Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 16.769
Filtrer
1.
Elife ; 132024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39150053

RÉSUMÉ

Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.


People with diabetes are at greater risk of developing severe COVID-19 and dying from the illness, which is caused by a virus known as SARS-CoV-2. The high blood sugar levels associated with diabetes appear to be a contributing factor to this heightened risk. However, diabetes is a complex condition encompassing a range of metabolic disorders, and it is therefore likely that other factors may contribute. Previous research identified a link between an enzyme called cathepsin L and more severe COVID-19 in people with diabetes. Elevated cathepsin L levels are known to contribute to diabetes complications, such as kidney damage and vision loss. It has also been shown that cathepsin L helps SARS-CoV-2 to enter and infect cells. This raised the question of whether elevated cathepsin L is responsible for the increased COVID-19 vulnerability in patients with diabetes. To investigate, He, Zhao et al. monitored disease severity and cathepsin L levels in patients with COVID-19. This confirmed that people with diabetes had more severe COVID-19 and that higher levels of cathepsin L are linked to more severe disease. Analysis also revealed that cathepsin L activity increases as blood glucose levels increase. In laboratory experiments, cells exposed to glucose or fluid from the blood of people with diabetes were more easily infected with SARS-CoV-2, with cells genetically modified to lack cathepsin L being more resistant to infection. Further experiments revealed this was due to glucose promoting maturation and migration of cathepsin L in the cells. The findings of He, Zhao et al. help to explain why people with diabetes are more likely to develop severe or fatal COVID-19. Therefore, controlling blood glucose levels in people with diabetes may help to prevent or reduce the severity of the disease. Additionally, therapies targeting cathepsin L could also potentially help to treat COVID-19, especially in patients with diabetes, although more research is needed to develop and test these treatments.


Sujet(s)
COVID-19 , Cathepsine L , Hyperglycémie , SARS-CoV-2 , COVID-19/mortalité , COVID-19/métabolisme , Cathepsine L/métabolisme , Cathepsine L/génétique , Humains , Animaux , Souris , SARS-CoV-2/génétique , Mâle , Femelle , Complications du diabète , Adulte d'âge moyen , Comorbidité , Diabète , Réticulum endoplasmique/métabolisme , Lysosomes/métabolisme , Adulte , Sujet âgé , Appareil de Golgi/métabolisme
2.
J Neuroinflammation ; 21(1): 198, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39118084

RÉSUMÉ

Astrocytes respond and contribute to neuroinflammation by adopting inflammatory reactive states. Although recent efforts have characterized the gene expression signatures associated with these reactive states, the cell biology underlying inflammatory reactive astrocyte phenotypes remains under-explored. Here, we used CRISPR-based screening in human iPSC-derived astrocytes to identify mTOR activation a driver of cytokine-induced endolysosomal system remodeling, manifesting as alkalinization of endolysosomal compartments, decreased autophagic flux, and increased exocytosis of certain endolysosomal cargos. Through endolysosomal proteomics, we identified and focused on one such cargo-IL-32, a disease-associated pro-inflammatory cytokine not present in rodents, whose secretion mechanism is not well understood. We found that IL-32 was partially secreted in extracellular vesicles likely to be exosomes. Furthermore, we found that IL-32 was involved in the polarization of inflammatory reactive astrocyte states and was upregulated in astrocytes in multiple sclerosis lesions. We believe that our results advance our understanding of cell biological pathways underlying inflammatory reactive astrocyte phenotypes and identify potential therapeutic targets.


Sujet(s)
Astrocytes , Exosomes , Interleukines , Lysosomes , Sérine-thréonine kinases TOR , Astrocytes/métabolisme , Humains , Exosomes/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Lysosomes/métabolisme , Interleukines/métabolisme , Endosomes/métabolisme , Cellules souches pluripotentes induites/métabolisme , Cellules cultivées , Maladies neuro-inflammatoires/métabolisme , Maladies neuro-inflammatoires/anatomopathologie , Inflammation/métabolisme , Inflammation/anatomopathologie
3.
Theranostics ; 14(11): 4481-4498, 2024.
Article de Anglais | MEDLINE | ID: mdl-39113807

RÉSUMÉ

Rationale: Since oncogene expression products often exhibit upregulation or abnormally activated activity, developing a technique to regulate abnormal protein levels represent a viable approach for treating tumors and protein abnormality-related diseases. Methods: We first screened out eMIATAC components with high targeted degradation efficiency and explored the mechanism by which eMIATAC induced target protein degradation, and verified the degradation efficiency of the target protein by protein imprinting and flow cytometry. Next, we recombined eMIATAC with some controllable elements to verify the regulatable degradation performance of the target protein. Subsequently, we constructed eMIATAC that can express targeted degradation of AKT1 and verified its effect on GBM cell development in vitro and in vivo. Finally, we concatenated eMIATAC with CAR sequences to construct CAR-T cells with low BATF protein levels and verified the changes in their anti-tumor efficacy. Results: we developed a system based on the endosome-microautophagy-lysosome pathway for degrading endogenous proteins: endosome-MicroAutophagy TArgeting Chimera (eMIATAC), dependent on Vps4A instead of lysosomal-associated membrane protein 2A (LAMP2A) to bind to the chaperone Hsc70 and the protein of interest (POI). The complex was then transported to the lysosome by late endosomes, where degradation occurred similarly to microautophagy. The eMIATACs demonstrated accuracy, efficiency, reversibility, and controllability in degrading the target protein EGFP. Moreover, eMIATAC exhibited excellent performance in knocking down POI when targeting endogenous proteins in vivo and in vitro. Conclusions: The eMIATACs could not only directly knock down abnormal proteins for glioma treatment but also enhance the therapeutic effect of CAR-T cell therapy for tumors by knocking down T cell exhaustion-related proteins. The newly developed eMIATAC system holds promise as a novel tool for protein knockdown strategies. By enabling direct control over endogenous protein levels, eMIATAC has the potential to revolutionize treatment for cancer and genetic diseases.


Sujet(s)
Autophagie , Endosomes , Immunothérapie adoptive , Protéolyse , Humains , Animaux , Endosomes/métabolisme , Lignée cellulaire tumorale , Souris , Immunothérapie adoptive/méthodes , Récepteurs chimériques pour l'antigène/métabolisme , Glioblastome/thérapie , Glioblastome/métabolisme , Glioblastome/anatomopathologie , Protéine de membrane-2 associée au lysosome/métabolisme , Protéine de membrane-2 associée au lysosome/génétique , Tests d'activité antitumorale sur modèle de xénogreffe , Protéines du choc thermique HSC70/métabolisme , Lysosomes/métabolisme , Lymphocytes T/métabolisme
4.
FASEB J ; 38(15): e23870, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39120151

RÉSUMÉ

Hematopoietic stem and progenitor cells (HSPCs) are successfully employed for hematological transplantations, and impaired HSPC function causes hematological diseases and aging. HSPCs maintain the lifelong homeostasis of blood and immune cells through continuous self-renewal and maintenance of the multilineage differentiation potential. TMEM106B is a transmembrane protein localized on lysosomal membranes and associated with neurodegenerative and cardiovascular diseases; however, its roles in HSPCs and hematopoiesis are unknown. Here, we established tmem106bb-/- knockout (KO) zebrafish and showed that tmem106bb KO reduced the proliferation of HSPCs during definitive hematopoiesis. The differentiation potential of HSPCs to lymphoid lineage was reduced, whereas the myeloid and erythroid differentiation potentials of HPSCs were increased in tmem106bb-/- zebrafish. Similar results were obtained with morpholino knockdown of tmem106bb. Mechanistically, TMEM106B interacted with LAMP2A, the lysosomal associated membrane protein 2A, impaired LAMP2A-Cathepsin A interaction, and enhanced LAMP2A stability; tmem106bb KO or TMEM106B knockdown caused LAMP2A degradation and impairment of chaperone-mediated autophagy (CMA). Knockdown of lamp2a caused similar phenotypes to that in tmem106bb-/- zebrafish, and overexpression of lamp2a rescued the impaired phenotypes of HSPCs in tmem106bb-/- embryos. These results uncover a novel molecular mechanism for the maintenance of HSPC proliferation and differentiation through stabilizing LAMP2A via TMEM106B-LAMP2A interaction.


Sujet(s)
Différenciation cellulaire , Prolifération cellulaire , Cellules souches hématopoïétiques , Protéine de membrane-2 associée au lysosome , Protéines membranaires , Danio zébré , Animaux , Protéine de membrane-2 associée au lysosome/métabolisme , Protéine de membrane-2 associée au lysosome/génétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Cellules souches hématopoïétiques/métabolisme , Cellules souches hématopoïétiques/cytologie , Protéines de poisson-zèbre/génétique , Protéines de poisson-zèbre/métabolisme , Lysosomes/métabolisme , Humains , Hématopoïèse/physiologie
5.
Nat Commun ; 15(1): 6993, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39143098

RÉSUMÉ

RNA interference (RNAi) is a gene-silencing mechanism triggered by the cytosolic entry of double-stranded RNAs (dsRNAs). Many animal cells internalize extracellular dsRNAs via endocytosis for RNAi induction. However, it is not clear how the endocytosed dsRNAs are translocated into the cytosol across the endo/lysosomal membrane. Herein, we show that in Drosophila S2 cells, endocytosed dsRNAs induce lysosomal membrane permeabilization (LMP) that allows cytosolic dsRNA translocation. LMP mediated by dsRNAs requires the lysosomal Cl-/H+ antiporter ClC-b/DmOstm1. In clc-b or dmostm1 knockout S2 cells, extracellular dsRNAs are endocytosed and reach the lysosomes normally but fail to enter the cytosol. Pharmacological induction of LMP restores extracellular dsRNA-directed RNAi in clc-b or dmostm1-knockout cells. Furthermore, clc-b or dmostm1 mutant flies are defective in extracellular dsRNA-directed RNAi and its associated antiviral immunity. Therefore, endocytosed dsRNAs have an intrinsic ability to induce ClC-b/DmOstm1-dependent LMP that allows cytosolic dsRNA translocation for RNAi responses in Drosophila cells.


Sujet(s)
Cytosol , Protéines de Drosophila , Endocytose , Lysosomes , Interférence par ARN , ARN double brin , Animaux , ARN double brin/métabolisme , Lysosomes/métabolisme , Cytosol/métabolisme , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Drosophila melanogaster/métabolisme , Drosophila melanogaster/génétique , Canaux chlorure/métabolisme , Canaux chlorure/génétique , Lignée cellulaire , Membranes intracellulaires/métabolisme , Perméabilité , Drosophila/métabolisme , Drosophila/génétique
6.
Cell Mol Life Sci ; 81(1): 362, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39162859

RÉSUMÉ

Disease-modifying strategies for Parkinson disease (PD), the most common synucleinopathy, represent a critical unmet medical need. Accumulation of the neuronal protein alpha-synuclein (αS) and abnormal lipid metabolism have each been implicated in PD pathogenesis. Here, we elucidate how retinoid-X-receptor (RXR) nuclear receptor signaling impacts these two aspects of PD pathogenesis. We find that activated RXR differentially regulates fatty acid desaturases, significantly reducing the transcript levels of the largely brain-specific desaturase SCD5 in human cultured neural cells and PD patient-derived neurons. This was associated with reduced perilipin-2 protein levels in patient neurons, reversal of αS-induced increases in lipid droplet (LD) size, and a reduction of triglyceride levels in human cultured cells. With regard to αS proteostasis, our study reveals that RXR agonism stimulates lysosomal clearance of αS. Our data support the involvement of Polo-like kinase 2 activity and αS S129 phosphorylation in mediating this benefit. The lowering of cellular αS levels was associated with reduced cytotoxicity. Compared to RXR activation, the RXR antagonist HX531 had the opposite effects on LD size, SCD, αS turnover, and cytotoxicity, all supporting pathway specificity. Together, our findings show that RXR-activating ligands can modulate fatty acid metabolism and αS turnover to confer benefit in cellular models of PD, including patient neurons. We offer a new paradigm to investigate nuclear receptor ligands as a promising strategy for PD and related synucleinopathies.


Sujet(s)
Métabolisme lipidique , Lysosomes , Neurones , Récepteurs X des rétinoïdes , Transduction du signal , alpha-Synucléine , alpha-Synucléine/métabolisme , Humains , Lysosomes/métabolisme , Neurones/métabolisme , Neurones/anatomopathologie , Récepteurs X des rétinoïdes/métabolisme , Récepteurs X des rétinoïdes/génétique , Maladie de Parkinson/métabolisme , Maladie de Parkinson/anatomopathologie , Synucléinopathies/métabolisme , Synucléinopathies/anatomopathologie , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Cellules cultivées , Périlipine-2/métabolisme , Périlipine-2/génétique , Phosphorylation
7.
Cell Mol Life Sci ; 81(1): 349, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39136771

RÉSUMÉ

Multiple myeloma (MM) is the second most common hematological tumor in adults. Immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide (Len), are effective drugs for the treatment of multiple myeloma. Len can recruit IKZF1 and IKZF3 to cereblon (CRBN), a substrate receptor of the cullin 4-RING E3 ligase (CRL4), promote their ubiquitination and degradation, and finally inhibit the proliferation of myeloma cells. However, MM patients develop resistance to IMiDs over time, leading to disease recurrence and deterioration. To explore the possible approaches that may enhance the sensitivity of IMiDs to MM, in this study, we used the proximity labeling technique TurboID and quantitative proteomics to identify Lys-63-specific deubiquitinase BRCC36 as a CRBN-interacting protein. Biochemical experiments demonstrated that BRCC36 in the BRISC complex protects CRBN from lysosomal degradation by specifically cleaving the K63-linked polyubiquitin chain on CRBN. Further studies found that a small-molecule compound SHIN1, which binds to BRISC complex subunit SHMT2, can upregulate CRBN by elevating BRCC36. The combination of SHIN1 and Len can further increase the sensitivity of MM cells to IMiDs. Therefore, this study provides the basis for the exploration of a possible strategy for the SHIN1 and Len combination treatment for MM.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Lénalidomide , Lysosomes , Myélome multiple , Ubiquitin-protein ligases , Humains , Myélome multiple/anatomopathologie , Myélome multiple/traitement médicamenteux , Myélome multiple/métabolisme , Lénalidomide/pharmacologie , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Lysosomes/métabolisme , Lysosomes/effets des médicaments et des substances chimiques , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Lignée cellulaire tumorale , Ubiquitination/effets des médicaments et des substances chimiques , Protéolyse/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Enzymes de désubiquitinylation/métabolisme , Enzymes de désubiquitinylation/antagonistes et inhibiteurs
8.
Future Med Chem ; 16(13): 1287-1298, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-39109433

RÉSUMÉ

Aim: Lysosomal pH changes are associated with drug resistance, cell growth and invasion of tumors, but effective and specific real-time monitoring of lysosomal pH compounds for cancer therapy is lacking. Materials & methods: Here, based on the covalent linkage of the anticancer drug palbociclib and fluorescent dye fluorescein isothiocyanate (FITC), we designed and developed a novel palbociclib-derived multifunctional molecule (Pal-FITC) for lysosomal targeting and diagnostic therapeutic integration. Results & discussion: Pal-FITC fluoresces is 20-fold stronger than that of FITC and shows a linear response in the pH range of 4.0-8.2 (R2 = 0.9901). Pal-FITC blocks cells in G1 phase via Cyclin D-CDK4/6-Rb. Conclusion: Our study provides new strategies for tumor-targeted imaging and personalized therapy.


Based on the covalent linkage of the anticancer drug and the fluorescent dye, we designed and developed a novel palbociclib-derived multifunctional molecule (Pal-FITC) for lysosomal targeting and diagnostic therapeutic integration. Pal-FITC responded linearly in the pH range of 4.0­8.2. In addition, Pal-FITC was able to effectively treat lung cancer without toxic side effects on normal cells. It has a significant cell cycle blocking phenomenon and blocks G1 phase cells via Cyclin D-CDK4/6-Rb. Our study provides a new strategy for tumor-targeted imaging and personalized therapy.


Sujet(s)
Antinéoplasiques , Lysosomes , Pipérazines , Pyridines , Humains , Pyridines/composition chimique , Pyridines/pharmacologie , Lysosomes/métabolisme , Pipérazines/composition chimique , Pipérazines/pharmacologie , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Colorants fluorescents/composition chimique , Colorants fluorescents/pharmacologie , Colorants fluorescents/synthèse chimique , Fluorescéine-5-isothiocyanate/composition chimique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Concentration en ions d'hydrogène , Lignée cellulaire tumorale , Kinase-4 cycline-dépendante/antagonistes et inhibiteurs , Kinase-4 cycline-dépendante/métabolisme , Structure moléculaire
9.
Molecules ; 29(15)2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39125026

RÉSUMÉ

Safety and effectiveness are the cornerstone objectives of nanomedicine in developing nanotherapies. It is crucial to understand the biological interactions between nanoparticles and immune cells. This study focuses on the manufacture by the microfluidic technique of N-trimethyl chitosan/protein nanocarriers and their interaction with J774 cells to elucidate the cellular processes involved in absorption and their impact on the immune system, mainly through endocytosis, activation of lysosomes and intracellular degradation. TEM of the manufactured nanoparticles showed spherical morphology with an average diameter ranging from 36 ± 16 nm to 179 ± 92 nm, depending on the concentration of the cargo protein (0, 12, 55 µg/mL). FTIR showed the crosslinking between N-trimethyl chitosan and the sodium tripolyphosphate and the α-helix binding loss of BSA. TGA revealed an increase in the thermal stability of N-trimethyl chitosan/protein nanoparticles compared with the powder. The encapsulation of the cargo protein used was demonstrated using XPS. Their potential to improve cell permeability and use as nanocarriers in future vaccine formulations was demonstrated. The toxicity of the nanoparticles in HaCaT and J774 cells was studied, as well as the importance of evaluating the differentiation status of J774 cells. Thus, possible endocytosis pathways and their impact on the immune response were discussed. This allowed us to conclude that N-trimethyl chitosan nanoparticles show potential as carriers for the immune system. Still, more studies are required to understand their effectiveness and possible use in therapies.


Sujet(s)
Chitosane , Endocytose , Lysosomes , Nanoparticules , Chitosane/composition chimique , Lysosomes/métabolisme , Endocytose/effets des médicaments et des substances chimiques , Nanoparticules/composition chimique , Animaux , Souris , Lignée cellulaire , Humains , Vecteurs de médicaments/composition chimique , Taille de particule , Sérumalbumine bovine/composition chimique , Survie cellulaire/effets des médicaments et des substances chimiques
10.
J Cell Biol ; 223(9)2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39133205

RÉSUMÉ

Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.


Sujet(s)
Endosomes , Exocytose , Lysosomes , Transport des protéines , Lysosomes/métabolisme , Humains , Animaux , Endosomes/métabolisme , Appareil de Golgi/métabolisme , Réticulum endoplasmique/métabolisme , Protéines/métabolisme , Voie de sécrétion
11.
Methods Mol Biol ; 2845: 79-93, 2024.
Article de Anglais | MEDLINE | ID: mdl-39115659

RÉSUMÉ

Mitophagy is the degradation of mitochondria via the autophagy-lysosome system, disruption of which has been linked to multiple neurodegenerative diseases. As a flux process involving the identification, tagging, and degradation of subcellular components, the analysis of mitophagy benefits from the microscopy analysis of fluorescent reporters. Studying the pathogenic mechanisms of disease also benefits from analysis in animal models in order to capture the complex interplay of molecular and cell biological phenomena. Here, we describe protocols to analyze mitophagy reporters in Drosophila by light microscopy.


Sujet(s)
Mitochondries , Mitophagie , Animaux , Mitochondries/métabolisme , Gènes rapporteurs , Drosophila/métabolisme , Microscopie de fluorescence/méthodes , Drosophila melanogaster/métabolisme , Lysosomes/métabolisme , Autophagie/physiologie , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique
12.
Methods Mol Biol ; 2845: 67-77, 2024.
Article de Anglais | MEDLINE | ID: mdl-39115658

RÉSUMÉ

The autophagy-lysosomal pathway enables the controlled degradation of cellular contents. Nucleophagy is the selective autophagic recycling of nuclear components upon delivery to the lysosome. Although methods to monitor and quantify autophagy as well as selective types of autophagy have been developed and implemented in cells and in vivo, methods monitoring nucleophagy remain scarce. Here, we describe a procedure to monitor the autophagic engagement of an endogenous nuclear envelope component, i.e., ANC-1, the nematode homologue of the mammalian Nesprins in vivo, utilizing super-resolution microscopy.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Animaux , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Autophagie/physiologie , Lysosomes/métabolisme , Enveloppe nucléaire/métabolisme , Noyau de la cellule/métabolisme , Macroautophagie
13.
Methods Mol Biol ; 2845: 95-108, 2024.
Article de Anglais | MEDLINE | ID: mdl-39115660

RÉSUMÉ

Selective autophagy of protein aggregates, called aggrephagy, is vital for maintaining cellular homeostasis. Classically, studying aggrephagy has been challenging due to the infrequent occurrence of autophagic events and the lack of control over the specificity and timing of protein aggregation. We previously reported two variants of a PIM (particles induced by multimerization) assay that enable the formation of chemically induced, fluorescently labeled protein aggregates in cells. PIMs are recognized by the selective autophagy machinery and are subsequently degraded in the lysosome. By making use of pH-sensitive fluorescent proteins, such as GFP or mKeima, the PIM assay allows for direct visualization of aggregate clearance in cells. Here, we describe a protocol for the use of the PIM assay to study aggrephagy in live and fixed cells.


Sujet(s)
Autophagie , Agrégats de protéines , Humains , Multimérisation de protéines , Lysosomes/métabolisme , Protéines à fluorescence verte/métabolisme , Protéines à fluorescence verte/génétique
14.
Methods Mol Biol ; 2845: 177-189, 2024.
Article de Anglais | MEDLINE | ID: mdl-39115666

RÉSUMÉ

Ferritinophagy is a selective form of autophagy in which ferritin, the primary intracellular iron storage protein complex, is targeted by NCOA4 (Nuclear receptor coactivator 4) to the lysosome for degradation. NCOA4-mediated ferritinophagy plays a crucial role in cellular iron metabolism, influencing iron homeostasis, heme synthesis, mitochondrial respiratory function, and ferroptosis, an iron-dependent form of cell death. Targeting ferritinophagy has emerged as a potential anticancer therapeutic strategy. In this context, we provide a flowchart of the procedures and accompanying protocols for monitoring ferritinophagic flux.


Sujet(s)
Autophagie , Ferritines , Coactivateurs de récepteurs nucléaires , Coactivateurs de récepteurs nucléaires/métabolisme , Coactivateurs de récepteurs nucléaires/génétique , Ferritines/métabolisme , Humains , Fer/métabolisme , Lysosomes/métabolisme , Animaux
15.
J Cell Biol ; 223(11)2024 Nov 04.
Article de Anglais | MEDLINE | ID: mdl-39120584

RÉSUMÉ

Aggressive solid malignancies, including pancreatic ductal adenocarcinoma (PDAC), can exploit lysosomal exocytosis to modify the tumor microenvironment, enhance motility, and promote invasiveness. However, the molecular pathways through which lysosomal functions are co-opted in malignant cells remain poorly understood. In this study, we demonstrate that inositol polyphosphate 4-phosphatase, Type II (INPP4B) overexpression in PDAC is associated with PDAC progression. We show that INPP4B overexpression promotes peripheral dispersion and exocytosis of lysosomes resulting in increased migratory and invasive potential of PDAC cells. Mechanistically, INPP4B overexpression drives the generation of PtdIns(3,5)P2 on lysosomes in a PIKfyve-dependent manner, which directs TRPML-1 to trigger the release of calcium ions (Ca2+). Our findings offer a molecular understanding of the prognostic significance of INPP4B overexpression in PDAC through the discovery of a novel oncogenic signaling axis that orchestrates migratory and invasive properties of PDAC via the regulation of lysosomal phosphoinositide homeostasis.


Sujet(s)
Carcinome du canal pancréatique , Mouvement cellulaire , Exocytose , Lysosomes , Invasion tumorale , Tumeurs du pancréas , Phosphatidylinositol 3-kinases , Phosphoric monoester hydrolases , Canaux cationiques TRP , Animaux , Humains , Mâle , Souris , Calcium/métabolisme , Carcinome du canal pancréatique/anatomopathologie , Carcinome du canal pancréatique/génétique , Carcinome du canal pancréatique/métabolisme , Lignée cellulaire tumorale , Mouvement cellulaire/génétique , Lysosomes/métabolisme , Tumeurs du pancréas/anatomopathologie , Tumeurs du pancréas/génétique , Tumeurs du pancréas/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Phosphatidylinositol 3-kinases/génétique , Phosphates phosphatidylinositol/métabolisme , Phosphoric monoester hydrolases/métabolisme , Phosphoric monoester hydrolases/génétique , Canaux cationiques TRP/métabolisme , Canaux cationiques TRP/génétique
16.
Nat Commun ; 15(1): 7237, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39174543

RÉSUMÉ

Existing strategies use bifunctional chimaeras to mediate extracellular protein degradation. However, these strategies rely on specific lysosome-trafficking receptors to facilitate lysosomal delivery, which may raise resistance concerns due to intrinsic cell-to-cell variation in receptor expression and mutations or downregulation of the receptors. Another challenge is establishing a universal platform applicable in multiple scenarios. Here, we develop MONOTAB (MOdified NanOparticle with TArgeting Binders), a plug-and-play monofunctional degradation platform that can drag extracellular targets into lysosomes for degradation. MONOTAB harnesses the inherent lysosome-targeting ability of certain nanoparticles to obviate specific receptor dependency and the hook effect. To achieve high modularity and programmable target specificity, we utilize the streptavidin-biotin interaction to immobilize antibodies or other targeting molecules on nanoparticles, through an antibody mounting approach or by direct binding. Our study reveals that MONOTAB can induce efficient degradation of diverse therapeutic targets, including membrane proteins, secreted proteins, and even extracellular vesicles.


Sujet(s)
Vésicules extracellulaires , Lysosomes , Nanoparticules , Protéolyse , Vésicules extracellulaires/métabolisme , Humains , Lysosomes/métabolisme , Nanoparticules/composition chimique , Nanoparticules/métabolisme , Streptavidine/métabolisme , Streptavidine/composition chimique , Animaux , Biotine/métabolisme , Biotine/composition chimique , Cellules HEK293
17.
Dev Cell ; 59(16): 2035-2052.e10, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39094564

RÉSUMÉ

Protein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation. The mechanisms initiating ER-phagy in response to ER proteostasis defects are not well understood. By studying mouse primary cells and patient samples as a model of ER storage disorders (ERSDs), we show that accumulation of faulty products within the ER triggers a response involving SESTRIN2, a nutrient sensor controlling mTORC1 signaling. SESTRIN2 induction by XBP1 inhibits mTORC1's phosphorylation of TFEB/TFE3, allowing these transcription factors to enter the nucleus and upregulate the ER-phagy receptor FAM134B along with lysosomal genes. This response promotes ER-phagy of misfolded proteins via FAM134B-Calnexin complex. Pharmacological induction of FAM134B improves clearance of misfolded proteins in ERSDs. Our study identifies the interplay between nutrient signaling and ER quality control, suggesting therapeutic strategies for ERSDs.


Sujet(s)
Réticulum endoplasmique , Complexe-1 cible mécanistique de la rapamycine , Pliage des protéines , Protéine-1 liant la boite X , Animaux , Réticulum endoplasmique/métabolisme , Humains , Souris , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Protéine-1 liant la boite X/métabolisme , Protéine-1 liant la boite X/génétique , Transduction du signal , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Protéines et peptides de signalisation intracellulaire/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Lysosomes/métabolisme , Stress du réticulum endoplasmique , Sestrines/métabolisme , Sestrines/génétique , Phosphorylation , Homéostasie protéique , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines
18.
J Am Chem Soc ; 146(33): 23230-23239, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39116214

RÉSUMÉ

TMEM175 is a lysosomal potassium and proton channel that is associated with the development of Parkinson's disease. Advances in understanding the physiological roles of TMEM175 have been hampered by the absence of selective inhibitors, and studies involving genetic perturbations have yielded conflicting results. Here, we report the discovery and characterization of the first reported TMEM175-selective inhibitors, 2-phenylpyridin-4-ylamine (2-PPA), and AP-6. Cryo-EM structures of human TMEM175 bound by 2-PPA and AP-6 reveal that they act as pore blockers, binding at distinct sites in the pore and occluding the ion permeation pathway. Acute inhibition of TMEM175 by 2-PPA or AP-6 increases the level of lysosomal macromolecule catabolism, thereby accelerating macropinocytosis and other digestive processes. These inhibitors may serve as valuable tools to study the roles of TMEM175 in regulating lysosomal function and provide useful templates for future therapeutic development in Parkinson's disease.


Sujet(s)
Lysosomes , Maladie de Parkinson , Humains , Maladie de Parkinson/traitement médicamenteux , Maladie de Parkinson/métabolisme , Lysosomes/métabolisme , Découverte de médicament , Canaux ioniques/antagonistes et inhibiteurs , Canaux ioniques/métabolisme , Canaux ioniques/composition chimique , Pyridines/composition chimique , Pyridines/pharmacologie , Modèles moléculaires , Cryomicroscopie électronique , Canaux potassiques
19.
Nat Commun ; 15(1): 6922, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39134545

RÉSUMÉ

Compensation and intracellular storage of PD-L1 may compromise the efficacy of antibody drugs targeting the conformational blockade of PD1/PD-L1 on the cell surface. Alternative therapies aiming to reduce the overall cellular abundance of PD-L1 thus might overcome resistance to conventional immune checkpoint blockade. Here we show by bioinformatics analysis that colon adenocarcinoma (COAD) with high microsatellite instability (MSI-H) presents the most promising potential for this therapeutic intervention, and that overall PD-L1 abundance could be controlled via HSC70-mediated lysosomal degradation. Proteomic and metabolomic analyses of mice COAD with MSI-H in situ unveil a prominent acidic tumor microenvironment. To harness these properties, an artificial protein, IgP ß, is engineered using pH-responsive peptidic foldamers. This features customized peptide patterns and designed molecular function to facilitate interaction between neoplastic PD-L1 and HSC70. IgP ß effectively reduces neoplastic PD-L1 levels via HSC70-mediated lysosomal degradation, thereby persistently revitalizing the action of tumor-infiltrating CD8 + T cells. Notably, the anti-tumor effect of lysosomal-degradation-based therapy surpasses that of antibody-based immune checkpoint blockade for MSI-H COAD in multiple mouse models. The presented strategy expands the use of peptidic foldamers in discovering artificial protein drugs for targeted cancer immunotherapy.


Sujet(s)
Adénocarcinome , Antigène CD274 , Tumeurs du côlon , Lysosomes , Instabilité des microsatellites , Lymphocytes T cytotoxiques , Microenvironnement tumoral , Animaux , Femelle , Humains , Souris , Adénocarcinome/immunologie , Adénocarcinome/génétique , Adénocarcinome/anatomopathologie , Adénocarcinome/métabolisme , Antigène CD274/métabolisme , Antigène CD274/immunologie , Antigène CD274/génétique , Lignée cellulaire tumorale , Tumeurs du côlon/immunologie , Tumeurs du côlon/génétique , Tumeurs du côlon/anatomopathologie , Tumeurs du côlon/traitement médicamenteux , Tumeurs du côlon/métabolisme , Inhibiteurs de points de contrôle immunitaires/pharmacologie , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique , Lymphocytes TIL/immunologie , Lymphocytes TIL/métabolisme , Lysosomes/métabolisme , Protéolyse/effets des médicaments et des substances chimiques , Lymphocytes T cytotoxiques/immunologie , Microenvironnement tumoral/effets des médicaments et des substances chimiques
20.
Adv Sci (Weinh) ; 11(31): e2308307, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39166458

RÉSUMÉ

Aloperine (ALO), a quinolizidine-type alkaloid isolated from a natural Chinese herb, has shown promising antitumor effects. Nevertheless, its common mechanism of action and specific target remain elusive. Here, it is demonstrated that ALO inhibits the proliferation and migration of non-small cell lung cancer cell lines in vitro and the tumor development in several mouse tumor models in vivo. Mechanistically, ALO inhibits the fusion of autophagosomes with lysosomes and the autophagic flux, leading to the accumulation of sequestosome-1 (SQSTM1) and production of reactive oxygen species (ROS), thereby inducing tumor cell apoptosis and preventing tumor growth. Knockdown of SQSTM1 in cells inhibits ROS production and reverses ALO-induced cell apoptosis. Furthermore, VPS4A is identified as a direct target of ALO, and the amino acids F153 and D263 of VPS4A are confirmed as the binding sites for ALO. Knockout of VPS4A in H1299 cells demonstrates a similar biological effect as ALO treatment. Additionally, ALO enhances the efficacy of the anti-PD-L1/TGF-ß bispecific antibody in inhibiting LLC-derived subcutaneous tumor models. Thus, ALO is first identified as a novel late-stage autophagy inhibitor that triggers tumor cell death by targeting VPS4A.


Sujet(s)
Autophagosomes , Carcinome pulmonaire non à petites cellules , Tumeurs du poumon , Lysosomes , Quinolizidines , Animaux , Souris , Carcinome pulmonaire non à petites cellules/métabolisme , Carcinome pulmonaire non à petites cellules/traitement médicamenteux , Carcinome pulmonaire non à petites cellules/génétique , Carcinome pulmonaire non à petites cellules/anatomopathologie , Humains , Autophagosomes/métabolisme , Autophagosomes/effets des médicaments et des substances chimiques , Tumeurs du poumon/métabolisme , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/génétique , Tumeurs du poumon/anatomopathologie , Lysosomes/métabolisme , Lysosomes/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Quinolizidines/pharmacologie , Modèles animaux de maladie humaine , Protéines du transport vésiculaire/métabolisme , Protéines du transport vésiculaire/génétique , Évolution de la maladie , Prolifération cellulaire/effets des médicaments et des substances chimiques , Autophagie/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE