Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 26.806
Filtrer
1.
Nat Commun ; 15(1): 5610, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38969652

RÉSUMÉ

Group 2 innate lymphoid cells (ILC2s) are a subset of innate lymphocytes that produce type 2 cytokines, including IL-4, IL-5, and IL-13. GATA3 is a critical transcription factor for ILC2 development at multiple stages. However, when and how GATA3 is induced to the levels required for ILC2 development remains unclear. Herein, we identify ILC2-specific GATA3-related tandem super-enhancers (G3SE) that induce high GATA3 in ILC2-committed precursors. G3SE-deficient mice exhibit ILC2 deficiency in the bone marrow, lung, liver, and small intestine with minimal impact on other ILC lineages or Th2 cells. Single-cell RNA-sequencing and subsequent flow cytometry analysis show that GATA3 induction mechanism, which is required for entering the ILC2 stage, is lost in IL-17RB+PD-1- late ILC2-committed precursor stage in G3SE-deficient mice. Cnot6l, part of the CCR4-NOT deadenylase complex, is a possible GATA3 target during ILC2 development. Our findings implicate a stage-specific regulatory mechanism for GATA3 expression during ILC2 development.


Sujet(s)
Lignage cellulaire , Facteur de transcription GATA-3 , Immunité innée , Lymphocytes , Animaux , Facteur de transcription GATA-3/métabolisme , Facteur de transcription GATA-3/génétique , Souris , Lymphocytes/immunologie , Lymphocytes/métabolisme , Lymphocytes/cytologie , Souris de lignée C57BL , Souris knockout , Éléments activateurs (génétique)/génétique , Lymphocytes auxiliaires Th2/immunologie , Différenciation cellulaire/immunologie , Analyse sur cellule unique
2.
Cell Mol Biol Lett ; 29(1): 98, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38977956

RÉSUMÉ

Phospholipid Hydroperoxide Gluthatione Peroxidase also called Glutathione Peroxidase 4 is one of the 25 described human selenoproteins. It plays an essential role in eliminating toxic lipid hydroxy peroxides, thus inhibiting ferroptosis and favoring cell survival. GPX4 is differentially expressed according to myeloid differentiation stage, exhibiting lower expression in hematopoietic stem cells and polymorphonuclear leucocytes, while harboring higher level of expression in common myeloid progenitors and monocytes. In addition, GPX4 is highly expressed in most of acute myeloid leukemia (AML) subtypes compared to normal hematopoietic stem cells. High GPX4 expression is consistently correlated to poor prognosis in patients suffering AML. However, the role of GPX4 in the development of the myeloid lineage and in the initiation and progression of myeloid leukemia remains poorly explored. Given its essential role in the detoxification of lipid hydroperoxides, and its overexpression in most of myeloid malignancies, GPX4 inhibition has emerged as a promising therapeutic strategy to specifically trigger ferroptosis and eradicate myeloid leukemia cells. In this review, we describe the most recent advances concerning the role of GPX4 and, more generally ferroptosis in the myeloid lineage and in the emergence of AML. We also discuss the therapeutic interest and limitations of GPX4 inhibition alone or in combination with other drugs as innovative therapies to treat AML patients.


Sujet(s)
Ferroptose , Leucémie aigüe myéloïde , Phospholipid hydroperoxide glutathione peroxidase , Humains , Leucémie aigüe myéloïde/anatomopathologie , Leucémie aigüe myéloïde/génétique , Leucémie aigüe myéloïde/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/génétique , Ferroptose/génétique , Lignage cellulaire/génétique , Animaux , Cellules myéloïdes/métabolisme , Cellules myéloïdes/anatomopathologie , Glutathione peroxidase/métabolisme , Glutathione peroxidase/génétique
3.
Sci Data ; 11(1): 725, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956385

RÉSUMÉ

Teratoma, due to its remarkable ability to differentiate into multiple cell lineages, is a valuable model for studying human embryonic development. The similarity of the gene expression and chromatin accessibility patterns in these cells to those observed in vivo further underscores its potential as a research tool. Notably, teratomas derived from human naïve (pre-implantation epiblast-like) pluripotent stem cells (PSCs) have larger embryonic cell diversity and contain extraembryonic lineages, making them more suitable to study developmental processes. However, the cell type-specific epigenetic profiles of naïve PSC teratomas have not been yet characterized. Using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we analyzed 66,384 cell profiles from five teratomas derived from human naïve PSCs and their post-implantation epiblast-like (primed) counterparts. We observed 17 distinct cell types from both embryonic and extraembryonic lineages, resembling the corresponding cell types in human fetal tissues. Additionally, we identified key transcription factors specific to different cell types. Our dataset provides a resource for investigating gene regulatory programs in a relevant model of human embryonic development.


Sujet(s)
Chromatine , Cellules souches pluripotentes , Analyse sur cellule unique , Tératome , Humains , Tératome/génétique , Tératome/anatomopathologie , Cellules souches pluripotentes/métabolisme , Lignage cellulaire , Facteurs de transcription/génétique
4.
Sci Adv ; 10(27): eadk8958, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38959315

RÉSUMÉ

The luminal-to-basal transition in mammary epithelial cells (MECs) is accompanied by changes in epithelial cell lineage plasticity; however, the underlying mechanism remains elusive. Here, we report that deficiency of Frmd3 inhibits mammary gland lineage development and induces stemness of MECs, subsequently leading to the occurrence of triple-negative breast cancer. Loss of Frmd3 in PyMT mice results in a luminal-to-basal transition phenotype. Single-cell RNA sequencing of MECs indicated that knockout of Frmd3 inhibits the Notch signaling pathway. Mechanistically, FERM domain-containing protein 3 (FRMD3) promotes the degradation of Disheveled-2 by disrupting its interaction with deubiquitinase USP9x. FRMD3 also interrupts the interaction of Disheveled-2 with CK1, FOXK1/2, and NICD and decreases Disheveled-2 phosphorylation and nuclear localization, thereby impairing Notch-dependent luminal epithelial lineage plasticity in MECs. A low level of FRMD3 predicts poor outcomes for breast cancer patients. Together, we demonstrated that FRMD3 is a tumor suppressor that functions as an endogenous activator of the Notch signaling pathway, facilitating the basal-to-luminal transformation in MECs.


Sujet(s)
Cellules épithéliales , Récepteurs Notch , Transduction du signal , Animaux , Cellules épithéliales/métabolisme , Femelle , Récepteurs Notch/métabolisme , Humains , Souris , Lignage cellulaire , Glandes mammaires animales/métabolisme , Glandes mammaires animales/cytologie , Protéines suppresseurs de tumeurs/métabolisme , Protéines suppresseurs de tumeurs/génétique , Différenciation cellulaire , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Tumeurs du sein triple-négatives/métabolisme , Tumeurs du sein triple-négatives/anatomopathologie , Tumeurs du sein triple-négatives/génétique
5.
Adv Exp Med Biol ; 1459: 143-156, 2024.
Article de Anglais | MEDLINE | ID: mdl-39017843

RÉSUMÉ

The development of highly specialized blood cells from hematopoietic stem cells (HSCs) in the bone marrow (BM) is dependent upon a stringently orchestrated network of stage- and lineage-restricted transcription factors (TFs). Thus, the same stem cell can give rise to various types of differentiated blood cells. One of the key regulators of B-lymphocyte development is early B-cell factor 1 (EBF1). This TF belongs to a small, but evolutionary conserved, family of proteins that harbor a Zn-coordinating motif and an IPT/TIG (immunoglobulin-like, plexins, transcription factors/transcription factor immunoglobulin) domain, creating a unique DNA-binding domain (DBD). EBF proteins play critical roles in diverse developmental processes, including body segmentation in the Drosophila melanogaster embryo, and retina formation in mice. While several EBF family members are expressed in neuronal cells, adipocytes, and BM stroma cells, only B-lymphoid cells express EBF1. In the absence of EBF1, hematopoietic progenitor cells (HPCs) fail to activate the B-lineage program. This has been attributed to the ability of EBF1 to act as a pioneering factor with the ability to remodel chromatin, thereby creating a B-lymphoid-specific epigenetic landscape. Conditional inactivation of the Ebf1 gene in B-lineage cells has revealed additional functions of this protein in relation to the control of proliferation and apoptosis. This may explain why EBF1 is frequently targeted by mutations in human leukemia cases. This chapter provides an overview of the biochemical and functional properties of the EBF family proteins, with a focus on the roles of EBF1 in normal and malignant B-lymphocyte development.


Sujet(s)
Lymphocytes B , Lignage cellulaire , Transactivateurs , Animaux , Humains , Transactivateurs/génétique , Transactivateurs/métabolisme , Lymphocytes B/métabolisme , Lignage cellulaire/génétique , Cellules souches hématopoïétiques/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique
6.
Methods Mol Biol ; 2826: 189-199, 2024.
Article de Anglais | MEDLINE | ID: mdl-39017894

RÉSUMÉ

The use of flow cytometry for immunophenotyping is contingent on the ability to accurately assign biological relevance to the detected signal. This process has historically been challenging when defining IgE expressing B cells or IgE expressing antibody-secreting cells due to widespread expression of receptors for IgE on various leukocyte subsets, including human B cells. Here we describe our implementation of intracellular staining for human IgE following a blocking step to negate the challenge of surface-bound IgE. We also describe our experience with a human B cell culture system that can be used to robustly validate this approach before application to primary human samples. Orthogonal confirmatory techniques remain essential; these are not described in detail, but several possible strategies are suggested.


Sujet(s)
Cytométrie en flux , Immunoglobuline E , Immunophénotypage , Humains , Cytométrie en flux/méthodes , Immunoglobuline E/immunologie , Immunoglobuline E/métabolisme , Immunophénotypage/méthodes , Sous-populations de lymphocytes B/métabolisme , Sous-populations de lymphocytes B/immunologie , Sous-populations de lymphocytes B/cytologie , Récepteurs aux IgE/métabolisme , Lignage cellulaire/immunologie , Lymphocytes B/immunologie , Lymphocytes B/métabolisme , Lymphocytes B/cytologie
7.
Cell Rep Methods ; 4(7): 100819, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38986613

RÉSUMÉ

Cell reprogramming, which guides the conversion between cell states, is a promising technology for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or injuries. To accomplish this, regulators must be identified and manipulated to control cell fate. We propose Fatecode, a computational method that predicts cell fate regulators based only on single-cell RNA sequencing (scRNA-seq) data. Fatecode learns a latent representation of the scRNA-seq data using a deep learning-based classification-supervised autoencoder and then performs in silico perturbation experiments on the latent representation to predict genes that, when perturbed, would alter the original cell type distribution to increase or decrease the population size of a cell type of interest. We assessed Fatecode's performance using simulations from a mechanistic gene-regulatory network model and scRNA-seq data mapping blood and brain development of different organisms. Our results suggest that Fatecode can detect known cell fate regulators from single-cell transcriptomics datasets.


Sujet(s)
Analyse sur cellule unique , Analyse sur cellule unique/méthodes , Humains , Animaux , Réseaux de régulation génique , Biologie informatique/méthodes , Différenciation cellulaire/génétique , Analyse de séquence d'ARN/méthodes , Transcriptome , Apprentissage profond , Lignage cellulaire/génétique , Souris , Reprogrammation cellulaire/génétique , RNA-Seq/méthodes
8.
Cell Rep Med ; 5(7): 101631, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38986623

RÉSUMÉ

Ovarian cancer (OC) manifests as a complex disease characterized by inter- and intra-patient heterogeneity. Despite enhanced biological and genetic insights, OC remains a recalcitrant malignancy with minimal survival improvement. Based on multi-site sampling and a multi-lineage patient-derived xenograft (PDX) establishment strategy, we present herein the establishment of a comprehensive PDX biobank from histologically and molecularly heterogeneous OC patients. Comprehensive profiling of matched PDX and patient samples demonstrates that PDXs closely recapitulate parental tumors. By leveraging multi-lineage models, we reveal that the previously reported genomic disparities of PDX could be mainly attributed to intra-patient spatial heterogeneity instead of substantial model-independent genomic evolution. Moreover, DNA damage response pathway inhibitor (DDRi) screening uncovers heterogeneous responses across models. Prolonged iterative drug exposure recapitulates acquired drug resistance in initially sensitive models. Meanwhile, interrogation of induced drug-resistant (IDR) models reveals that suppressed interferon (IFN) response and activated Wnt/ß-catenin signaling contribute to acquired DDRi drug resistance.


Sujet(s)
Tumeurs de l'ovaire , Humains , Femelle , Tumeurs de l'ovaire/génétique , Tumeurs de l'ovaire/anatomopathologie , Tumeurs de l'ovaire/métabolisme , Animaux , Souris , Tests d'activité antitumorale sur modèle de xénogreffe , Voie de signalisation Wnt/génétique , Résistance aux médicaments antinéoplasiques/génétique , Génomique/méthodes , Biobanques , Hétérogénéité génétique , Altération de l'ADN/génétique , Interférons/métabolisme , Interférons/génétique , Lignage cellulaire/génétique
9.
Cells ; 13(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38994968

RÉSUMÉ

The incorporation of bacterial ribosome has been reported to induce multipotency in somatic and cancer cells which leads to the conversion of cell lineages. Queried on its universality, we observed that bacterial ribosome incorporation into trypsinized mouse adult fibroblast cells (MAF) led to the formation of ribosome-induced cell clusters (RICs) that showed strong positive alkaline phosphatase staining. Under in vitro differentiation conditions, RICs-MAF were differentiated into adipocytes, osteoblasts, and chondrocytes. In addition, RICs-MAF were able to differentiate into neural cells. Furthermore, RICs-MAF expressed early senescence markers without cell death. Strikingly, no noticeable expression of renowned stemness markers like Oct4, Nanog, Sox2, etc. was observed here. Later RNA-sequencing data revealed the expression of rare pluripotency-associated markers, i.e., Dnmt3l, Sox5, Tbx3 and Cdc73 in RICs-MAF and the enrichment of endogenous ribosomal status. These observations suggested that RICs-MAF might have experienced a non-canonical multipotent state during lineage conversion. In sum, we report a unique approach of an exo-ribosome-mediated plastic state of MAF that is amenable to multi-lineage conversion.


Sujet(s)
Différenciation cellulaire , Fibroblastes , Ribosomes , Animaux , Souris , Ribosomes/métabolisme , Fibroblastes/métabolisme , Plasticité cellulaire , Bactéries/métabolisme , Bactéries/génétique , Lignage cellulaire
10.
Nat Commun ; 15(1): 5898, 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39003323

RÉSUMÉ

Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10-19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator (CFTR). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR-expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window.


Sujet(s)
Différenciation cellulaire , Protéine CFTR , Cellules épithéliales , Foetus , Poumon , Humains , Poumon/embryologie , Poumon/cytologie , Cellules épithéliales/cytologie , Cellules épithéliales/métabolisme , Foetus/cytologie , Foetus/embryologie , Protéine CFTR/métabolisme , Protéine CFTR/génétique , Plasticité cellulaire , Lignage cellulaire , Cellules souches pluripotentes/cytologie , Cellules souches pluripotentes/métabolisme , Analyse sur cellule unique , Transcriptome , Femelle , Régulation de l'expression des gènes au cours du développement , Transduction du signal
11.
Cell Death Dis ; 15(7): 478, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961086

RÉSUMÉ

A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.


Sujet(s)
Névroglie , Neurones , Humains , Animaux , Névroglie/métabolisme , Névroglie/cytologie , Neurones/métabolisme , Neurones/cytologie , Souris , Adulte , Muqueuse olfactive/cytologie , Muqueuse olfactive/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Lignage cellulaire , Hippocampe/cytologie , Hippocampe/métabolisme , Bulbe olfactif/cytologie , Bulbe olfactif/métabolisme , Cellules cultivées
12.
Methods Mol Biol ; 2811: 165-175, 2024.
Article de Anglais | MEDLINE | ID: mdl-39037657

RÉSUMÉ

Barcode-based lineage tracing approaches enable molecular characterization of clonal cell families. Barcodes that are expressed as mRNA can be used to deconvolve lineage identity from single-cell RNA sequencing transcriptional data. Here we describe the Watermelon system, which facilitates the simultaneous tracing of lineage, transcriptional, and proliferative state at a single cell level.


Sujet(s)
Lignage cellulaire , Analyse sur cellule unique , Analyse sur cellule unique/méthodes , Lignage cellulaire/génétique , Humains , Prolifération cellulaire/génétique , Analyse de séquence d'ARN/méthodes , ARN messager/génétique
13.
J Exp Med ; 221(10)2024 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-38980291

RÉSUMÉ

During thymic development, thymocytes adjust their TCR response based on the strength of their reactivity to self-peptide MHC complexes. This tuning process allows thymocytes with a range of self-reactivities to survive positive selection and contribute to a diverse T cell pool. In this review, we will discuss recent advances in our understanding of how thymocytes tune their responsiveness during positive selection, and we present a "sequential selection" model to explain how MHC specificity influences lineage choice. We also discuss recent evidence for cell type diversity in the medulla and discuss how this heterogeneity may contribute to medullary niches for negative selection and regulatory T cell development.


Sujet(s)
Lignage cellulaire , Lymphocytes T régulateurs , Thymus (glande) , Animaux , Thymus (glande)/immunologie , Thymus (glande)/cytologie , Humains , Lymphocytes T régulateurs/immunologie , Lignage cellulaire/immunologie , Différenciation cellulaire/immunologie , Lymphocytes T CD8+/immunologie , Thymocytes/immunologie , Thymocytes/cytologie , Thymocytes/métabolisme , Lymphocytes T CD4+/immunologie
14.
Nat Commun ; 15(1): 5994, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39013863

RÉSUMÉ

Chromatin remodeler ARID1A regulates gene transcription by modulating nucleosome positioning and chromatin accessibility. While ARID1A-mediated stage and lineage-restricted gene regulation during cell fate canalization remains unresolved. Using osteoclastogenesis as a model, we show that ARID1A transcriptionally safeguards the osteoclast (OC) fate canalization during proliferation-differentiation switching at single-cell resolution. Notably, ARID1A is indispensable for the transcriptional apparatus condensates formation with coactivator BRD4/lineage-specifying transcription factor (TF) PU.1 at Nfatc1 super-enhancer during safeguarding the OC fate canalization. Besides, the antagonist function between ARID1A-cBAF and BRD9-ncBAF complex during osteoclastogenesis has been validated with in vitro assay and compound mutant mouse model. Furthermore, the antagonistic function of ARID1A-"accelerator" and BRD9-"brake" both depend on coactivator BRD4-"clutch" during osteoclastogenesis. Overall, these results uncover sophisticated cooperation between chromatin remodeler ARID1A, coactivator, and lineage-specifying TF at super-enhancer of lineage master TF in a condensate manner, and antagonist between distinct BAF complexes in the proper and balanced cell fate canalization.


Sujet(s)
Différenciation cellulaire , Lignage cellulaire , Protéines de liaison à l'ADN , Ostéoclastes , Ostéogenèse , Facteurs de transcription , Animaux , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Ostéoclastes/métabolisme , Ostéoclastes/cytologie , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Souris , Ostéogenèse/génétique , Ostéogenèse/physiologie , Facteurs de transcription NFATC/métabolisme , Facteurs de transcription NFATC/génétique , Assemblage et désassemblage de la chromatine , Régulation de l'expression des gènes , Souris de lignée C57BL , Prolifération cellulaire , Analyse sur cellule unique , Protéines contenant un bromodomaine , Protéines nucléaires
15.
Cell Death Dis ; 15(7): 517, 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39030166

RÉSUMÉ

Head and neck squamous cell carcinoma (HNSCC) is a highly malignant disease, and death rates have remained at approximately 50% for decades. New tumor-targeting strategies are desperately needed, and a previous report indicated the triggered differentiation of HPV-negative HNSCC cells to confer therapeutic benefits. Using patient-derived tumor cells, we created a similar HNSCC differentiation model of HPV+ tumor cells from two patients. We observed a loss of malignant characteristics in differentiating cell culture conditions, including irregularly enlarged cell morphology, cell cycle arrest with downregulation of Ki67, and reduced cell viability. RNA-Seq showed myocyte-like differentiation with upregulation of markers of myofibril assembly. Immunofluorescence staining of differentiated and undifferentiated primary HPV+ HNSCC cells confirmed an upregulation of these markers and the formation of parallel actin fibers reminiscent of myoblast-lineage cells. Moreover, immunofluorescence of HPV+ tumor tissue revealed areas of cells co-expressing the identified markers of myofibril assembly, HPV surrogate marker p16, and stress-associated basal keratinocyte marker KRT17, indicating that the observed myocyte-like in vitro differentiation occurs in human tissue. We are the first to report that carcinoma cells can undergo a triggered myocyte-like differentiation, and our study suggests that the targeted differentiation of HPV+ HNSCCs might be therapeutically valuable.


Sujet(s)
Différenciation cellulaire , Survie cellulaire , Tumeurs de la tête et du cou , Carcinome épidermoïde de la tête et du cou , Humains , Carcinome épidermoïde de la tête et du cou/virologie , Carcinome épidermoïde de la tête et du cou/anatomopathologie , Carcinome épidermoïde de la tête et du cou/métabolisme , Tumeurs de la tête et du cou/virologie , Tumeurs de la tête et du cou/anatomopathologie , Tumeurs de la tête et du cou/métabolisme , Infections à papillomavirus/virologie , Infections à papillomavirus/anatomopathologie , Infections à papillomavirus/métabolisme , Lignage cellulaire , Cellules musculaires/virologie , Cellules musculaires/métabolisme , Cellules musculaires/anatomopathologie , Papillomaviridae/physiologie , Lignée cellulaire tumorale , Virus des Papillomavirus humains
16.
Nature ; 631(8021): 627-634, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38987592

RÉSUMÉ

Fibroblasts are present throughout the body and function to maintain tissue homeostasis. Recent studies have identified diverse fibroblast subsets in healthy and injured tissues1,2, but the origins and functional roles of injury-induced fibroblast lineages remain unclear. Here we show that lung-specialized alveolar fibroblasts take on multiple molecular states with distinct roles in facilitating responses to fibrotic lung injury. We generate a genetic tool that uniquely targets alveolar fibroblasts to demonstrate their role in providing niches for alveolar stem cells in homeostasis and show that loss of this niche leads to exaggerated responses to acute lung injury. Lineage tracing identifies alveolar fibroblasts as the dominant origin for multiple emergent fibroblast subsets sequentially driven by inflammatory and pro-fibrotic signals after injury. We identify similar, but not completely identical, fibroblast lineages in human pulmonary fibrosis. TGFß negatively regulates an inflammatory fibroblast subset that emerges early after injury and stimulates the differentiation into fibrotic fibroblasts to elicit intra-alveolar fibrosis. Blocking the induction of fibrotic fibroblasts in the alveolar fibroblast lineage abrogates fibrosis but exacerbates lung inflammation. These results demonstrate the multifaceted roles of the alveolar fibroblast lineage in maintaining normal alveolar homeostasis and orchestrating sequential responses to lung injury.


Sujet(s)
Lésion pulmonaire aigüe , Lignage cellulaire , Fibroblastes , Pneumopathie infectieuse , Alvéoles pulmonaires , Fibrose pulmonaire , Animaux , Femelle , Humains , Mâle , Souris , Lésion pulmonaire aigüe/anatomopathologie , Lésion pulmonaire aigüe/métabolisme , Différenciation cellulaire , Fibroblastes/anatomopathologie , Fibroblastes/métabolisme , Homéostasie , Pneumopathie infectieuse/anatomopathologie , Pneumopathie infectieuse/métabolisme , Alvéoles pulmonaires/anatomopathologie , Alvéoles pulmonaires/cytologie , Alvéoles pulmonaires/métabolisme , Fibrose pulmonaire/anatomopathologie , Fibrose pulmonaire/métabolisme , Niche de cellules souches , Cellules souches/métabolisme , Cellules souches/cytologie , Cellules souches/anatomopathologie , Facteur de croissance transformant bêta/métabolisme
17.
Nature ; 631(8021): 645-653, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38987596

RÉSUMÉ

Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.


Sujet(s)
COVID-19 , Cellules dendritiques , Homéostasie , Mégacaryocytes , Thrombopoïèse , Cellules dendritiques/immunologie , Cellules dendritiques/cytologie , Animaux , Mégacaryocytes/cytologie , Mégacaryocytes/immunologie , Souris , COVID-19/immunologie , COVID-19/virologie , Mâle , Femelle , SARS-CoV-2/immunologie , SARS-CoV-2/physiologie , Interféron alpha/métabolisme , Immunité innée , Plaquettes/immunologie , Plaquettes/cytologie , Humains , Apoptose , Souris de lignée C57BL , Moelle osseuse/immunologie , Lignage cellulaire , Prolifération cellulaire , Rétrocontrôle physiologique
18.
Brief Bioinform ; 25(4)2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-39041189

RÉSUMÉ

Studies have identified genes and molecular pathways regulating cancer metastasis. However, it remains largely unknown whether metastatic potentials of cancer cells from different lineage types are driven by the same or different gene networks. Here, we aim to address this question through integrative analyses of 493 human cancer cells' transcriptomic profiles and their metastatic potentials in vivo. Using an unsupervised approach and considering both gene coexpression and protein-protein interaction networks, we identify different gene networks associated with various biological pathways (i.e. inflammation, cell cycle, and RNA translation), the expression of which are correlated with metastatic potentials across subsets of lineage types. By developing a regularized random forest regression model, we show that the combination of the gene module features expressed in the native cancer cells can predict their metastatic potentials with an overall Pearson correlation coefficient of 0.90. By analyzing transcriptomic profile data from cancer patients, we show that these networks are conserved in vivo and contribute to cancer aggressiveness. The intrinsic expression levels of these networks are correlated with drug sensitivity. Altogether, our study provides novel comparative insights into cancer cells' intrinsic gene networks mediating metastatic potentials across different lineage types, and our results can potentially be useful for designing personalized treatments for metastatic cancers.


Sujet(s)
Régulation de l'expression des gènes tumoraux , Réseaux de régulation génique , Métastase tumorale , Tumeurs , Humains , Tumeurs/génétique , Tumeurs/anatomopathologie , Tumeurs/métabolisme , Cartes d'interactions protéiques/génétique , Transcriptome , Analyse de profil d'expression de gènes , Lignage cellulaire/génétique
19.
Nat Cell Biol ; 26(7): 1187-1199, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38977847

RÉSUMÉ

Currently, the dynamic accessible elements that determine regulatory programs responsible for the unique identity and function of each cell type during zebrafish embryogenesis lack detailed study. Here we present SPATAC-seq: a split-pool ligation-based assay for transposase-accessible chromatin using sequencing. Using SPATAC-seq, we profiled chromatin accessibility in more than 800,000 individual nuclei across 20 developmental stages spanning the sphere stage to the early larval protruding mouth stage. Using this chromatin accessibility map, we identified 604 cell states and inferred their developmental relationships. We also identified 959,040 candidate cis-regulatory elements (cCREs) and delineated development-specific cCREs, as well as transcription factors defining diverse cell identities. Importantly, enhancer reporter assays confirmed that the majority of tested cCREs exhibited robust enhanced green fluorescent protein expression in restricted cell types or tissues. Finally, we explored gene regulatory programs that drive pigment and notochord cell differentiation. Our work provides a valuable open resource for exploring driver regulators of cell fate decisions in zebrafish embryogenesis.


Sujet(s)
Chromatine , Développement embryonnaire , Régulation de l'expression des gènes au cours du développement , Analyse sur cellule unique , Danio zébré , Animaux , Danio zébré/embryologie , Danio zébré/génétique , Danio zébré/métabolisme , Chromatine/métabolisme , Chromatine/génétique , Analyse sur cellule unique/méthodes , Développement embryonnaire/génétique , Différenciation cellulaire/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Embryon non mammalien/métabolisme , Protéines de poisson-zèbre/génétique , Protéines de poisson-zèbre/métabolisme , Éléments activateurs (génétique) , Protéines à fluorescence verte/métabolisme , Protéines à fluorescence verte/génétique , Transposases/métabolisme , Transposases/génétique , Lignage cellulaire/génétique
20.
Nat Cell Biol ; 26(7): 1200-1211, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38977846

RÉSUMÉ

Organogenesis is a highly complex and precisely regulated process. Here we profiled the chromatin accessibility in >350,000 cells derived from 13 mouse embryos at four developmental stages from embryonic day (E) 10.5 to E13.5 by SPATAC-seq in a single experiment. The resulting atlas revealed the status of 830,873 candidate cis-regulatory elements in 43 major cell types. By integrating the chromatin accessibility atlas with the previous transcriptomic dataset, we characterized cis-regulatory sequences and transcription factors associated with cell fate commitment, such as Nr5a2 in the development of gastrointestinal tract, which was preliminarily supported by the in vivo experiment in zebrafish. Finally, we integrated this atlas with the previous single-cell chromatin accessibility dataset from 13 adult mouse tissues to delineate the developmental stage-specific gene regulatory programmes within and across different cell types and identify potential molecular switches throughout lineage development. This comprehensive dataset provides a foundation for exploring transcriptional regulation in organogenesis.


Sujet(s)
Chromatine , Régulation de l'expression des gènes au cours du développement , Organogenèse , Analyse sur cellule unique , Danio zébré , Animaux , Organogenèse/génétique , Chromatine/métabolisme , Chromatine/génétique , Danio zébré/génétique , Danio zébré/embryologie , Danio zébré/métabolisme , Souris , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Lignage cellulaire/génétique , Transcriptome/génétique , Embryon de mammifère/métabolisme , Femelle , Souris de lignée C57BL
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE