Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 338
Filtrer
1.
Differentiation ; 138: 100782, 2024.
Article de Anglais | MEDLINE | ID: mdl-38810379

RÉSUMÉ

The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous. To better understand the mechanisms necessary for the patterning of mandibular musculoskeletal tissues we utilized the avian mutant talpid2 (ta2) which presents with several malformations of the facial skeleton including dysplastic tendons, mispatterned musculature, and bilateral ectopic cartilaginous processes extending off Meckel's cartilage. We found an ectopic epithelial BMP signaling domain in the ta2 mandibular prominence (MNP) that correlated with the subsequent expansion of SOX9+ cartilage precursors. These findings were validated with conditional murine models suggesting an evolutionarily conserved mechanism for CNCC-derived musculoskeletal patterning. Collectively, these data support a model in which cilia are required to define epithelial signal centers essential for proper musculoskeletal patterning of CNCC-derived mesenchyme.


Sujet(s)
Mandibule , Crête neurale , Animaux , Crête neurale/cytologie , Crête neurale/métabolisme , Souris , Mandibule/croissance et développement , Mandibule/métabolisme , Plan d'organisation du corps/génétique , Cartilage/métabolisme , Cartilage/croissance et développement , Cartilage/cytologie , Cils vibratiles/métabolisme , Cils vibratiles/génétique , Mésoderme/cytologie , Mésoderme/métabolisme , Mésoderme/croissance et développement , Régulation de l'expression des gènes au cours du développement , Protéines aviaires/génétique , Protéines aviaires/métabolisme , Transduction du signal , Différenciation cellulaire , Embryon de poulet , Poulets/génétique , Facteur de transcription SOX-9/métabolisme , Facteur de transcription SOX-9/génétique
2.
Nature ; 618(7965): 543-549, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37225983

RÉSUMÉ

The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.


Sujet(s)
Nageoires animales , Évolution biologique , Mésoderme , Danio zébré , Animaux , Nageoires animales/anatomie et histologie , Nageoires animales/embryologie , Nageoires animales/croissance et développement , Larve/anatomie et histologie , Larve/croissance et développement , Mésoderme/anatomie et histologie , Mésoderme/embryologie , Mésoderme/croissance et développement , Danio zébré/anatomie et histologie , Danio zébré/embryologie , Danio zébré/croissance et développement , Protéines morphogénétiques osseuses/métabolisme
3.
Physiol Rev ; 103(3): 1899-1964, 2023 07 01.
Article de Anglais | MEDLINE | ID: mdl-36656056

RÉSUMÉ

The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.


Sujet(s)
Régénération osseuse , Mésoderme , Odontogenèse , Ingénierie tissulaire , Perte dentaire , Dent , Dent/croissance et développement , Ingénierie tissulaire/méthodes , Humains , Animaux , Mésoderme/croissance et développement , Perte dentaire/thérapie
4.
Exp Cell Res ; 410(1): 112931, 2022 01 01.
Article de Anglais | MEDLINE | ID: mdl-34798131

RÉSUMÉ

Branchiomeric muscles of the head and neck originate in a population of cranial mesoderm termed cardiopharyngeal mesoderm that also contains progenitor cells contributing to growth of the embryonic heart. Retrospective lineage analysis has shown that branchiomeric muscles share a clonal origin with parts of the heart, indicating the presence of common heart and head muscle progenitor cells in the early embryo. Genetic lineage tracing and functional studies in the mouse, as well as in Ciona and zebrafish, together with recent experiments using single cell transcriptomics and multipotent stem cells, have provided further support for the existence of bipotent head and heart muscle progenitor cells. Current challenges concern defining where and when such common progenitor cells exist in mammalian embryos and how alternative myogenic derivatives emerge in cardiopharyngeal mesoderm. Addressing these questions will provide insights into mechanisms of cell fate acquisition and the evolution of vertebrate musculature, as well as clinical insights into the origins of muscle restricted myopathies and congenital defects affecting craniofacial and cardiac development.


Sujet(s)
Développement embryonnaire/génétique , Coeur/croissance et développement , Mésoderme/croissance et développement , Développement musculaire/génétique , Animaux , Différenciation cellulaire/génétique , Embryon de mammifère , Régulation de l'expression des gènes au cours du développement/génétique , Tête/croissance et développement , Souris , Muscles squelettiques/croissance et développement , Cellules souches/cytologie , Danio zébré/génétique
5.
Exp Cell Res ; 410(1): 112950, 2022 01 01.
Article de Anglais | MEDLINE | ID: mdl-34838813

RÉSUMÉ

Drosophila embryonic somatic muscles represent a simple and tractable model system to study the gene regulatory networks that control diversification of cell types. Somatic myogenesis in Drosophila is initiated by intrinsic action of the mesodermal master gene twist, which activates a cascade of transcriptional outputs including myogenic differentiation factor Mef2, which triggers all aspects of the myogenic differentiation program. In parallel, the expression of a combinatorial code of identity transcription factors (iTFs) defines discrete particular features of each muscle fiber, such as number of fusion events, and specific attachment to tendon cells or innervation, thus ensuring diversification of muscle types. Here, we take the example of a subset of lateral transverse (LT) muscles and discuss how the iTF code and downstream effector genes progressively define individual LT properties such as fusion program, attachment and innervation. We discuss new challenges in the field including the contribution of posttranscriptional and epitranscriptomic regulation of gene expression in the diversification of cell types.


Sujet(s)
Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Développement embryonnaire/génétique , Développement musculaire/génétique , Facteurs de régulation myogènes/génétique , Animaux , Différenciation cellulaire/génétique , Drosophila melanogaster/croissance et développement , Embryon non mammalien , Régulation de l'expression des gènes au cours du développement/génétique , Mésoderme/croissance et développement , Mésoderme/métabolisme , Muscles/métabolisme
6.
PLoS Genet ; 17(12): e1009982, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34928956

RÉSUMÉ

Sonic Hedgehog/GLI3 signaling is critical in regulating digit number, such that Gli3-deficiency results in polydactyly and Shh-deficiency leads to digit number reductions. SHH/GLI3 signaling regulates cell cycle factors controlling mesenchymal cell proliferation, while simultaneously regulating Grem1 to coordinate BMP-induced chondrogenesis. SHH/GLI3 signaling also coordinates the expression of additional genes, however their importance in digit formation remain unknown. Utilizing genetic and molecular approaches, we identified HES1 as a downstream modifier of the SHH/GLI signaling axis capable of inducing preaxial polydactyly (PPD), required for Gli3-deficient PPD, and capable of overcoming digit number constraints of Shh-deficiency. Our data indicate that HES1, a direct SHH/GLI signaling target, induces mesenchymal cell proliferation via suppression of Cdkn1b, while inhibiting chondrogenic genes and the anterior autopod boundary regulator, Pax9. These findings establish HES1 as a critical downstream effector of SHH/GLI3 signaling in the development of PPD.


Sujet(s)
Protéines Hedgehog/génétique , Protéines de tissu nerveux/génétique , Facteur de transcription PAX9/génétique , Polydactylie/génétique , Pouce/malformations , Facteur de transcription HES-1/génétique , Protéine à doigts de zinc Gli3/génétique , Animaux , Division cellulaire/génétique , Prolifération cellulaire/génétique , Chondrogenèse/génétique , Chromatine/génétique , Inhibiteur p27 de kinase cycline-dépendante/génétique , Modèles animaux de maladie humaine , Humains , Bourgeons de membre/croissance et développement , Bourgeons de membre/métabolisme , Mésoderme/croissance et développement , Souris , Polydactylie/anatomopathologie , Pouce/anatomopathologie
7.
Development ; 148(23)2021 12 01.
Article de Anglais | MEDLINE | ID: mdl-34905617

RÉSUMÉ

Development of the Drosophila visceral muscle depends on Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) signaling, which specifies founder cells (FCs) in the circular visceral mesoderm (VM). Although Alk activation by its ligand Jelly Belly (Jeb) is well characterized, few target molecules have been identified. Here, we used targeted DamID (TaDa) to identify Alk targets in embryos overexpressing Jeb versus embryos with abrogated Alk activity, revealing differentially expressed genes, including the Snail/Scratch family transcription factor Kahuli (Kah). We confirmed Kah mRNA and protein expression in the VM, and identified midgut constriction defects in Kah mutants similar to those of pointed (pnt). ChIP and RNA-Seq data analysis defined a Kah target-binding site similar to that of Snail, and identified a set of common target genes putatively regulated by Kah and Pnt during midgut constriction. Taken together, we report a rich dataset of Alk-responsive loci in the embryonic VM and functionally characterize the role of Kah in the regulation of embryonic midgut morphogenesis.


Sujet(s)
Kinase du lymphome anaplasique , Protéines de liaison à l'ADN , Protéines de Drosophila , Développement embryonnaire , Protéines de tissu nerveux , Protéines proto-oncogènes , Facteurs de transcription , Animaux , Kinase du lymphome anaplasique/génétique , Différenciation cellulaire/génétique , Protéines de liaison à l'ADN/génétique , Drosophila melanogaster/génétique , Drosophila melanogaster/croissance et développement , Protéines de Drosophila/génétique , Développement embryonnaire/génétique , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes au cours du développement/génétique , Mésoderme/croissance et développement , Mésoderme/métabolisme , Développement musculaire/génétique , Muscles/métabolisme , Protéines de tissu nerveux/génétique , Protéines proto-oncogènes/génétique , ARN messager/génétique , RNA-Seq , Transduction du signal/génétique , Analyse sur cellule unique , Facteurs de transcription/génétique
8.
Development ; 148(23)2021 12 01.
Article de Anglais | MEDLINE | ID: mdl-34822716

RÉSUMÉ

The node-streak border region comprising notochord progenitor cells (NPCs) at the posterior node and neuro-mesodermal progenitor cells (NMPs) in the adjacent epiblast is the prime organizing center for axial elongation in mouse embryos. The T-box transcription factor brachyury (T) is essential for both formation of the notochord and maintenance of NMPs, and thus is a key regulator of trunk and tail development. The T promoter controlling T expression in NMPs and nascent mesoderm has been characterized in detail; however, control elements for T expression in the notochord have not been identified yet. We have generated a series of deletion alleles by CRISPR/Cas9 genome editing in mESCs, and analyzed their effects in mutant mouse embryos. We identified a 37 kb region upstream of T that is essential for notochord function and tailbud outgrowth. Within that region, we discovered a T-binding enhancer required for notochord cell specification and differentiation. Our data reveal a complex regulatory landscape controlling cell type-specific expression and function of T in NMP/nascent mesoderm and node/notochord, allowing proper trunk and tail development.


Sujet(s)
Développement embryonnaire/génétique , Éléments activateurs (génétique)/génétique , Protéines foetales/génétique , Protéines à domaine boîte-T/génétique , Queue/croissance et développement , Séquence d'acides aminés/génétique , Animaux , Systèmes CRISPR-Cas/génétique , Édition de gène/méthodes , Régulation de l'expression des gènes au cours du développement/génétique , Mésoderme/croissance et développement , Mésoderme/métabolisme , Souris , Cellules souches embryonnaires de souris/cytologie , Cellules souches embryonnaires de souris/métabolisme , Chorde/croissance et développement , Chorde/métabolisme , Régions promotrices (génétique)/génétique , Séquences d'acides nucléiques régulatrices/génétique , Queue/métabolisme
9.
Sci Rep ; 11(1): 18030, 2021 09 09.
Article de Anglais | MEDLINE | ID: mdl-34504115

RÉSUMÉ

The mesoderm is considered the youngest of the three germ layers. Although its morphogenesis has been studied in some metazoans, the molecular components underlying this process remain obscure for numerous phyla including the highly diverse Mollusca. Here, expression of Hairy and enhancer of split (HES), Mox, and myosin heavy chain (MHC) was investigated in Acanthochitona fascicularis, a representative of Polyplacophora with putative ancestral molluscan features. While AfaMHC is expressed throughout myogenesis, AfaMox1 is only expressed during early stages of mesodermal band formation and in the ventrolateral muscle, an autapomorphy of the polyplacophoran trochophore. Comparing our findings to previously published data across Metazoa reveals Mox expression in the mesoderm in numerous bilaterians including gastropods, polychaetes, and brachiopods. It is also involved in myogenesis in molluscs, annelids, tunicates, and craniates, suggesting a dual role of Mox in mesoderm and muscle formation in the last common bilaterian ancestor. AfaHESC2 is expressed in the ectoderm of the polyplacophoran gastrula and later in the mesodermal bands and in putative neural tissue, whereas AfaHESC7 is expressed in the trochoblasts of the gastrula and during foregut formation. This confirms the high developmental variability of HES gene expression and demonstrates that Mox and HES genes are pleiotropic.


Sujet(s)
Pléiotropie , Protéines à homéodomaine/génétique , Mésoderme/métabolisme , Chaînes lourdes de myosine/génétique , Polyplacophora/génétique , Facteur de transcription HES-1/génétique , Animaux , Annelida/classification , Annelida/génétique , Évolution biologique , Gastrulation/génétique , Régulation de l'expression des gènes au cours du développement , Protéines à homéodomaine/métabolisme , Mésoderme/cytologie , Mésoderme/croissance et développement , Morphogenèse/génétique , Chaînes lourdes de myosine/métabolisme , Phylogenèse , Polyplacophora/classification , Polyplacophora/croissance et développement , Polyplacophora/métabolisme , Facteur de transcription HES-1/métabolisme , Urochordata/classification , Urochordata/génétique
10.
Genes (Basel) ; 12(8)2021 08 23.
Article de Anglais | MEDLINE | ID: mdl-34440466

RÉSUMÉ

Mesodermal cells of holothurian Eupentacta fraudatrix can transdifferentiate into enterocytes during the regeneration of the digestive system. In this study, we investigated the expression of several genes involved in gut regeneration in E. fraudatrix. Moreover, the localization of progenitor cells of coelomocytes, juvenile cells, and their participation in the formation of the luminal epithelium of the digestive tube were studied. It was shown that Piwi-positive cells were not involved in the formation of the luminal epithelium of the digestive tube. Ef-72 kDa type IV collagenase and Ef-MMP16 had an individual expression profile and possibly different functions. The Ef-tensilin3 gene exhibited the highest expression and indicates its potential role in regeneration. Ef-Sox9/10 and Ef-Sox17 in E. fraudatrix may participate in the mechanism of transdifferentiation of coelomic epithelial cells. Their transcripts mark the cells that plunge into the connective tissue of the gut anlage and give rise to enterocytes. Ef-Sox9/10 probably controls the switching of mesodermal cells to the enterocyte phenotype, while Ef-Sox17 may be involved in the regulation of the initial stages of transdifferentiation.


Sujet(s)
Système digestif/croissance et développement , Tube digestif/croissance et développement , Régénération/génétique , Concombres de mer/génétique , Animaux , Transdifférenciation cellulaire/génétique , Système digestif/métabolisme , Cellules épithéliales/métabolisme , Tube digestif/métabolisme , Régulation de l'expression des gènes au cours du développement/génétique , Matrix metalloproteinases/génétique , Mésoderme/croissance et développement , Mésoderme/métabolisme , Petit ARN interférent/génétique , Facteurs de transcription SOX/génétique , Concombres de mer/croissance et développement , Inhibiteur tissulaire des métalloprotéinases/génétique
11.
Development ; 148(13)2021 07 01.
Article de Anglais | MEDLINE | ID: mdl-34228796

RÉSUMÉ

The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.


Sujet(s)
Poumon/croissance et développement , Morphogenèse/physiologie , Trachée/croissance et développement , Fistule trachéo-oesophagienne/anatomopathologie , Animaux , Cartilage/croissance et développement , Différenciation cellulaire , Épithélium , Humains , Mésoderme/croissance et développement , Souris , Morphogenèse/génétique , Appareil respiratoire , Trachée/malformations , Trachéomalacie , Transcriptome
12.
Genes Genomics ; 43(9): 1087-1094, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-34302633

RÉSUMÉ

BACKGROUND: In tooth bioengineering for replacement therapy of missing teeth, the utilized cells must possess an inductive signal-forming ability to initiate odontogenesis. This ability is called odontogenic potential. In mice, the odontogenic potential signal is known to be translocated from the epithelium to the mesenchyme at the early bud stage in the developing molar tooth germ. However, the identity of the molecular constituents of this process remains unclear. OBJECTIVE: The purpose of this study is to determine the molecular identity of odontogenic potential and to provide a new perspective in the field of tooth development research. METHODS: In this study, whole transcriptome profiles of the mouse molar tooth germ epithelium and mesenchyme were investigated using the RNA sequencing (RNA-seq) technique. The analyzed transcriptomes corresponded to two developmental stages, embryonic day 11.5 (E11.5) and 14.5 (E14.5), which represent the odontogenic potential shifts. RESULTS: We identified differentially expressed genes (DEGs), which were specifically overexpressed in both the E11.5 epithelium and E14.5 mesenchyme, but not expressed in their respective counterparts. Of the 55 DEGs identified, the top three most expressed transcription factor genes (transcription factor AP-2 beta isoform 3 [TFAP2B], developing brain homeobox protein 2 [DBX2], and insulin gene enhancer protein ISL-1 [ISL1]) and three tooth development-related genes (transcription factor HES-5 [HES5], platelet-derived growth factor D precursor [PDGFD], semaphrin-3 A precursor [SEMA3A]) were selected and validated by quantitative RT-PCR. Using immunofluorescence staining, the TFAP2B protein expression was found to be localized only at the E11.5 epithelium and E14.5 mesenchyme. CONCLUSIONS: Thus, our empirical findings in the present study may provide a new perspective into the characterization of the molecules responsible for the odontogenic potential and may have an implication in the cell-based whole tooth regeneration strategy.


Sujet(s)
Molaire/croissance et développement , Odontogenèse/génétique , Germe dentaire/croissance et développement , Transcriptome/génétique , Animaux , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Épithélium/croissance et développement , Épithélium/métabolisme , Régulation de l'expression des gènes au cours du développement/génétique , Études d'associations génétiques , Protéines à homéodomaine/génétique , Humains , Protéines à homéodomaine LIM/génétique , Lymphokines/génétique , Mésoderme/croissance et développement , Mésoderme/métabolisme , Souris , Molaire/métabolisme , Facteur de croissance dérivé des plaquettes/génétique , RNA-Seq , Protéines de répression/génétique , Sémaphorine-3A/génétique , Germe dentaire/métabolisme , Facteur de transcription AP-2/génétique , Facteurs de transcription/génétique
13.
Genes (Basel) ; 12(7)2021 06 25.
Article de Anglais | MEDLINE | ID: mdl-34202311

RÉSUMÉ

Transforming growth factor ß (TGFß) signaling plays an important role in skeletal development. We previously demonstrated that the loss of TGFß receptor II (Tgfbr2) in Osterix-Cre-expressing mesenchyme results in defects in bones and teeth due to reduced proliferation and differentiation in pre-osteoblasts and pre-odontoblasts. These Osterix-Cre;Tgfbr2f/f mice typically die within approximately four weeks for unknown reasons. To investigate the cause of death, we performed extensive pathological analysis on Osterix-Cre- (Cre-), Osterix-Cre+;Tgfbr2f/wt (HET), and Osterix-Cre+;Tgfbr2f/f (CKO) mice. We also crossed Osterix-Cre mice with the ROSA26mTmG reporter line to identify potential off-target Cre expression. The findings recapitulated published skeletal and tooth abnormalities and revealed previously unreported osteochondral dysplasia throughout both the appendicular and axial skeletons in the CKO mice, including the calvaria. Alterations to the nasal area and teeth suggest a potentially reduced capacity to sense and process food, while off-target Cre expression in the gastrointestinal tract may indicate an inability to absorb nutrients. Additionally, altered nasal passages and unexplained changes in diaphragmatic muscle support the possibility of hypoxia. We conclude that these mice likely died due to a combination of breathing difficulties, malnutrition, and starvation resulting primarily from skeletal deformities that decreased their ability to sense, gather, and process food.


Sujet(s)
Ostéogenèse/génétique , Récepteur de type II du facteur de croissance transformant bêta/génétique , Squelette/malformations , Facteur de transcription Sp7/génétique , Animaux , Os et tissu osseux/malformations , Os et tissu osseux/physiopathologie , Différenciation cellulaire/génétique , Modèles animaux de maladie humaine , Régulation de l'expression des gènes au cours du développement/génétique , Humains , Integrases/génétique , Mésoderme/croissance et développement , Mésoderme/métabolisme , Souris , Ostéoblastes/métabolisme , Ostéoblastes/anatomopathologie , Transduction du signal/génétique , Squelette/imagerie diagnostique , Squelette/métabolisme , Squelette/physiopathologie
14.
Genes (Basel) ; 12(4)2021 04 17.
Article de Anglais | MEDLINE | ID: mdl-33920662

RÉSUMÉ

Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.


Sujet(s)
Système nerveux central/croissance et développement , Urochordata/embryologie , Animaux , Plan d'organisation du corps , Lignage cellulaire , Ectoderme/croissance et développement , Régulation de l'expression des gènes au cours du développement , Mésoderme/croissance et développement , Urochordata/croissance et développement
15.
Development ; 148(6)2021 03 23.
Article de Anglais | MEDLINE | ID: mdl-33658223

RÉSUMÉ

The anteroposterior axial identity of motor neurons (MNs) determines their functionality and vulnerability to neurodegeneration. Thus, it is a crucial parameter in the design of strategies aiming to produce MNs from human pluripotent stem cells (hPSCs) for regenerative medicine/disease modelling applications. However, the in vitro generation of posterior MNs corresponding to the thoracic/lumbosacral spinal cord has been challenging. Although the induction of cells resembling neuromesodermal progenitors (NMPs), the bona fide precursors of the spinal cord, offers a promising solution, the progressive specification of posterior MNs from these cells is not well defined. Here, we determine the signals guiding the transition of human NMP-like cells toward thoracic ventral spinal cord neurectoderm. We show that combined WNT-FGF activities drive a posterior dorsal pre-/early neural state, whereas suppression of TGFß-BMP signalling pathways promotes a ventral identity and neural commitment. Based on these results, we define an optimised protocol for the generation of thoracic MNs that can efficiently integrate within the neural tube of chick embryos. We expect that our findings will facilitate the comparison of hPSC-derived spinal cord cells of distinct axial identities.


Sujet(s)
Différenciation cellulaire/génétique , Mésoderme/croissance et développement , Cellules souches neurales/métabolisme , Moelle spinale/croissance et développement , Animaux , Plan d'organisation du corps/génétique , Protéines morphogénétiques osseuses/génétique , Lignage cellulaire/génétique , Embryon de poulet , Facteurs de croissance fibroblastique/génétique , Régulation de l'expression des gènes au cours du développement/génétique , Humains , Mésoderme/métabolisme , Motoneurones/métabolisme , Cellules souches neurales/cytologie , Cellules souches pluripotentes/cytologie , Transduction du signal/génétique , Moelle spinale/métabolisme , Facteur de croissance transformant bêta/génétique , Protéines de type Wingless/génétique
16.
Development ; 148(9)2021 05 01.
Article de Anglais | MEDLINE | ID: mdl-33757991

RÉSUMÉ

In the face, symmetry is established when bilateral streams of neural crest cells leave the neural tube at the same time, follow identical migration routes and then give rise to the facial prominences. However, developmental instability exists, particularly surrounding the steps of lip fusion. The causes of instability are unknown but inability to cope with developmental fluctuations are a likely cause of congenital malformations, such as non-syndromic orofacial clefts. Here, we tracked cell movements over time in the frontonasal mass, which forms the facial midline and participates in lip fusion, using live-cell imaging of chick embryos. Our mathematical examination of cell velocity vectors uncovered temporal fluctuations in several parameters, including order/disorder, symmetry/asymmetry and divergence/convergence. We found that treatment with a Rho GTPase inhibitor completely disrupted the temporal fluctuations in all measures and blocked morphogenesis. Thus, we discovered that genetic control of symmetry extends to mesenchymal cell movements and that these movements are of the type that could be perturbed in asymmetrical malformations, such as non-syndromic cleft lip. This article has an associated 'The people behind the papers' interview.


Sujet(s)
Mouvement cellulaire , Face/physiologie , Mésoderme/croissance et développement , Crête neurale/physiologie , Actomyosine , Animaux , Encéphale/anatomie et histologie , Encéphale/croissance et développement , Division cellulaire , Prolifération cellulaire , Embryon de poulet , Poulets , Bec-de-lièvre/génétique , Fente palatine/génétique , Oeil/anatomie et histologie , Oeil/croissance et développement , Face/malformations , Régulation de l'expression des gènes au cours du développement , Mésoderme/anatomie et histologie , Morphogenèse/génétique , Crête neurale/anatomie et histologie
17.
Cell Prolif ; 54(4): e13012, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33656760

RÉSUMÉ

OBJECTIVES: Vitronectin (VTN) has been widely used for the maintenance and expansion of human pluripotent stem cells (hPSCs) as feeder-free conditions. However, the effect of VTN on hPSC differentiation remains unclear. Here, we investigated the role of VTN in early haematopoietic development of hPSCs. MATERIALS AND METHODS: A chemically defined monolayer system was applied to study the role of different matrix or basement membrane proteins in haematopoietic development of hPSCs. The role of integrin signalling in VTN-mediated haematopoietic differentiation was investigated by integrin antagonists. Finally, small interfering RNA was used to knock down integrin gene expression in differentiated cells. RESULTS: We found that the haematopoietic differentiation of hPSCs on VTN was far more efficient than that on Matrigel that is also often used for hPSC culture. VTN promoted the fate determination of endothelial-haematopoietic lineage during mesoderm development to generate haemogenic endothelium (HE). Moreover, we demonstrated that the signals through αvß3 and αvß5 integrins were required for VTN-promoted haematopoietic differentiation. Blocking αvß3 and αvß5 integrins by the integrin antagonists impaired the development of HE, but not endothelial-to-haematopoietic transition (EHT). Finally, both αvß3 and αvß5 were confirmed acting synergistically for early haematopoietic differentiation by knockdown the expression of αv, ß3 or ß5. CONCLUSION: The established VTN-based monolayer system of haematopoietic differentiation of hPSCs presents a valuable platform for further investigating niche signals involved in human haematopoietic development.


Sujet(s)
Différenciation cellulaire/effets des médicaments et des substances chimiques , Intégrine alphaVbêta3/métabolisme , Récepteur vitronectine/métabolisme , Vitronectine/pharmacologie , Adhérence cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire , Régulation de l'expression des gènes , Cellules souches hématopoïétiques/cytologie , Cellules souches hématopoïétiques/métabolisme , Protéines à homéodomaine/génétique , Protéines à homéodomaine/métabolisme , Humains , Intégrine alphaVbêta3/antagonistes et inhibiteurs , Intégrine alphaVbêta3/génétique , Mésoderme/cytologie , Mésoderme/croissance et développement , Mésoderme/métabolisme , Cellules souches pluripotentes/cytologie , Cellules souches pluripotentes/métabolisme , Interférence par ARN , Petit ARN interférent/métabolisme , Récepteur vitronectine/antagonistes et inhibiteurs , Récepteur vitronectine/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Venins de serpent/pharmacologie
18.
Mol Biol Rep ; 48(1): 395-403, 2021 Jan.
Article de Anglais | MEDLINE | ID: mdl-33387197

RÉSUMÉ

High vascularization is a biological characteristic of glioblastoma (GBM); however, an in-vitro experimental model to verify the mechanism and physiological role of vasculogenesis in GBM is not well-established. Recently, we established a self-organizing vasculogenic model using human umbilical vein endothelial cells (HUVECs) co-cultivated with human lung fibroblasts (hLFs). Here, we exploited this system to establish a realistic model of vasculogenesis in GBM. We developed two polydimethylsiloxane (PDMS) devices, a doughnut-hole dish and a 5-lane microfluidic device to observe the contact-independent effects of glioblastoma cells on HUVECs. We tested five patient-derived and five widely used GBM cell lines. Confocal fluorescence microscopy was used to observe the morphological changes in Red Fluorescent Protein (RFP)-HUVECs and fluorescein isothiocyanate (FITC)-dextran perfusion. The genetic and expression properties of GBM cell lines were analyzed. The doughnut-hole dish assay revealed KNS1451 as the only cells to induce HUVEC transformation to vessel-like structures, similar to hLFs. The 5-lane device assay demonstrated that KNS1451 promoted the formation of a vascular network that was fully perfused, revealing the functioning luminal construction. Microarray analysis revealed that KNS1451 is a mesenchymal subtype of GBM. Using a patient-derived mesenchymal GBM cell line, mature de-novo vessel formation could be induced in HUVECs by contact-independent co-culture with GBM in a microfluidic device. These results support the development of a novel in vitro research model and provide novel insights in the neovasculogenic mechanism of GBM and may potentially facilitate the future detection of unknown molecular targets.


Sujet(s)
Tumeurs du cerveau/génétique , Différenciation cellulaire/génétique , Glioblastome/génétique , Néovascularisation pathologique/génétique , Vaisseaux sanguins/croissance et développement , Vaisseaux sanguins/anatomopathologie , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/anatomopathologie , Lignée cellulaire tumorale , Prolifération cellulaire/génétique , Techniques de coculture , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , Glioblastome/métabolisme , Glioblastome/anatomopathologie , Cellules endothéliales de la veine ombilicale humaine , Humains , Laboratoires sur puces , Protéines luminescentes/métabolisme , Cellules souches mésenchymateuses/métabolisme , Mésoderme/croissance et développement , Mésoderme/anatomopathologie , Néovascularisation pathologique/métabolisme , Néovascularisation pathologique/anatomopathologie ,
19.
Methods Mol Biol ; 2230: 3-16, 2021.
Article de Anglais | MEDLINE | ID: mdl-33197005

RÉSUMÉ

Development of cartilage and bone, the core components of the mouse skeletal system, depends on coordinated proliferation and differentiation of skeletogenic cells, including chondrocytes and osteoblasts. These cells differentiate from common progenitor cells originating in the mesoderm and neural crest. Multiple signaling pathways and transcription factors tightly regulate differentiation and proliferation of skeletal cells. In this chapter, we overview the process of mouse skeletal development and discuss major regulators of skeletal cells at each developmental stage.


Sujet(s)
Développement osseux/génétique , Mésoderme/croissance et développement , Ostéogenèse/génétique , Cellules souches/cytologie , Animaux , Cartilage/croissance et développement , Différenciation cellulaire/génétique , Chondrocytes/métabolisme , Régulation de l'expression des gènes au cours du développement/génétique , Souris , Crête neurale/croissance et développement , Ostéoblastes/métabolisme , Transduction du signal/génétique
20.
Methods Mol Biol ; 2230: 115-137, 2021.
Article de Anglais | MEDLINE | ID: mdl-33197012

RÉSUMÉ

The biological signals that coordinate the three-dimensional outgrowth and patterning of the vertebrate limb bud have been well delineated. These include a number of vital embryonic signaling pathways, including the fibroblast growth factor, WNT, transforming growth factor, and hedgehog. Collectively these signals converge on multiple progenitor populations to drive the formation of a variety of tissues that make up the limb musculoskeletal system, such as muscle, tendon, cartilage, stroma, and bone. The basic mechanisms regulating the commitment and differentiation of diverse limb progenitor populations has been successfully modeled in vitro using high density primary limb mesenchymal or micromass cultures. However, this approach is limited in its ability to more faithfully recapitulate the assembly of progenitors into organized tissues that span the entire musculoskeletal system. Other biological systems have benefitted from the development and availability of three-dimensional organoid cultures which have transformed our understanding of tissue development, homeostasis and regeneration. Such a system does not exist that effectively models the complexity of limb development. However, limb bud organ cultures while still necessitating the use of collected embryonic tissue have proved to be a powerful model system to elucidate the molecular underpinning of musculoskeletal development. In this methods article, the derivation and use of limb bud organ cultures from murine limb buds will be described, along with strategies to manipulate signaling pathways, examine gene expression and for longitudinal lineage tracking.


Sujet(s)
Hybridation in situ/méthodes , Mésoderme/croissance et développement , Développement locomoteur/génétique , Techniques de culture d'organes/méthodes , Animaux , Cartilage/croissance et développement , Différenciation cellulaire/génétique , Régulation de l'expression des gènes au cours du développement/génétique , Protéines Hedgehog/génétique , Humains , Bourgeons de membre/croissance et développement , Bourgeons de membre/métabolisme , Mésoderme/métabolisme , Souris , Transduction du signal/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...