Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Toxicol Appl Pharmacol ; 410: 115338, 2021 01 01.
Article de Anglais | MEDLINE | ID: mdl-33217376

RÉSUMÉ

Modern High-Throughput Screening (HTS) techniques allow to determine in vitro bioactivity of tens of thousands of chemicals within a relatively short period of time and tested compounds are usually interpreted as either active or inactive. The interpretation is mostly based on the assumption of monotonic dose-response. This approach ignores potential abnormal dose-response relationships, such as non-monotonic dose-response (NMDR). NMDR presents a serious challenge to toxicologists and pharmacologists, since they undermine the usefulness of such concepts as lowest-observed-adverse-effect level (LOAEL) and no-observed-adverse-effect level (NOAEL). The possible presence of the NMDR in Androgen receptor (AR) agonism was examined for a structurally diverse set of chemicals (~8 300 unique compounds) from Tox21 project library. The source of activity data is Tox21 AR agonism luciferase-based HTS on the MDA-MB-453 cell line. The examination of curve fitting for 35,328 dose-response data entries was based on modified version of existing criteria for determination of NMDR. The bias that arises from compounds' cytotoxicity and interference with firefly luciferase protein was also studied. The examination has shown evidence of NMDR for several compounds, including known AR antagonists (e. g. Cyproterone acetate) and other known endocrine disruptors (e. g. Tranilast). Compounds were divided into 3 groups based on chemical class, known biological activity profile and the shape of dose-response curve. The challenges of using HTS data to determine NMDR and benefits of this analysis are discussed.


Sujet(s)
Algorithmes , Androgènes/administration et posologie , Androgènes/analyse , Tests de criblage à haut débit/méthodes , Relation dose-effet des médicaments , Luciferases/antagonistes et inhibiteurs , Métribolone/administration et posologie , Métribolone/analyse
2.
Environ Health Perspect ; 112(3): 346-52, 2004 Mar.
Article de Anglais | MEDLINE | ID: mdl-14998751

RÉSUMÉ

Studies reveal that surface waters worldwide are contaminated with hormonally active agents, many released from sewage treatment plants. Another potential source of aquatic hormonal contamination is livestock feedlot effluent. In this study, we assessed whether feedlot effluent contaminates watercourses by measuring a) total androgenic [methyltrienolone (R1881) equivalents] and estrogenic (17beta-estradiol equivalents) activity using the A-SCREEN and E-SCREEN bioassays and b) concentrations of anabolic agents via gas chromatography-mass spectroscopy and enzyme-based immunoassays. Water samples were collected over 3 years from up to six sites [all confluent with the Elkhorn River, Nebraska, USA: a feedlot retention pond (site 1), a site downstream from site 1 (site 2), a stream with intermediate livestock impact (site 3), and three sites with no observable livestock impact (sites 4-6)] and two sources of tap water. In 1999, samples from site 1 contained 9.6 pM R1881 equivalents and 1.7 pM 17beta-estradiol equivalents. Site 2 samples had estrogen levels similar to those in site 1 samples but lower androgen levels (3.8 pM R1881 equivalents). Androgen levels in site 3 samples were similar to those in site 2 samples, whereas estrogen levels decreased to 0.7 pM 17beta-estradiol equivalents. At site 6, androgen levels were approximately half those found at site 3, and estrogen levels were comparable with those at site 3. Sampling in later years was limited to fewer sites because of drought and lack of permission to access one site. Instrumental analysis revealed estrone but no significant levels of resorcylic acid lactones or trenbolone metabolites. Tap water was devoid of hormonal activity. We conclude that feedlot effluents contain sufficient levels of hormonally active agents to warrant further investigation of possible effects on aquatic ecosystem health.


Sujet(s)
Androgènes/analyse , Élevage , Oestrogènes/analyse , Élimination des déchets liquides , Polluants de l'eau/analyse , Alimentation en eau , Animaux , Dosage biologique , Bovins , Oestradiol/analyse , Chromatographie gazeuse-spectrométrie de masse , Techniques immunoenzymatiques , Métribolone/analyse , Nébraska
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...