Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 9.805
Filtrer
1.
PeerJ ; 12: e17405, 2024.
Article de Anglais | MEDLINE | ID: mdl-38873642

RÉSUMÉ

The long, gracile morphology of the limb bones of the Late Miocene hyaenid Ictitherium ebu has led to the hypothesis that this animal was cursorial. The forelimb and femur of the holotype were compared with specimens of extant Hyaenidae and Canidae. Two morphometric methods were used. The first used measurements to calculate indices of different morphological characters. The second method involved capturing photographs of the anterior distal humerus of each specimen, mapping six landmarks on them, and calculating truss distances. These distances represent a schematic reproduction of the elbow. Multivariate statistical analysis primarily separated the data based on taxonomy, yet locomotor and habitat categories were also considered. Ictitherium ebu has an overall morphology similar to that of the maned wolf and a distal humerus reminiscent of that of the aardwolf. The long, gracile limb bones of I. ebu are suggested to be adaptations for pouncing on prey, for locomotor efficiency, and for looking over the tall grass of the open environments the animal lived in, much like the present-day maned wolf.


Sujet(s)
Membre thoracique , Fossiles , Animaux , Kenya , Membre thoracique/anatomie et histologie , Fémur/anatomie et histologie , Humérus/anatomie et histologie , Locomotion/physiologie
2.
PLoS Biol ; 22(6): e3002501, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38843284

RÉSUMÉ

The ecological and evolutionary benefits of energy-saving in collective behaviors are rooted in the physical principles and physiological mechanisms underpinning animal locomotion. We propose a turbulence sheltering hypothesis that collective movements of fish schools in turbulent flow can reduce the total energetic cost of locomotion by shielding individuals from the perturbation of chaotic turbulent eddies. We test this hypothesis by quantifying energetics and kinematics in schools of giant danio (Devario aequipinnatus) and compared that to solitary individuals swimming under laminar and turbulent conditions over a wide speed range. We discovered that, when swimming at high speeds and high turbulence levels, fish schools reduced their total energy expenditure (TEE, both aerobic and anaerobic energy) by 63% to 79% compared to solitary fish (e.g., 228 versus 48 kj kg-1). Solitary individuals spend approximately 22% more kinematic effort (tail beat amplitude•frequency: 1.7 versus 1.4 BL s-1) to swim in turbulence at higher speeds than in laminar conditions. Fish schools swimming in turbulence reduced their three-dimensional group volume by 41% to 68% (at higher speeds, approximately 103 versus 33 cm3) and did not alter their kinematic effort compared to laminar conditions. This substantial energy saving highlights that schooling behaviors can mitigate turbulent disturbances by sheltering fish (within schools) from the eddies of sufficient kinetic energy that can disrupt locomotor gaits. Therefore, providing a more desirable internal hydrodynamic environment could be one of the ecological drivers underlying collective behaviors in a dense fluid environment.


Sujet(s)
Métabolisme énergétique , Natation , Animaux , Natation/physiologie , Métabolisme énergétique/physiologie , Phénomènes biomécaniques , Comportement animal/physiologie , Locomotion/physiologie , Cyprinidae/physiologie , Hydrodynamique , Comportement social
3.
Sci Rep ; 14(1): 13966, 2024 06 17.
Article de Anglais | MEDLINE | ID: mdl-38886412

RÉSUMÉ

Foot-propelled diving comprises the primary locomotion-based feeding strategy for many birds, including families such as Phalacrocoracidae, Anhingidae, Podicipedidae, Gaviidae, and the diving ducks within Anatidae. While the morphology of specialized divers is well known, the corresponding morphology is less known for birds not as specialized but capable of diving, such as the coots (Rallidae, Fulica spp.). To compare the osteology of Fulica with other (non-diving) Rallidae, and with foot-propelled diving birds that are distantly related, we considered osteological characters, as well as the proportion of the hind limb bones and the femoral splay angle to construct a phylomorphospace, and to perform a comparative disparity analysis considering ecomorphologically relevant characters related to swimming and diving. Coots resulted to be significantly disparate from other Rallidae showing many traits of specialized foot-propelled divers, but only noticeable when compared with other rallids, as the degree of development of these traits is markedly less than in loons, grebes, or cormorants. This may correspond to a stabilizing selection of characteristics associated with a generalist morphology in Fulica. Studying adaptation in generalist taxa broadens our understanding of ecomorphologically significant features, thereby enabling us to generalize their evolutionary patterns.


Sujet(s)
Oiseaux , Plongée , Animaux , Plongée/physiologie , Oiseaux/anatomie et histologie , Oiseaux/physiologie , Phylogenèse , Évolution biologique , Locomotion/physiologie
4.
PLoS One ; 19(6): e0304186, 2024.
Article de Anglais | MEDLINE | ID: mdl-38875265

RÉSUMÉ

This study aimed to evaluate the effect of discrete passages of play on locomotor demands of international men's and women's rugby sevens matches and their relationship with winning or losing. Thirteen men's and thirteen women's international rugby sevens players wore 10 Hz Global Positioning Systems during twelve Tokyo Olympic games matches (966 observations; 507 for men, 459 for women). Discrete ball-in-play periods were categorised as: 'Single-phase defence', 'single-phase attack', 'multi-phase defence', 'multi-phase attack', 'multi-phase defence to attack', or 'multi-phase attack to defence'. Relative total distance, alongside high-speed (>5.0 m∙s-1), acceleration (>3 m∙s-2), and deceleration (>3 m∙s-2) distances were recorded for each passage. Separately for men and women, linear mixed models examined the effect of passage type and match outcome (win or loss) on locomotor demands, whilst controlling for opposition ranking. In men, relative total distance ranged from 137 m∙min-1 to 174 m∙min-1 for 'multi-phase defence to attack' and 'multi-phase attack', respectively. In women, 'multi-phase attack' elicited the lowest relative total distance (118 m∙min-1), whereas the greatest values (186 m∙min-1) were recorded for 'single-phase defence'. For men, there were significant interactions between match outcome and passage type for relative total (p<0.001) and high-speed (p = 0.006) distance. During 'multi-phase attack', relative total distance was greater for wins versus losses (174 vs 138 m.min-1, p = 0.024). However, for 'single-phase defence', relative total distance was lower for wins (128 vs 164 m.min-1, p<0.001). For women, there were significant interactions between match outcome and passage type for relative total (p = 0.036), high-speed (p = 0.003), and deceleration (p = 0.015) distances. Locomotor responses were influenced by passage type and match result for men and women. Knowing the demands of each passage type may inform training drills targeted at developing match-play-specific physical, technical, and tactical adaptations. Understanding how passages differ between matches won and lost could also inform team technical/tactical preparation including selection.


Sujet(s)
Performance sportive , Humains , Mâle , Femelle , Adulte , Performance sportive/physiologie , Football américain/physiologie , Locomotion/physiologie , Systèmes d'information géographique , Jeune adulte , Rugby/physiologie , Course à pied/physiologie , Athlètes
5.
Proc Natl Acad Sci U S A ; 121(24): e2320517121, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38848301

RÉSUMÉ

Self-propelling organisms locomote via generation of patterns of self-deformation. Despite the diversity of body plans, internal actuation schemes and environments in limbless vertebrates and invertebrates, such organisms often use similar traveling waves of axial body bending for movement. Delineating how self-deformation parameters lead to locomotor performance (e.g. speed, energy, turning capabilities) remains challenging. We show that a geometric framework, replacing laborious calculation with a diagrammatic scheme, is well-suited to discovery and comparison of effective patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory locomotion, that of highly damped environments, which is applicable not only to small organisms in viscous fluids, but also larger animals in frictional fluids (sand) and on frictional ground. We find that the traveling wave dynamics used by mm-scale nematode worms and cm-scale desert dwelling snakes and lizards can be described by time series of weights associated with two principal modes. The approximately circular closed path trajectories of mode weights in a self-deformation space enclose near-maximal surface integral (geometric phase) for organisms spanning two decades in body length. We hypothesize that such trajectories are targets of control (which we refer to as "serpenoid templates"). Further, the geometric approach reveals how seemingly complex behaviors such as turning in worms and sidewinding snakes can be described as modulations of templates. Thus, the use of differential geometry in the locomotion of living systems generates a common description of locomotion across taxa and provides hypotheses for neuromechanical control schemes at lower levels of organization.


Sujet(s)
Lézards , Locomotion , Animaux , Locomotion/physiologie , Lézards/physiologie , Serpents/physiologie , Phénomènes biomécaniques , Modèles biologiques
6.
Eur Rev Med Pharmacol Sci ; 28(10): 3650-3657, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38856141

RÉSUMÉ

OBJECTIVE: Spinal cord injury (SCI) damages an individual's sensory, motor, and autonomic functions and represents a social emergency, mostly in developed countries. Accurate and timely diagnosis of the severity of SCI must be carried out as quickly as possible to allow time for drug and therapy testing in the early stages after injury. MATERIALS AND METHODS: Male Dark Agouti (DA) rats underwent spinal cord cryoinjury at the T13 level of the spine. Under typical conditions, in vivo magnetic resonance imaging (MRI) T2 and echo-planar imaging - diffusion tensor imaging (EPI-DTI) examinations were conducted. This involved the reconstruction of nerve tracts and the measurement of the fractional anisotropy (FA) index, as well as measurements of the ratio of Hyper/Hypo intensive areas and spinal cord injury severity scores. RESULTS: Our study shows that, after cryoinjury, the FA significantly decreased in all animals. An increase in FA level, derived from EPI-DTI within 2 days after SCI, accurately predicts long-term locomotor function recovery. In rats with higher FA, recorded on day 2 after injury, complete restoration of locomotor function was observed, while at low FA values, the animals maintained stable monoplegia. CONCLUSIONS: Our results, though validating the T2 10-grade MRI scale for SCI, indicate that FA would represent the MRI technical instrument, which would better monitor the evolution of SCI and, accordingly, better objectively evaluate the impact of potentially therapeutic protocols for spinal cord traumatic injury. Despite the results achieved, significant difficulties must be overcome on the way to successful clinical implementation of the findings in humans.


Sujet(s)
Imagerie par tenseur de diffusion , Récupération fonctionnelle , Traumatismes de la moelle épinière , Animaux , Traumatismes de la moelle épinière/imagerie diagnostique , Traumatismes de la moelle épinière/physiopathologie , Mâle , Rats , Locomotion/physiologie , Imagerie par résonance magnétique , Facteurs temps , Modèles animaux de maladie humaine
7.
Curr Biol ; 34(12): R568-R570, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38889677

RÉSUMÉ

Experimental, modeling, and robotic research shows that switching of sea stars from crawling to bouncing gaits does not require centralized neural control. Bouncing can instead arise cooperatively, with synchronization of sea star tube feet occurring by locally acting mechanisms alone.


Sujet(s)
Étoile de mer , Animaux , Étoile de mer/physiologie , Membres/physiologie , Démarche/physiologie , Locomotion/physiologie , Robotique
8.
J Exp Biol ; 227(12)2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38826150

RÉSUMÉ

Gravid female lizards often experience reduced thermal preferences and impaired locomotor performance. These changes have been attributed to the physical burden of the clutch, but some authors have suggested that they may be due to physiological adjustments. We compared the thermal biology and locomotor performance of the lizard Liolaemus wiegmannii 1 week before and 1 week after oviposition. We found that gravid females had a thermal preference 1°C lower than that of non-gravid females. This was accompanied by a change in the thermal dependence of maximum running speed. The thermal optimum for locomotor performance was 2.6°C lower before oviposition than after. At relatively low temperatures (22 and 26°C), running speeds of females before oviposition were up to 31% higher than for females after oviposition. However, at temperatures above 26°C, females achieved similar maximum running speeds (∼1.5 m s-1) regardless of reproductive stage. The magnitude of the changes in thermal parameters and locomotor performance of L. wiegmannii females was independent of relative clutch mass (clutches weighed up to 89% of post-oviposition body mass). This suggests that the changes are not simply due to the clutch mass, but are also due to physiological adjustments. Liolaemus wiegmannii females simultaneously adjusted their own physiology in a short period in order to improve locomotor performance and allocated energy for embryonic development during late gravid stage. Our findings have implications for understanding the mechanisms underlying life histories of lizards on the fast extreme of the slow-fast continuum, where physiological exhaustion could play an important role.


Sujet(s)
Lézards , Oviposition , Reproduction , Animaux , Lézards/physiologie , Femelle , Reproduction/physiologie , Oviposition/physiologie , Température , Course à pied/physiologie , Locomotion/physiologie
9.
J R Soc Interface ; 21(214): 20230439, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38807527

RÉSUMÉ

We present a novel approach to traction force microscopy (TFM) for studying the locomotion of 10 cm long walking centipedes on soft substrates. Leveraging the remarkable elasticity and ductility of kudzu starch gels, we use them as a deformable gel substrate, providing resilience against the centipedes' sharp leg tips. By optimizing fiducial marker size and density and fine-tuning imaging conditions, we enhance measurement accuracy. Our TFM investigation reveals traction forces along the centipede's longitudinal axis that effectively counterbalance inertial forces within the 0-10 mN range, providing the first report of non-vanishing inertia forces in TFM studies. Interestingly, we observe waves of forces propagating from the head to the tail of the centipede, corresponding to its locomotion speed. Furthermore, we discover a characteristic cycle of leg clusters engaging with the substrate: forward force (friction) upon leg tip contact, backward force (traction) as the leg pulls the substrate while stationary, and subsequent forward force as the leg tip detaches to reposition itself in the anterior direction. This work opens perspectives for TFM applications in ethology, tribology and robotics.


Sujet(s)
Arthropodes , Locomotion , Locomotion/physiologie , Animaux , Arthropodes/physiologie , Microscopie/méthodes
10.
Sensors (Basel) ; 24(10)2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38793886

RÉSUMÉ

The domain of human locomotion identification through smartphone sensors is witnessing rapid expansion within the realm of research. This domain boasts significant potential across various sectors, including healthcare, sports, security systems, home automation, and real-time location tracking. Despite the considerable volume of existing research, the greater portion of it has primarily concentrated on locomotion activities. Comparatively less emphasis has been placed on the recognition of human localization patterns. In the current study, we introduce a system by facilitating the recognition of both human physical and location-based patterns. This system utilizes the capabilities of smartphone sensors to achieve its objectives. Our goal is to develop a system that can accurately identify different human physical and localization activities, such as walking, running, jumping, indoor, and outdoor activities. To achieve this, we perform preprocessing on the raw sensor data using a Butterworth filter for inertial sensors and a Median Filter for Global Positioning System (GPS) and then applying Hamming windowing techniques to segment the filtered data. We then extract features from the raw inertial and GPS sensors and select relevant features using the variance threshold feature selection method. The extrasensory dataset exhibits an imbalanced number of samples for certain activities. To address this issue, the permutation-based data augmentation technique is employed. The augmented features are optimized using the Yeo-Johnson power transformation algorithm before being sent to a multi-layer perceptron for classification. We evaluate our system using the K-fold cross-validation technique. The datasets used in this study are the Extrasensory and Sussex Huawei Locomotion (SHL), which contain both physical and localization activities. Our experiments demonstrate that our system achieves high accuracy with 96% and 94% over Extrasensory and SHL in physical activities and 94% and 91% over Extrasensory and SHL in the location-based activities, outperforming previous state-of-the-art methods in recognizing both types of activities.


Sujet(s)
Algorithmes , Techniques de biocapteur , Systèmes d'information géographique , Dispositifs électroniques portables , Humains , Techniques de biocapteur/méthodes , Locomotion/physiologie , Ordiphone , Marche à pied/physiologie , Internet des objets
11.
Micron ; 183: 103648, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38723296

RÉSUMÉ

The mallard webbed foot represents an exemplary model of biomechanical efficiency in avian locomotion. This study delves into the intricate material assembly and tendon morphology of the mallard webbed foot, employing both macroscopic and microscopic analyses. Through histological slices and scanning electron microscopy (SEM), we scrutinized the coupling assembly of rigid and flexible materials such as skin, tendon, and bone, while elucidating the biomechanical functions of tendons across various segments of the tarsometatarsophalangeal joint (TMTPJ). The histological examination unveiled a complex structural hierarchy extending from the external integument to the skeletal framework. Notably, the bone architecture, characterized by compact bone and honeycombed trabeculae, showcases a harmonious blend of strength and lightweight design. Tendons, traversing the phalangeal periphery, surrounded by elastic fibers, collagen fibers, and fat tissue. Fat chambers beneath the phalanx, filled with adipocytes, provide effective buffering, enabling the phalanx to withstand gravity, provide support, and facilitate locomotion. Furthermore, SEM analysis provided insights into the intricate morphology and arrangement of collagen fiber bundles within tendons. Flexor tendons in proximal and middle TMTPJ segments adopt a wavy-type, facilitating energy storage and release during weight-bearing activities. In contrast, distal TMTPJ flexor tendons assume a linear-type, emphasizing force transmission across phalangeal interfaces. Similarly, extensor tendons demonstrate segment-specific arrangements tailored to their respective biomechanical roles, with wavy-type in proximal and distal segments for energy modulation and linear-type in middle segments for enhanced force transmission and tear resistance. Overall, our findings offer a comprehensive understanding of the mallard webbed foot's biomechanical prowess, underscoring the symbiotic relationship between material composition, tendon morphology, and locomotor functionality. This study not only enriches our knowledge of avian biomechanics but also provides valuable insights for biomimetic design and tissue engineering endeavors.


Sujet(s)
Pied , Microscopie électronique à balayage , Tendons , Animaux , Tendons/physiologie , Tendons/ultrastructure , Tendons/anatomie et histologie , Phénomènes biomécaniques , Pied/physiologie , Pied/anatomie et histologie , Locomotion/physiologie
12.
J Exp Biol ; 227(11)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38726554

RÉSUMÉ

Secure landing is indispensable for both leaping animals and robotics. Tree frogs, renowned for their adhesive capabilities, can effectively jump across intricate 3D terrain and land safely. Compared with jumping, the mechanisms underlying their landing technique, particularly in arboreal environments, have remained largely unknown. In this study, we focused on the landing patterns of the tree frog Polypedates dennysi on horizontally placed perches, explicitly emphasizing the influence of perch diameters. Tree frogs demonstrated diverse landing postures, including the utilization of: (1) single front foot, (2) double front feet, (3) anterior bellies, (4) middle bellies, (5) posterior bellies, (6) single hind foot, or (5) double hind feet. Generally, tree frogs favoured bellies on slimmer targets but double front feet on large perches. Analysis of limb-trunk relationships revealed their adaptability to modify postures, including body positions and limb orientations, for successful landing. The variations in the initial landing postures affected the subsequent landing procedures and, consequently, the dynamics. As the initial contact position switched from front foot back to the hind foot, the stabilization time decreased at first, reaching a minimum in middle belly landings, and then increased again. The maximum vertical forces showed an inverse trend, whereas the maximum fore-aft forces continuously increased as the initial contact position switched. As the perch diameter increased, the time expended dropped, whereas the maximum impact force increased. These findings not only add to our understanding of frog landings but also highlight the necessity of considering perch diameters and landing styles when studying the biomechanics of arboreal locomotion.


Sujet(s)
Anura , Locomotion , Animaux , Anura/physiologie , Phénomènes biomécaniques , Locomotion/physiologie , Posture
13.
J Exp Biol ; 227(11)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38752366

RÉSUMÉ

The evolution and utilization of limbs facilitated terrestrial vertebrate movement on land, but little is known about how other lateral structures enhance terrestrial locomotion in amphibian fishes without terrestrialized limb structures. Climbing perch (Anabas testudineus) exhibit sustained terrestrial locomotion using uniaxial rotating gill covers instead of appendages. To investigate the role of such simple lateral structures in terrestrial locomotion and the motion-generating mechanism of the corresponding locomotor structure configuration (gill covers and body undulation), we measured the terrestrial kinematics of climbing perch and quantitatively analysed its motion characteristics. The digitized locomotor kinematics showed a unique body postural adjustment ability that enables the regulation of the posture of the caudal peduncle for converting lateral bending force into propulsion. An analysis of the coordination characteristics demonstrated that the motion of the gill cover is kinematically independent of axial undulation, suggesting that the gill cover functions as an anchored simple support pole while axial undulation actively mediates body posture and produces propulsive force. The two identified feature shapes explained more than 87% of the complex lateral undulation in multistage locomotion. The kinematic characteristics enhance our understanding of the underlying coordinating mechanism corresponding to locomotor configurations. Our work provides quantitative insight into the terrestrial locomotor adaptation of climbing perch and sheds light on terrestrial motion potential of locomotor configurations containing a typical aquatic body and restricted lateral structure.


Sujet(s)
Locomotion , Perches , Animaux , Locomotion/physiologie , Phénomènes biomécaniques , Perches/physiologie , Branchies/physiologie
14.
Behav Brain Res ; 469: 115062, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38768689

RÉSUMÉ

To conserve sequential behavior in relation to the topographic challenges of space, it is proposed that humans and nonhuman animals can organize behavior using different scaling principles. To deal with increases in linear distance, isochrony suggest that there is a corresponding increase in speed, whereas to deal with changes in curvature, speed is adjusted according to a power function. The present study investigates whether these principles provide a framework for describing the organization of mouse behavior in a variety of standard experimental tasks. The structure of movement was examined in ambulation during open field exploration; manipulation in a string-pulling task, in which a string is advanced hand over hand to retrieve food; and rung-walking, in which the limbs successively step from rung to rung on a horizontal ladder. Both principles were found to be conserved in the organization of mouse behavior across scales of movement. These principles provide novel measures of the temporal and geometric features of movement in the mouse and insights into how the temporal and geometric features of movement are conserved within different species.


Sujet(s)
Comportement d'exploration , Animaux , Souris , Mâle , Comportement d'exploration/physiologie , Souris de lignée C57BL , Mouvement/physiologie , Activité motrice/physiologie , Locomotion/physiologie , Comportement animal/physiologie , Marche à pied/physiologie
15.
Bioinspir Biomim ; 19(4)2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38697139

RÉSUMÉ

Jumping microrobots and insects power their impressive leaps through systems of springs and latches. Using springs and latches, rather than motors or muscles, as actuators to power jumps imposes new challenges on controlling the performance of the jump. In this paper, we show how tuning the motor and spring relative to one another in a torque reversal latch can lead to an ability to control jump output, producing either tuneable (variable) or stereotyped jumps. We develop and utilize a simple mathematical model to explore the underlying design, dynamics, and control of a torque reversal mechanism, provides the opportunity to achieve different outcomes through the interaction between geometry, spring properties, and motor voltage. We relate system design and control parameters to performance to guide the design of torque reversal mechanisms for either variable or stereotyped jump performance. We then build a small (356 mg) microrobot and characterize the constituent components (e.g. motor and spring). Through tuning the actuator and spring relative to the geometry of the torque reversal mechanism, we demonstrate that we can achieve jumping microrobots that both jump with different take-off velocities given the actuator input (variable jumping), and those that jump with nearly the same take-off velocity with actuator input (stereotyped jumping). The coupling between spring characteristics and geometry in this system has benefits for resource-limited microrobots, and our work highlights design combinations that have synergistic impacts on output, compared to others that constrain it. This work will guide new design principles for enabling control in resource-limited jumping microrobots.


Sujet(s)
Conception d'appareillage , Robotique , Moment de torsion , Robotique/instrumentation , Robotique/méthodes , Animaux , Insectes/physiologie , Biomimétique/méthodes , Modèles biologiques , Simulation numérique , Phénomènes biomécaniques , Locomotion/physiologie
16.
J Neurophysiol ; 131(6): 997-1013, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38691528

RÉSUMÉ

During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion. We compared cutaneous reflexes evoked in six ipsilateral and four contralateral hindlimb muscles. Results showed similar occurrence and phase-dependent modulation of short-latency inhibitory and excitatory responses during quadrupedal and hindlimb-only locomotion in intact cats. However, the depth of modulation was reduced in the ipsilateral semitendinosus during hindlimb-only locomotion. Additionally, longer-latency responses occurred less frequently in extensor muscles bilaterally during hindlimb-only locomotion, whereas short-latency inhibitory and longer-latency excitatory responses occurred more frequently in the ipsilateral and contralateral sartorius anterior, respectively. After spinal transection, short-latency inhibitory and excitatory responses were similar to both intact conditions, whereas mid- or longer-latency excitatory responses were reduced or abolished. Our results in intact cats and the comparison with spinal-transected cats suggest that the absence of forelimb movements suppresses inputs from supraspinal structures and/or cervical cord that normally contribute to longer-latency reflex responses in hindlimb extensor muscles.NEW & NOTEWORTHY During quadrupedal locomotion, the coordination of forelimb and hindlimb movements involves central circuits and somatosensory feedback. To demonstrate how forelimb movement affects hindlimb cutaneous reflexes during locomotion, we stimulated the superficial peroneal nerve in intact cats during quadrupedal and hindlimb-only locomotion as well as in spinal-transected cats during hindlimb-only locomotion. We show that forelimb movement influences the modulation of hindlimb cutaneous reflexes, particularly the occurrence of long-latency reflex responses.


Sujet(s)
Membre thoracique , Membre pelvien , Locomotion , Muscles squelettiques , Réflexe , Traumatismes de la moelle épinière , Animaux , Chats , Membre pelvien/physiologie , Membre thoracique/physiologie , Réflexe/physiologie , Locomotion/physiologie , Muscles squelettiques/physiologie , Traumatismes de la moelle épinière/physiopathologie , Mouvement/physiologie , Femelle , Mâle , Peau/innervation
17.
Cell Rep ; 43(5): 114197, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38733587

RÉSUMÉ

Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.


Sujet(s)
Interneurones , Somatostatine , Peptide vasoactif intestinal , Animaux , Interneurones/métabolisme , Interneurones/physiologie , Somatostatine/métabolisme , Souris , Peptide vasoactif intestinal/métabolisme , Cortex somatosensoriel/physiologie , Cortex somatosensoriel/métabolisme , Mâle , Souris de lignée C57BL , Locomotion/physiologie , Comportement animal/physiologie , Cortex visuel/physiologie , Cortex visuel/métabolisme , Thalamus/physiologie , Thalamus/métabolisme
18.
PLoS One ; 19(5): e0300227, 2024.
Article de Anglais | MEDLINE | ID: mdl-38696419

RÉSUMÉ

Aging is associated with a wide range of physiological and behavioral changes in many species. Zebrafish, like humans, rodents, and birds, exhibits gradual senescence, and thus may be a useful model organism for identifying evolutionarily conserved mechanisms related to aging. Here, we compared behavior in the novel tank test of young (6-month-old) and middle aged (12-month-old) zebrafish from two strains (TL and TU) and both sexes. We find that this modest age difference results in a reduction in locomotor activity in male fish. We also found that background strain modulated the effects of age on predator avoidance behaviors related to anxiety: older female TL fish increased bottom dwelling whereas older male TU fish decreased thigmotaxis. Although there were no consistent effects of age on either short-term (within session) or long-term (next day) habituation to the novel tank, strain affected the habituation response. TL fish tended to increase their distance from the bottom of the tank whereas TU fish had no changes in bottom distance but instead tended to increase thigmotaxis. Our findings support the use of zebrafish for the study of how age affects locomotion and how genetics interacts with age and sex to alter exploratory and emotional behaviors in response to novelty.


Sujet(s)
Vieillissement , Danio zébré , Animaux , Danio zébré/physiologie , Femelle , Mâle , Vieillissement/physiologie , Comportement animal/physiologie , Locomotion/physiologie , Activité motrice/physiologie , Comportement d'exploration/physiologie
19.
J Neurophysiol ; 131(6): 1250-1259, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38717333

RÉSUMÉ

Locomotor perturbations provide insights into humans' response to motor errors. We investigated the differences in motor adaptation and muscle cocontraction between young and older adults during perturbed-arm and -leg recumbent stepping. We hypothesized that besides prolonged adaptation due to use-dependent learning, older adults would exhibit greater muscle cocontraction than young adults in response to the perturbations. Perturbations were brief increases in resistance applied during each stride at the extension onset or midextension of the left or right leg. Seventeen young adults and eleven older adults completed four 10-min perturbed stepping tasks. Subjects were instructed to follow a visual pacing cue, step smoothly, and use all their limbs to drive the stepper. Results showed that young and older adults did not decrease their errors with more perturbation experience, and errors did not wash out after perturbations were removed. Interestingly, older adults consistently had smaller motor errors than young adults in response to the perturbations. Older adults used fewer muscles to drive the stepper and had greater cocontraction than young adults. The results suggest that, despite similar motor error responses, young and older adults use distinctive muscle recruitment patterns to perform the motor task. Age-related motor strategies help track motor changes across the human life span and are a baseline for rehabilitation and performance assessment.NEW & NOTEWORTHY Older adults often demonstrate greater cocontraction and motor errors than young adults in response to motor perturbations. We demonstrated that older adults reduced their motor errors more than young adults with brief perturbations during recumbent stepping while maintaining greater muscle cocontraction. In doing so, older adults largely used one muscle pair to drive the stepper, tibialis anterior and soleus, whereas young adults used all muscles. These two muscles are crucial for maintaining upright balance.


Sujet(s)
Muscles squelettiques , Humains , Mâle , Femelle , Sujet âgé , Muscles squelettiques/physiologie , Adulte , Jeune adulte , Vieillissement/physiologie , Adaptation physiologique/physiologie , Électromyographie , Performance psychomotrice/physiologie , Locomotion/physiologie , Adulte d'âge moyen , Position assise
20.
Cell Rep ; 43(5): 114199, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38728138

RÉSUMÉ

Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-µm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.


Sujet(s)
Électrodes implantées , Moelle spinale , Animaux , Moelle spinale/physiologie , Souris , Potentiels d'action/physiologie , Activité motrice/physiologie , Neurones/physiologie , Locomotion/physiologie , Souris de lignée C57BL , Mâle
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...