Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 254
Filtrer
1.
ISME J ; 18(1)2024 Jan 08.
Article de Anglais | MEDLINE | ID: mdl-38959853

RÉSUMÉ

Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.


Sujet(s)
Protéines bactériennes , Lysobacter , Pseudomonas , Systèmes de sécrétion de type IV , Pseudomonas/génétique , Pseudomonas/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Lysobacter/génétique , Lysobacter/métabolisme , Systèmes de sécrétion de type IV/génétique , Systèmes de sécrétion de type IV/métabolisme , Régulation de l'expression des gènes bactériens , Oligopeptides/métabolisme , Oligopeptides/génétique , Transactivateurs/génétique , Transactivateurs/métabolisme , Protéines de répression/génétique , Protéines de répression/métabolisme , Facteur sigma/génétique , Facteur sigma/métabolisme
2.
J Hazard Mater ; 473: 134716, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38797074

RÉSUMÉ

Ochratoxin A (OTA) is a toxic secondary metabolite that widely contaminates agro-products and poses a significant dietary risk to human health. Previously, a carboxypeptidase CP4 was characterized for OTA degradation in Lysobacter sp. CW239, but the degradation activity was much lower than its host strain CW239. In this study, an amidohydrolase ADH2 was screened for OTA hydrolysis in this strain. The result showed that 50 µg/L OTA was completely degraded by 1.0 µg/mL rADH2 within 5 min, indicating ultra-efficient activity. Meanwhile, the two hydrolases (i.e., CP4 and ADH2) in the strain CW239 showed the same degradation manner, which transformed the OTA to ochratoxin α (OTα) and l-ß-phenylalanine. Gene mutants (Δcp4, Δadh2 and Δcp4-adh2) testing result showed that OTA was co-degraded by carboxypeptidase CP4 and amidohydrolase ADH2, and the two hydrolases are sole agents in strain CW239 for OTA degradation. Hereinto, the ADH2 was the overwhelming efficient hydrolase, and the two types of hydrolases co-degraded OTA in CW239 by synergistic effect. The results of this study are highly significant to ochratoxin A contamination control during agro-products production and postharvest.


Sujet(s)
Lysobacter , Ochratoxines , Ochratoxines/métabolisme , Ochratoxines/toxicité , Lysobacter/métabolisme , Lysobacter/génétique , Amidohydrolases/métabolisme , Amidohydrolases/génétique , Carboxypeptidases/métabolisme , Carboxypeptidases/génétique , Hydrolases/métabolisme , Hydrolases/génétique
3.
Appl Environ Microbiol ; 90(6): e0060024, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38771054

RÉSUMÉ

Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.IMPORTANCEPolycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, including Streptomyces and Lysobacter spp. Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity.


Sujet(s)
Famille multigénique , Phylogenèse , Voies de biosynthèse/génétique , Streptomyces/génétique , Streptomyces/métabolisme , Streptomyces/classification , Lysobacter/génétique , Lysobacter/métabolisme , Lysobacter/classification , Biologie informatique , Lactames/métabolisme
4.
Article de Anglais | MEDLINE | ID: mdl-38805031

RÉSUMÉ

Two Gram-negative bacteria, designated as strains LF1T and HM2-2T, were isolated from an artificial pond in a honey farm at Hoengseong-gun, Gangwon-do, Republic of Korea. The 16S rRNA sequence analysis results revealed that strain LF1T belonged to the genus Lysobacter and had the highest sequence similarity to Lysobacter niastensis GH41-7T (99.0 %), Lysobacter panacisoli CJ29T (98.9 %), and Lysobacter prati SYSU H10001T (98.2 %). Its growth occurred at 20-37 °C, at pH 5.0-12.0, and in the presence of 0-2% NaCl. The major fatty acids were iso-C15 : 0, iso-C16 : 0, and summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C content was 67.5 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain LF1T and species of the genus Lysobacter were 79.1-84.4% and 22.0-27.5 %, respectively. The 16S rRNA sequence analysis results revealed that strain HM2-2T belonged to the genus Limnohabitans and was most closely related to Limnohabitans planktonicus II-D5T (98.9 %), Limnohabitans radicicola JUR4T (98.4%), and Limnohabitans parvus II-B4T (98.4 %). Its growth occurred at 10-35 °C, at pH 5.0-11.0, and in the presence of 0-2% NaCl. The major fatty acids were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The major polar lipid was phosphatidylethanolamine. The DNA G+C content was 59.9 mol%. The ANI and dDDH values between strain HM2-2T and its closely related strains were 75.1-83.0% and 20.4-26.4 %, respectively. Phenotypic, genomic, and phylogenetic data revealed that strains LF1T and HM2-2T represent novel species in the genera Lysobacter and Limnohabitans, for which the names Lysobacter stagni sp. nov. and Limnohabitans lacus sp. nov. are proposed, respectively. The type strain of Lys. stagni is LF1T (=KACC 23251T=TBRC 17648T), and that of Lim. lacus is HM2-2T (=KACC 23250T=TBRC 17649T).


Sujet(s)
Techniques de typage bactérien , Composition en bases nucléiques , ADN bactérien , Acides gras , Lysobacter , Hybridation d'acides nucléiques , Phylogenèse , Étangs , ARN ribosomique 16S , Analyse de séquence d'ADN , ARN ribosomique 16S/génétique , Acides gras/composition chimique , Acides gras/analyse , Lysobacter/génétique , Lysobacter/classification , Lysobacter/isolement et purification , ADN bactérien/génétique , République de Corée , Étangs/microbiologie , Données de séquences moléculaires , Phospholipides/analyse
5.
Appl Environ Microbiol ; 90(5): e0041824, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38624198

RÉSUMÉ

Cyclic di-GMP (c-di-GMP) is a crucial signaling molecule found extensively in bacteria, involved in the regulation of various physiological and biochemical processes such as biofilm formation, motility, and pathogenicity through binding to downstream receptors. However, the structural dissimilarity of c-di-GMP receptor proteins has hindered the discovery of many such proteins. In this study, we identified LspE, a homologous protein of the type II secretion system (T2SS) ATPase GspE in Lysobacter enzymogenes, as a receptor protein for c-di-GMP. We identified the more conservative c-di-GMP binding amino acid residues as K358 and T359, which differ from the previous reports, indicating that GspE proteins may represent a class of c-di-GMP receptor proteins. Additionally, we found that LspE in L. enzymogenes also possesses a novel role in regulating the production of the antifungal antibiotic HSAF. Further investigations revealed the critical involvement of both ATPase activity and c-di-GMP binding in LspE-mediated regulation of HSAF (Heat-Stable Antifungal Factor) production, with c-di-GMP binding having no impact on LspE's ATPase activity. This suggests that the control of HSAF production by LspE encompasses two distinct processes: c-di-GMP binding and the inherent ATPase activity of LspE. Overall, our study unraveled a new function for the conventional protein GspE of the T2SS as a c-di-GMP receptor protein and shed light on its role in regulating antibiotic production.IMPORTANCEThe c-di-GMP signaling pathway in bacteria is highly intricate. The identification and functional characterization of novel receptor proteins have posed a significant challenge in c-di-GMP research. The type II secretion system (T2SS) is a well-studied secretion system in bacteria. In this study, our findings revealed the ATPase GspE protein of the T2SS as a class of c-di-GMP receptor protein. Notably, we discovered its novel function in regulating the production of antifungal antibiotic HSAF in Lysobacter enzymogenes. Given that GspE may be a conserved c-di-GMP receptor protein, it is worthwhile for researchers to reevaluate its functional roles and mechanisms across diverse bacterial species.


Sujet(s)
Adenosine triphosphatases , Protéines bactériennes , GMP cyclique , Lysobacter , GMP cyclique/analogues et dérivés , GMP cyclique/métabolisme , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Adenosine triphosphatases/métabolisme , Adenosine triphosphatases/génétique , Lysobacter/métabolisme , Lysobacter/génétique , Lysobacter/enzymologie , Systèmes de sécrétion de type II/métabolisme , Systèmes de sécrétion de type II/génétique , Antibactériens/métabolisme , Régulation de l'expression des gènes bactériens , Antifongiques/métabolisme
6.
Phytopathology ; 114(3): 512-520, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-37698468

RÉSUMÉ

Diffusible signal factor (DSF) family signals represent a unique group of quorum sensing (QS) chemicals that modulate a wide range of behaviors for bacteria to adapt to different environments. However, whether DSF-mediated QS signaling acts as a public language to regulate the behavior of biocontrol and pathogenic bacteria remains unknown. In this study, we present groundbreaking evidence demonstrating that RpfFXc1 or RpfFOH11 could be a conserved DSF-family signal synthase in Xanthomonas campestris or Lysobacter enzymogenes. Interestingly, we found that both RpfFOH11 and RpfFXc1 have the ability to synthesize DSF and BDSF signaling molecules. DSF and BDSF positively regulate the biosynthesis of an antifungal factor (heat-stable antifungal factor, HSAF) in L. enzymogenes. Finally, we show that RpfFXc1 and RpfFOH11 have similar functions in regulating HSAF production in L. enzymogenes, as well as the virulence, synthesis of virulence factors, biofilm formation, and extracellular polysaccharide production in X. campestris. These findings reveal a previously uncharacterized mechanism of DSF-mediated regulation in both biocontrol and pathogenic bacteria.


Sujet(s)
Lysobacter , Xanthomonas , Détection du quorum , Lysobacter/génétique , Antifongiques , Protéines bactériennes/génétique , Maladies des plantes
7.
Phytopathology ; 114(3): 500-502, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-37750871

RÉSUMÉ

The strains in Lysobacter spp. have the potential to control plant-parasitic nematodes. In our experiment, L. gummosus YMF3.00690 showed antagonistic effects against plant root-knot nematode. Nine metabolites were isolated and identified from cultures of L. gummosus YMF3.00690, of which compound 1 was identified as a new metabolite tetrahydro-4,4,6-trimethyl-6-[(tetrahydro-6,6-dimethyl-2-oxo-4(1H)-pyrimidinylidene) methyl]-2(1H)-pyrimidinone. The activity assay showed that two compounds, 5-(hydroxymethyl)-1H-pyrrole-2-carbaldehyde (2) and 1H-pyrrole-2-carboxylic acid (3), had nematicidal activities against Meloidogyne javanica with mortalities of 69.93 and 90.54% at 400 ppm for 96 h, respectively. These two compounds were further tested for the inhibition activity of eggs hatching, and compound 3 showed a significant inhibition rate of 63.36% at 50 ppm for 48 h. In the chemotactic activity assay, three compounds (1 to 3) were found to have concentration-dependent chemotactic activity, of which compound 1 showed attractive activity. This experiment explored the active metabolites of L. gummosus YMF3.00690 against M. javanica and laid the foundation for biopesticide development.


Sujet(s)
Lysobacter , Tylenchoidea , Animaux , Tylenchoidea/physiologie , Maladies des plantes/prévention et contrôle , Maladies des plantes/parasitologie , Antihelminthiques antinématodes/pharmacologie
8.
Curr Microbiol ; 80(12): 387, 2023 Oct 25.
Article de Anglais | MEDLINE | ID: mdl-37878083

RÉSUMÉ

A bacterial strain designated as UC was isolated from farmland soil. Strain UCT formed a pale yellow colony on nutrient agar. Cell morphology revealed it as the rod-shaped bacterium that stained Gram-negative. The 16S rRNA gene sequence analysis identified strain UCT as a member of the genus Lysobacter that showed high identity with L. soli DCY21T (99.5%), L. panacisoli CJ29T (98.7%), and L. tabacisoli C8-1T (97.9%). It formed a distinct cluster with these strains in the neighbor-joining phylogenetic tree. A similar tree topology was observed in TYGS-based phylogenomic analysis. However, genome sequence analyses of strain UCT showed 87.7% average nucleotide identity and 34.7% digital DNA-DNA hybridization similarity with the phylogenetically closest species, L. soli DCY21T. The similarity was much less with other closely related strains of the genus Lysobacter. The G + C content of strain UCT was 68.1%. Major cellular fatty acids observed were C14:0 iso (13.4%), C15:0 iso (13.6%), and C15:0 anteiso (14.8%). Quinone Q-8 was the major respiratory ubiquinone. Predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol. Production of xanthomonadin pigment was observed. Based on phenotypic differences and phylogenomic analysis, strain UCT represents a novel species of the genus Lysobacter, for which the name Lysobacter arvi is proposed. The type strain of the novel species is UCT (= KCTC 92613T = JCM 23757T = MTCC 12824T).


Sujet(s)
Lysobacter , Fermes , Lysobacter/génétique , Phylogenèse , ARN ribosomique 16S/génétique , ADN
9.
Curr Microbiol ; 80(9): 281, 2023 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-37439829

RÉSUMÉ

Lysobacter capsici X2-3, a plant growth-promoting rhizobacteria (PGPR), was isolated from wheat rhizosphere and has inhibitory effects against a wide range of pathogens. One important characteristic of L. capsici is its ability to produce diverse antibiotics and lytic enzymes. The GntR family of transcription factors is a common transcription factor superfamily in bacteria that has fundamental roles in bacterial metabolism regulation. However, the GntR family transcription factor in Lysobacter has not been identified. In this study, to obtain an understanding of the GntR/HutC gene function in L. capsici X2-3, a random Tn5-insertion mutant library of X2-3 was constructed to select genes showing pleiotropic effects on phenotype. We identified a Tn5 mutant with an insertion in LC4356 that showed reduced biofilm levels, and sequence analysis indicated that the inserted gene encodes a GntR/HutC family transcription regulator. Furthermore, the LC4356 mutant showed reduced extracellular polysaccharide (EPS) production, diminished twitching motility and decreased survival under UV radiation and high-temperature. The RT‒qPCR results indicated that the pentose phosphate pathway-related genes G6PDH, 6PGL and PGDH were upregulated in the LC4356 mutant. Thus, since L. capsici is an efficient biocontrol agent for crop protection, our findings provide fundamental insights into GntR/HutC and will be worthwhile to improve PGPR biocontrol efficacy.


Sujet(s)
Lysobacter , Lysobacter/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Bactéries/métabolisme , Biofilms , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme
10.
Chin J Nat Med ; 21(6): 454-458, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37407176

RÉSUMÉ

Lysobacter harbors a plethora of cryptic biosynthetic gene clusters (BGCs), albeit only a limited number have been analyzed to date. In this study, we described the activation of a cryptic polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) gene cluster (lsh) in Lysobacter sp. DSM 3655 through promoter engineering and heterologous expression in Streptomyces sp. S001. As a result of this methodology, we were able to isolate two novel linear lipopeptides, lysohexaenetides A (1) and B (2), from the recombinant strain S001-lsh. Furthermore, we proposed the biosynthetic pathway for lysohexaenetides and identified LshA as another example of entirely iterative bacterial PKSs. This study highlights the potential of heterologous expression systems in uncovering cryptic biosynthetic pathways in Lysobacter genomes, particularly in the absence of genetic manipulation tools.


Sujet(s)
Lysobacter , Streptomyces , Lysobacter/génétique , Lysobacter/métabolisme , Streptomyces/génétique , Streptomyces/métabolisme , Lipopeptides/génétique , Lipopeptides/métabolisme , Polyketide synthases/génétique , Famille multigénique
11.
Folia Microbiol (Praha) ; 68(6): 991-998, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37266892

RÉSUMÉ

In the present work, we characterized in detail strain CM-3-T8T, which was isolated from the rhizosphere soil of strawberries in Beijing, China, in order to elucidate its taxonomic position. Cells of strain CM-3-T8T were Gram-negative, non-spore-forming, aerobic, short rod. Growth occurred at 25-37 °C, pH 5.0-10.0, and in the presence of 0-8% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CM-3-T8T formed a stable clade with Lysobacter soli DCY21T and Lysobacter panacisoli CJ29T, with the 16S rRNA gene sequence similarities of 98.91% and 98.50%. The average nucleotide identity and digital DNA-DNA hybridization values between strain SG-8 T and the two reference type strains listed above were 76.3%, 79.6%, and 34.3%, 27%, respectively. The DNA G + C content was 68.4% (mol/mol). The major cellular fatty acids were comprised of C15:0 iso (36.15%), C17:0 iso (8.40%), and C11:0 iso 3OH (8.28%). The major quinone system was ubiquinone Q-8. The major polar lipids were phosphatidylethanolamine (PE), phosphatidylethanolamine (PME), diphosphatidylglycerol (DPG), and aminophospholipid (APL). On the basis of phenotypic, genotypic, and phylogenetic evidence, strain CM-3-T8T (= ACCC 61714 T = JCM 34576 T) represents a new species within the genus Lysobacter, for which the name Lysobacter changpingensis sp. nov. is proposed.


Sujet(s)
Fragaria , Lysobacter , Phospholipides/composition chimique , Fragaria/génétique , Phosphatidyléthanolamine , Lysobacter/génétique , Phylogenèse , Rhizosphère , ARN ribosomique 16S/génétique , Sol , ADN bactérien/génétique , ADN bactérien/composition chimique , Acides gras/analyse , Chine , Analyse de séquence d'ADN , Techniques de typage bactérien
12.
Article de Anglais | MEDLINE | ID: mdl-37204832

RÉSUMÉ

A novel bacterium, designated 5-21aT, isolated from chitin-treated upland soil, exhibits methionine (Met) auxotrophy and chitinolytic activity. A physiological experiment revealed the cobalamin (synonym, vitamin B12)(Cbl)-auxotrophic property of strain 5-21aT. The newly determined complete genomic sequence indicated that strain 5-21aT possesses only the putative gene for Cbl-dependent Met synthase (MetH) and lacks that for the Cbl-independent one (MetE), which implies the requirement of Cbl for Met-synthesis in strain 5-21aT. The set of genes for the upstream (corrin ring synthesis) pathway of Cbl synthesis is absent in the genome of strain 5-21aT, which explains the Cbl-auxotrophy of 5-21aT. This strain was characterized via a polyphasic approach to determine its taxonomic position. The nucleotide sequences of two copies of the 16S rRNA gene of strain 5-21aT indicated the highest similarities to Lysobacter soli DCY21T(99.8 and 99.9 %) and Lysobacter panacisoli CJ29T(98.7 and 98.8 %, respectively), whose Cbl-auxotrophic properties were revealed in this study. The principal respiratory quinone was Q-8. The predominant cellular fatty acids were iso-C15:0, iso-C16:0 and iso-C17:1 ω9c. The complete genome sequence of strain 5-21aT revealed that the genome size was 4 155 451 bp long and the G+C content was 67.87 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain 5-21aT and its most closely phylogenetic relative L. soli DCY21T were 88.8 and 36.5%, respectively. Based on genomic, chemotaxonomic, phenotypic and phylogenetic data, strain 5-21aT represents a novel species in the genus Lysobacter, for which the name Lyobacter auxotrophicus sp. nov. is proposed. The type strain is 5-21aT (=NBRC 115507T=LMG 32660T).


Sujet(s)
Acides gras , Lysobacter , Acides gras/composition chimique , Phospholipides/analyse , Méthionine/génétique , Phylogenèse , ARN ribosomique 16S/génétique , Chitine , Vitamine B12 , Analyse de séquence d'ADN , Composition en bases nucléiques , ADN bactérien/génétique , Techniques de typage bactérien , Génomique , Racéméthionine , Vitamines , Microbiologie du sol
13.
J Agric Food Chem ; 71(19): 7418-7426, 2023 May 17.
Article de Anglais | MEDLINE | ID: mdl-37158236

RÉSUMÉ

Lysobacter is a genus of bacteria emerging as new biocontrol agents in agriculture. Although iron acquisition is essential for the bacteria, no siderophore has been identified from any Lysobacter. Here, we report the identification of the first siderophore, N1,N8-bis(2,3-dihydroxybenzoyl)spermidine (lysochelin), and its biosynthetic gene cluster from Lysobacter enzymogenes. Intriguingly, the deletion of the spermidine biosynthetic gene encoding arginine decarboxylase or SAM decarboxylase eliminated lysochelin and the antifungals, HSAF and its analogues, which are key to the disease control activity and to the survival of Lysobacter under oxidative stresses caused by excess iron. The production of lysochelin and the antifungals is greatly affected by iron concentration. Together, the results revealed a previously unrecognized system, in which L. enzymogenes produces a group of small molecules, lysochelin, spermidine, and HSAF and its analogues, that are affected by iron concentration and critical to the growth and survival of the biocontrol agent.


Sujet(s)
Protéines bactériennes , Lysobacter , Protéines bactériennes/génétique , Lysobacter/génétique , Antifongiques , Sidérophores , Spermidine , Fer
14.
J Appl Microbiol ; 134(3)2023 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-36869797

RÉSUMÉ

AIMS: The posttranscriptional regulator CsrA regulates many cellular processes, including stress responses in diverse bacteria. However, the role of CsrA in multidrug resistance (MDR) and biocontrol activity in Lysobacter enzymogenes strain C3 (LeC3) remains unknown. METHODS AND RESULTS: In this study, we demonstrated that deletion of the csrA gene resulted in the initial slow growth of LeC3 and reduced its resistance to multiple antibiotics, including nalidixic acid (NAL), rifampicin (RIF), kanamycin (Km), and nitrofurantoin (NIT). Loss of the csrA gene also reduced its ability in inhibiting hypha growth of Sclerotium sclerotiorum and influenced its extracellular cellulase and protease activities. Two putative small noncoding regulatory RNAs (sRNAs), referred to as csrB and csrC, were also revealed in the genome of LeC3. Double deletion of csrB and csrC in LeC3 led to increased resistance to NAL, RIF, Km, and NIT. However, no difference was observed between LeC3 and the csrB/csrC double mutant in their suppression of S. sclerotiorum hypha growth and production of extracellular enzymes. CONCLUSION: These results suggest that CsrA in LeC3 not only conferred its intrinsic MDR, but also contributed to its biocontrol activity.


Sujet(s)
Antibactériens , Lysobacter , Antibactériens/pharmacologie , Lysobacter/génétique , Lysobacter/métabolisme , Hyphae/métabolisme , Multirésistance aux médicaments , Régulation de l'expression des gènes bactériens , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme
15.
Methods Mol Biol ; 2646: 249-254, 2023.
Article de Anglais | MEDLINE | ID: mdl-36842119

RÉSUMÉ

Bacterial twitching motility is a peculiar way of adherence and surface translocation on moist solid or semisolid surfaces. Although the twitching motility has been detected in various flagellated bacteria, such as Pseudomonas aeruginosa, it has been rarely detected in flagella-less bacteria like Lysobacter enzymogenes, a natural predator of filamentous fungi. Here, by using a strain OH11 of L. enzymogenes as a model system, we describe a convenient method for observing the twitching motility, with fewer steps and better repetition than conventional methods. This new method provides important technical support for the motile study of Lysobacter.


Sujet(s)
Protéines bactériennes , Lysobacter
16.
Article de Anglais | WPRIM (Pacifique Occidental) | ID: wpr-982716

RÉSUMÉ

Lysobacter harbors a plethora of cryptic biosynthetic gene clusters (BGCs), albeit only a limited number have been analyzed to date. In this study, we described the activation of a cryptic polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) gene cluster (lsh) in Lysobacter sp. DSM 3655 through promoter engineering and heterologous expression in Streptomyces sp. S001. As a result of this methodology, we were able to isolate two novel linear lipopeptides, lysohexaenetides A (1) and B (2), from the recombinant strain S001-lsh. Furthermore, we proposed the biosynthetic pathway for lysohexaenetides and identified LshA as another example of entirely iterative bacterial PKSs. This study highlights the potential of heterologous expression systems in uncovering cryptic biosynthetic pathways in Lysobacter genomes, particularly in the absence of genetic manipulation tools.


Sujet(s)
Lysobacter/métabolisme , Streptomyces/métabolisme , Lipopeptides/métabolisme , Polyketide synthases/génétique , Famille multigénique
17.
NPJ Biofilms Microbiomes ; 8(1): 97, 2022 12 16.
Article de Anglais | MEDLINE | ID: mdl-36526637

RÉSUMÉ

The ubiquitous Wsp (wrinkly spreader phenotype) chemosensory system and DSF (diffusible signal factor) quorum sensing are two important chemically associated signaling systems that mediate bacterial communications between the host and environment. Although these two systems individually control biofilm formation in pathogenic bacteria via the ubiquitous second messenger c-di-GMP, their crosstalk mechanisms remain elusive. Here we present a scenario from the plant-beneficial and antifungal bacterium Lysobacter enzymogenes OH11, where biofilm formation favors the colonization of this bacterium in fungal hyphae. We found that the Wsp system regulated biofilm formation via WspR-mediated c-di-GMP signaling, whereas DSF system did not depend on the enzymatic activity of RpfG to regulate biofilm formation. We further found that WspR, a diguanylate cyclase (DGC) responsible for c-di-GMP synthesis, could directly bind to one of the DSF signaling components, RpfG, an active phosphodiesterase (PDE) responsible for c-di-GMP degradation. Thus, the WspR-RpfG complex represents a previously undiscovered molecular linker connecting the Wsp and DSF systems. Mechanistically, RpfG could function as an adaptor protein to bind and inhibit the DGC activity of unphosphorylated WspR independent of its PDE activity. Phosphorylation of WspR impaired its binding affinity to RpfG and also blocked the ability of RpfG to act as an adaptor protein, which enabled the Wsp system to regulate biofilm formation in a c-di-GMP-dependent manner by dynamically integrating the DSF system. Our findings demonstrated a previously uncharacterized mechanism of crosstalk between Wsp and DSF systems in plant-beneficial and antifungal bacteria.


Sujet(s)
Lysobacter , Détection du quorum , Antifongiques , Biofilms
18.
Curr Microbiol ; 80(1): 43, 2022 Dec 19.
Article de Anglais | MEDLINE | ID: mdl-36536230

RÉSUMÉ

To isolate ß-galactosidase producing bacterial resources, a novel Gram-stain-negative, strictly aerobic bacterial strain designated as A6T was obtained from a farmland soil sample. Cells of the strain were rod-shaped (0.4-0.7 µm × 1.8-2.2 µm) without flagella and motility. Strain A6T grew optimally at 30 °C, pH 7.0 with 0% (w/v) NaCl. Based on phylogenetic analysis, strain A6T clustered within the genus Lysobacter clade and branched with Lysobacter dokdonensis KCTC 12822T (99.5%, 16S rRNA gene sequence similarity) and Lysobacter caseinilyticus KACC 19816T (98.5%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain A6T and Lysobacter dokdonensis KCTC 12822T were 82.7% and 26.2%, and the values for strain A6T and KACC 19816T were 81.4% and 23.8%, respectively. Iso-C16:0, iso-C15:0, summed feature 9 (C17:1 iso ω9c and/or C16:0 10-methyl) and summed feature 3 (C16:1ω7c and/or C16:1 ω6c) were the major fatty acids, diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine were the major polar lipids, and ubiquinone 8 (Q-8) was the major ubiquinone. The genomic DNA G+C content was 67.2 mol%. Furthermore, under the condition of 30 °C, pH 7.0, 4% inoculation with 10.0 g L-1 lactose, the ß-galactosidase activity produced by strain A6T was highest, reaching 95.3 U mL-1, indicating that this strain could be applied as a potential strain for ß-galactosidase production. Strain A6T represents a novel species of the genus Lysobacter, and Lysobacter lactosilyticus sp. nov. is proposed on the basis of phenotypic, genotypic, and chemotaxonomic analysis. The type strain is A6T (=KCTC 82184T=CGMCC 1.18582T).


Sujet(s)
Lysobacter , Phospholipides , Phospholipides/composition chimique , Lysobacter/génétique , Engrais/analyse , Phylogenèse , ARN ribosomique 16S/génétique , Sol , Acides aminés/métabolisme , Fermes , ADN bactérien/génétique , Microbiologie du sol , Acides gras/composition chimique , beta-Galactosidase/génétique , Analyse de séquence d'ADN , Techniques de typage bactérien
19.
Curr Microbiol ; 79(12): 381, 2022 Nov 03.
Article de Anglais | MEDLINE | ID: mdl-36329290

RÉSUMÉ

A bacterium, designated 50T was isolated from the sediment of a pesticide plant in Shandong Province, PR China. The strain was non-motile, Gram stain-negative, rod shaped and grew optimally on NA medium at 30 °C, pH 7.5 and with 0% (w/v) NaCl. Strain 50T showed the highest 16S rRNA gene sequence similarity with Lysobacter pocheonensis Gsoil 193T (96.7%), followed by Luteimonas lumbrici 1.1416T (96.5%). Phylogenetic analyses based on 16S rRNA indicated that strain 50T and Luteimonas lumbrici 1.1416T were clustered with the genus of Lysobacter and formed a subclade with Lysobacter pocheonensis Gsoil 193T. In the phylogenetic analysis based on the genome sequences, strain 50T and Luteimonas lumbrici 1.1416T were also clustered with the type strains of the genus Lysobacter. The obtained ANI and the dDDH value between 50T and Luteimonas lumbrici 1.1416T were 80.6% and 24.0%, respectively. The respiratory quinone was ubiquinone-8 (Q-8), and the major cellular fatty acids were iso-C15: 0 (31.7%), summed feature 9 (iso-C17:1 ω9c or C16:0 10-methyl) (23.7%), iso-C17:0 (14.3%) and iso-C16:0 (12.6%). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unidentified aminophospholipid, unidentified phospholipid and unidentified lipid. The genomic DNA G + C content was 69.5 mol%. According to the phenotypic, chemotaxonomic and phylogenetic analyses, strain 50T represents a novel species of the genus Lysobacter, for which the name Lysobacter sedimenti sp. nov. is proposed, with strain 50T (= KCTC 92088T = CCTCC AB 2022035T) as the type strain. In this study, it is also proposed that Luteimonas lumbrici should be transferred to the genus Lysobacter as Lysobacter lumbrici comb. nov. The type strain of Lysobacter lumbrici is 1.1416T (= KCTC 62979T = CCTCC AB 2018348T).


Sujet(s)
Lysobacter , Oligochaeta , Xanthomonadaceae , Animaux , ARN ribosomique 16S/génétique , Phylogenèse , Oligochaeta/génétique , Microbiologie du sol , ADN bactérien/génétique , Techniques de typage bactérien , Analyse de séquence d'ADN , Xanthomonadaceae/génétique , Phospholipides/composition chimique , Acides gras/composition chimique
20.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-36260505

RÉSUMÉ

A Gram-stain-negative, yellow-pigmented, motile, flagellated and rod-shaped bacterium, designated as 13AT, was isolated from a river sediment sample of Fuyang River in Hengshui City, Hebei Province, PR China. Strain 13AT grew at 10-37 °C (optimum, 30 °C), at pH 5.0-11.0 (optimum, pH 7.0) and at 0-7 % (w/v) NaCl concentration (optimum, 0 %). Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain 13AT belongs to the genus Lysobacter, and was most closely related to Lysobacter spongiicola DSM 21749T (97.8 %), Lysobacter concretionis DSM 16239T (97.5 %), Lysobacter daejeonensis GIM 1.690T (97.3 %) and Lysobacter arseniciresistens CGMCC 1.10752T (96.9 %). Meanwhile, the type species Lysobacter enzymogenes ATCC 29487T was selected as a reference strain (95.2 %). The genomic size of strain 13AT was 3.0 Mb and the DNA G+C content was 69.0 %. The average nucleotide identity values between strain 13AT and each of the reference type strains L. spongiicola DSM 21749T, L. concretionis DSM 16239T, L. daejeonensis GIM 1.690T, L. arseniciresistens CGMCC 1.10752T and L. enzymogenes ATCC 29487T were 75.9, 76.1, 77.7, 78.0 and 73.2 %, respectively. The digital DNA-DNA hybridization values between strain 13AT and each of the reference type strains were 21.7, 22.2, 21.9, 22.7 and 23.2 %, respectively. The average amino acid identity values between strain 13AT and each of the reference type strains were 72.5, 72.9, 72.3, 75.0 and 69.2 %, respectively. The major fatty acids were iso-C15 : 0, iso-C16 : 0 and summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl). The sole respiratory quinone was identified as ubiquinone-8. The polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid, an unidentified lipid, four unidentified phospholipids and two unidentified glycolipids. Based on the phenotypic, physiological, phylogenetic and chemotaxonomic data, strain 13AT represents a novel species of the genus Lysobacter, for which the name Lysobacter selenitireducens sp. nov. is proposed. The type strain is 13AT (=JCM 34786T=GDMCC 1.2722T).


Sujet(s)
ADN bactérien , Lysobacter , Lysobacter/génétique , ARN ribosomique 16S/génétique , Ubiquinones/composition chimique , Phylogenèse , Phosphatidyléthanolamine/métabolisme , Composition en bases nucléiques , Rivières , Chlorure de sodium , Cardiolipides , Microbiologie du sol , ADN bactérien/génétique , Acides gras/composition chimique , Techniques de typage bactérien , Analyse de séquence d'ADN , Phospholipides/composition chimique , Glycolipides/analyse , Acides aminés/métabolisme , Nucléotides
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...