.51-fold, 2.22-fold, 2.85-fold and 2.52-fold of that in control group (p < 0.001), and the phosphorylation level of CgTBK1 was also significantly increased. These results suggested that CgADAR1 played a regulation role in the early stages of viral infection by inhibiting the synthesis of interferon-like protein.


Sujet(s)
Crassostrea , Régulation de l'expression des gènes , Immunité innée , Interférons , Animaux , Crassostrea/immunologie , Crassostrea/génétique , Immunité innée/génétique , Régulation de l'expression des gènes/immunologie , Interférons/génétique , Interférons/immunologie , Séquence d'acides aminés , Adenosine deaminase/génétique , Adenosine deaminase/métabolisme , Phylogenèse , Analyse de profil d'expression de gènes , Alignement de séquences , Séquence nucléotidique
14.
Curr Opin Immunol ; 87: 102427, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38781720

RÉSUMÉ

The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.


Sujet(s)
Interféron lambda , Interférons , Maladies virales , Humains , Interférons/métabolisme , Interférons/immunologie , Maladies virales/immunologie , Animaux , Transduction du signal/immunologie , Facteur de transcription STAT-2/métabolisme , Facteur de transcription STAT-2/génétique , Facteur de transcription STAT-2/immunologie , Sous-unité gamma du complexe ISGF3/génétique , Sous-unité gamma du complexe ISGF3/immunologie , Sous-unité gamma du complexe ISGF3/métabolisme , Facteur de transcription STAT-1/métabolisme , Facteur de transcription STAT-1/génétique , Facteur de transcription STAT-1/immunologie , Sous-unité bêta du récepteur à l'interleukine-10/génétique , Sous-unité bêta du récepteur à l'interleukine-10/immunologie , Sous-unité bêta du récepteur à l'interleukine-10/métabolisme
15.
Curr Opin Immunol ; 87: 102423, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38776716

RÉSUMÉ

The host immune response against severe acute respiratory syndrome coronavirus 2 includes the induction of a group of natural antiviral cytokines called interferons (IFNs). Although originally recognized for their ability to potently counteract infections, the mechanistic functions of IFNs in patients with varying severities of coronavirus disease 2019 (COVID-19) have highlighted a more complex scenario. Cellular and molecular analyses have revealed that timing, location, and subtypes of IFNs produced during severe acute respiratory syndrome coronavirus 2 infection play a major role in determining disease progression and severity. In this review, we summarize what the COVID-19 pandemic has taught us about the protective and detrimental roles of IFNs during the inflammatory response elicited against a new respiratory virus across different ages and its longitudinal consequences in driving the development of long COVID-19.


Sujet(s)
COVID-19 , Interférons , SARS-CoV-2 , Humains , COVID-19/immunologie , Interférons/immunologie , Interférons/métabolisme , SARS-CoV-2/immunologie , Pandémies , Animaux , Yin-yang
16.
Vet Immunol Immunopathol ; 272: 110770, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38735115

RÉSUMÉ

Interferon lambda (IFN-λ) is an important type III interferon triggered mainly by viral infection. IFN-λ binds to their heterodimeric receptors and signals through JAK-STAT pathways similar to type I IFN. In this study, we deduced the buffalo IFN-λ sequences through the polymerase chain reaction, and then studied IFN-λ's expression patterns in different tissues, and post induction with poly I:C and live MRSA using RT-qPCR. The full-length sequences of buffalo IFN-λ3, IFN-λ receptors, and a transcript variant of IFN-λ4 were determined. IFN-λ1 is identified as a pseudogene. Virus response elements and a recombination hotspot factor was observed in the regulatory region of IFN-λ. The IFN-λ3 expressed highest in lungs and monocytes but IFN-λ4 did not. The expression of Interferon Lambda Receptor 1 was tissue specific, while Interleukin 10 Receptor subunit beta was ubiquitous. Following poly I:C induction, IFN-λ3 expression was primarily observed in epithelial cells as opposed to fibroblasts, displaying cell type-dependent expression. The cytosolic RNA sensors were expressed highest in endometrial epithelial cells, whereas the endosomal receptor was higher in fibroblasts. 2',5'-oligoadenylate synthetase expressed higher in fibroblasts, myxoma resistance protein 1 and IFN-stimulated gene 56 in epithelial cells, displaying cell-specific antiviral response of the interferon stimulated genes (ISGs). The endometrial epithelial cells expressed IFN-λ3 after live S. aureus infection indicating its importance in bacterial infection. The induction of IFN-λ3 was S. aureus isolate specific at the same multiplicity of infection (MOI). This study elucidates the IFN-λ sequences, diverse expression patterns revealing tissue specificity, and specificity in response to poly I:C and bacterial stimuli, emphasising its crucial role in innate immune response modulation.


Sujet(s)
Buffles , Interférons , Animaux , Buffles/immunologie , Buffles/génétique , Interférons/génétique , Interférons/immunologie , Poly I-C/pharmacologie , Analyse de profil d'expression de gènes/médecine vétérinaire , Phylogenèse , Interféron lambda , Séquence d'acides aminés , Récepteur interféron/génétique , Récepteur interféron/immunologie , Femelle , 2',5'-Oligoadenylate synthetase/génétique , 2',5'-Oligoadenylate synthetase/métabolisme , Staphylococcus aureus/immunologie
17.
Nat Commun ; 15(1): 4177, 2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38755196

RÉSUMÉ

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


Sujet(s)
Anticorps antiviraux , COVID-19 , Interférons , SARS-CoV-2 , Transduction du signal , Humains , COVID-19/immunologie , SARS-CoV-2/immunologie , Anticorps antiviraux/immunologie , Anticorps antiviraux/sang , Transduction du signal/immunologie , Interférons/métabolisme , Interférons/immunologie , Femelle , Mâle , Adulte d'âge moyen , Immunoglobuline G/sang , Immunoglobuline G/immunologie , Lymphocytes T CD4+/immunologie , Sujet âgé , Adulte , Glycoprotéine de spicule des coronavirus/immunologie , Glycoprotéine de spicule des coronavirus/métabolisme , Glycoprotéine de spicule des coronavirus/génétique
18.
Front Cell Infect Microbiol ; 14: 1365221, 2024.
Article de Anglais | MEDLINE | ID: mdl-38711929

RÉSUMÉ

Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.


Sujet(s)
Infections à Bunyaviridae , Immunité innée , Orthobunyavirus , Infections à Bunyaviridae/immunologie , Infections à Bunyaviridae/virologie , Humains , Animaux , Orthobunyavirus/immunologie , Interactions hôte-pathogène/immunologie , Interférons/immunologie , Interférons/métabolisme , Transduction du signal , Cytokines/métabolisme , Cytokines/immunologie , Maladies vectorielles/immunologie , Maladies vectorielles/virologie , Maladies vectorielles/prévention et contrôle , Réplication virale
19.
Fish Shellfish Immunol ; 149: 109559, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38636737

RÉSUMÉ

USP14 regulates the immune related pathways by deubiquitinating the signaling molecules in mammals. In teleost, USP14 is also reported to inhibit the antiviral immune response through TBK1, but its regulatory mechanism remains obscure. To elucidate the role of USP14 in the RLR/IFN antiviral pathway in teleost, the homolog USP14 (bcUSP14) of black carp (Mylopharyngodon piceus) has been cloned and characterize in this paper. bcUSP14 contains 490 amino acids (aa), and the sequence is well conserved among in vertebrates. Over-expression of bcUSP14 in EPC cells attenuated SVCV-induced transcription activity of IFN promoters and enhanced SVCV replication. Knockdown of bcUSP14 in MPK cells led to the increased transcription of IFNs and decreased SVCV replication, suggesting the improved antiviral activity of the host cells. The interaction between bcUSP14 and bcTBK1 was identified by both co-immunoprecipitation and immunofluorescent staining. Co-expressed bcUSP14 obviously inhibited bcTBK1-induced IFN production and antiviral activity in EPC cells. K63-linked polyubiquitination of bcTBK1 was dampened by co-expressed bcUSP14, and bcTBK1-mediated phosphorylation and nuclear translocation of IRF3 were also inhibited by this deubiquitinase. Thus, all the data demonstrated that USP14 interacts with and inhibits TBK1 through deubiquitinating TBK1 in black carp.


Sujet(s)
Carpes (poisson) , Maladies des poissons , Protéines de poisson , Immunité innée , Interférons , Protein-Serine-Threonine Kinases , Infections à Rhabdoviridae , Rhabdoviridae , Transduction du signal , Ubiquitination , Animaux , Protéines de poisson/génétique , Protéines de poisson/immunologie , Infections à Rhabdoviridae/immunologie , Infections à Rhabdoviridae/médecine vétérinaire , Carpes (poisson)/immunologie , Carpes (poisson)/génétique , Maladies des poissons/immunologie , Rhabdoviridae/physiologie , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/immunologie , Interférons/génétique , Interférons/immunologie , Interférons/métabolisme , Immunité innée/génétique , Ubiquitin thiolesterase/génétique , Régulation de l'expression des gènes/immunologie , Séquence d'acides aminés , Alignement de séquences/médecine vétérinaire , Phylogenèse , Analyse de profil d'expression de gènes/médecine vétérinaire
20.
J Virol ; 98(5): e0120423, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38651899

RÉSUMÉ

Interferons (IFNs) are essential for defense against viral infections but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, we explore the complexity of the IFN response in COVID-19, examine the effects of manipulating IFN on SARS-CoV-2 viral replication and pathogenesis, and highlight pre-clinical and clinical studies evaluating the therapeutic efficacy of IFN in limiting COVID-19 severity.


Sujet(s)
Antiviraux , Traitements médicamenteux de la COVID-19 , COVID-19 , Interférons , SARS-CoV-2 , Animaux , Humains , Antiviraux/usage thérapeutique , COVID-19/immunologie , COVID-19/virologie , COVID-19/thérapie , Interférons/usage thérapeutique , Interférons/immunologie , SARS-CoV-2/effets des médicaments et des substances chimiques , SARS-CoV-2/immunologie , Réplication virale/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...