Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.864
Filtrer
1.
Phytopathology ; 114(8): 1917-1925, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39135297

RÉSUMÉ

The rice blast fungus Magnaporthe oryzae poses a significant challenge to maintaining rice production. Developing rice varieties with resistance to this disease is crucial for its effective control. To understand the genetic variability of blast isolates collected between 2015 and 2017, the 27 monogenic rice lines that carry specific resistance genes were used to evaluate blast disease reactions. Based on criteria such as viability, virulence, and reactions to resistance genes, 20 blast isolates were selected as representative strains. To identify novel resistance genes, a quantitative trait locus analysis was carried out utilizing a mixture of the 20 representative rice blast isolates and a rice population derived from crossing the blast-resistant cultivar 'Cheongcheong' with the blast-susceptible cultivar 'Nagdong'. This analysis revealed a significant locus, RM1227-RM1261 on chromosome 12, that is associated with rice blast resistance. Within this locus, 12 disease resistance-associated protein genes were identified. Among them, OsDRq12, a member of the nucleotide-binding, leucine-rich repeat disease resistance family, was chosen as the target gene for additional computational investigation. The findings of this study have significant implications for enhancing rice production and ensuring food security by controlling rice blast and developing resistant rice cultivars.


Sujet(s)
Résistance à la maladie , Variation génétique , Oryza , Maladies des plantes , Oryza/microbiologie , Oryza/immunologie , Oryza/génétique , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Résistance à la maladie/génétique , Locus de caractère quantitatif/génétique , Gènes de plante/génétique , Ascomycota/génétique , Ascomycota/pathogénicité , Ascomycota/physiologie , Protéines végétales/génétique , Magnaporthe/génétique , Magnaporthe/pathogénicité , Magnaporthe/physiologie
2.
Mol Biol Rep ; 51(1): 935, 2024 Aug 24.
Article de Anglais | MEDLINE | ID: mdl-39180629

RÉSUMÉ

Rice blast is a major problem in agriculture, affecting rice production and threatening food security worldwide. This disease, caused by the fungus Magnaporthe oryzae, has led to a lot of research since the discovery of the first resistance gene, pib, in 1999. Researchers have now identified more than 50 resistance genes on eight of the twelve chromosomes in rice, each targeting different strains of the pathogen.These genes are spread out across seventeen different loci. These genes, which primarily code for nucleotide-binding and leucine-rich repeat proteins, play an important part in the defense of rice against the pathogen, either alone or in combination with other genes. An important characteristic of these genes is the allelic or paralogous interactions that exist within these loci. These relationships contribute to the gene's increased capacity for evolutionary adaptation. The ability of resistance proteins to recognize and react to novel effectors is improved by the frequent occurrence of variations within the domains that are responsible for recognizing pathogen effectors. The purpose of this review is to summarize the progress that has been made in identifying these essential genes and to investigate the possibility of utilizing the allelic variants obtained from these genes in future rice breeding efforts to increase resistance to rice blast.


Sujet(s)
Allèles , Résistance à la maladie , Oryza , Maladies des plantes , Oryza/génétique , Oryza/microbiologie , Oryza/immunologie , Résistance à la maladie/génétique , Maladies des plantes/génétique , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Variation génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Amélioration des plantes/méthodes , Magnaporthe/pathogénicité , Gènes de plante , Ascomycota/pathogénicité , Ascomycota/génétique
3.
Pestic Biochem Physiol ; 203: 105990, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39084767

RÉSUMÉ

Rice blast, caused by Magnaporthe oryzae, is a devastating fungal disease worldwide. Pydiflumetofen (Pyd) is a new succinate dehydrogenase inhibitor (SDHI) that exhibited anti-fungal activity against M. oryzae. However, control of rice blast by Pyd and risk of resistance to Pyd are not well studied in this pathogen. The baseline sensitivity of 109 M. oryzae strains to Pyd was determined using mycelial growth rate assay, with EC50 values ranging from 0.291 to 2.1313 µg/mL, and an average EC50 value of 1.1005 ± 0.3727 µg/mL. Totally 28 Pyd-resistant (PydR) mutants with 15 genotypes of point mutations in succinate dehydrogenase (SDH) complex were obtained, and the resistance level could be divided into three categories of very high resistance (VHR), high resistance (HR) and moderate resistance (MR) with the resistance factors (RFs) of >1000, 105.74-986.13 and 81.92-99.48, respectively. Molecular docking revealed that all 15 mutations decreased the binding-force score for the affinity between Pyd and target subunits, which further confirmed that these 15 genotypes of point mutations were responsible for the resistance to Pyd in M. oryzae. There was positive cross resistance between Pyd and other SDHIs, such as fluxapyroxad, penflufen or carboxin, while there was no cross-resistance between Pyd and carbendazim, prochloraz or azoxystrobin in M. oryzae, however, PydR mutants with SdhBP198Q, SdhCL66F or SdhCL66R genotype were still sensitive to the other 3 SDHIs, indicating lack of cross resistance. The results of fitness study revealed that the point mutations in MoSdhB/C/D genes might reduce the hyphae growth and sporulation, but could improve the pathogenicity in M. oryzae. Taken together, the risk of resistance to Pyd might be moderate to high, and it should be used as tank-mixtures with other classes of fungicides to delay resistance development when it is used for the control of rice blast in the field.


Sujet(s)
Substitution d'acide aminé , Résistance des champignons aux médicaments , Fongicides industriels , Succinate Dehydrogenase , Succinate Dehydrogenase/génétique , Succinate Dehydrogenase/antagonistes et inhibiteurs , Succinate Dehydrogenase/métabolisme , Résistance des champignons aux médicaments/génétique , Fongicides industriels/pharmacologie , Maladies des plantes/microbiologie , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Simulation de docking moléculaire , Magnaporthe/effets des médicaments et des substances chimiques , Magnaporthe/génétique , Mutation ponctuelle , Oryza/microbiologie , Ascomycota
4.
Pestic Biochem Physiol ; 203: 106027, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39084785

RÉSUMÉ

Magnaporthe oryzae is a rice blast pathogen that seriously threatens rice yield. Benzovindiflupyr is a succinate dehydrogenase inhibitor (SDHI) fungicide that effectively controls many crop diseases. Benzovindiflupyr has a strong inhibitory effect on M. oryzae; however, control of rice blast by benzovindiflupyr and risk of resistance to benzovindiflupyr are not well studied in this pathogen. In this study, six benzovindiflupyr-resistant strains were obtained by domestication induced in the laboratory. The MoSdhBH245D mutation was the cause of M. oryzae resistance to benzovindiflupyr, which was verified through succinate dehydrogenase (SDH) activity assays, molecular docking, and site-specific mutations. Survival fitness analysis showed no significant difference between the benzovindiflupyr-resistant and parent strains. Positive cross-resistance to benzovindiflupyr and other SDHIs and negative cross-resistance to azoxystrobin were observed. Therefore, the risk of benzovindiflupyr resistance in M. oryzae might be medium to high. It should be combined with other classes of fungicides (tebuconazole and azoxystrobin) to slow the development of resistance.


Sujet(s)
Résistance des champignons aux médicaments , Fongicides industriels , Mutation , Succinate Dehydrogenase , Succinate Dehydrogenase/génétique , Succinate Dehydrogenase/antagonistes et inhibiteurs , Fongicides industriels/pharmacologie , Résistance des champignons aux médicaments/génétique , Maladies des plantes/microbiologie , Magnaporthe/effets des médicaments et des substances chimiques , Magnaporthe/génétique , Simulation de docking moléculaire , Oryza/microbiologie , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Strobilurines/pharmacologie , Ascomycota
5.
Mol Plant Pathol ; 25(7): e13493, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39034619

RÉSUMÉ

The cell wall is the first barrier against external adversity and plays roles in maintaining normal physiological functions of fungi. Previously, we reported a nucleosome assembly protein, MoNap1, in Magnaporthe oryzae that plays a role in cell wall integrity (CWI), stress response, and pathogenicity. Moreover, MoNap1 negatively regulates the expression of MoSMI1 encoded by MGG_03970. Here, we demonstrated that deletion of MoSMI1 resulted in a significant defect in appressorium function, CWI, cell morphology, and pathogenicity. Further investigation revealed that MoSmi1 interacted with MoOsm1 and MoMps1 and affected the phosphorylation levels of MoOsm1, MoMps1, and MoPmk1, suggesting that MoSmi1 regulates biological functions by mediating mitogen-activated protein kinase (MAPK) signalling pathway in M. oryzae. In addition, transcriptome data revealed that MoSmi1 regulates many infection-related processes in M. oryzae, such as membrane-related pathway and oxidation reduction process. In conclusion, our study demonstrated that MoSmi1 regulates CWI by mediating the MAPK pathway to affect development and pathogenicity of M. oryzae.


Sujet(s)
Protéines fongiques , Mitogen-Activated Protein Kinases , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Mitogen-Activated Protein Kinases/métabolisme , Mitogen-Activated Protein Kinases/génétique , Virulence/génétique , Régulation de l'expression des gènes fongiques , Maladies des plantes/microbiologie , Paroi cellulaire/métabolisme , Système de signalisation des MAP kinases , Oryza/microbiologie , Phosphorylation , Magnaporthe/pathogénicité , Magnaporthe/génétique , Ascomycota
6.
New Phytol ; 243(6): 2332-2350, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39056291

RÉSUMÉ

Protein posttranslational modifications play crucial roles in plant immunity through modulating a complicated signaling network mediated by different hormones. We previously demonstrated that OsATL32, an ATL-type E3 ligase, negatively contributes to rice immunity against Magnaporthe oryzae. Here, we show that OsATL32 forms a loop with OsPPKL2 and OsGSK2 through distinct protein posttranslational modifications to modulate rice immunity. OsATL32 ubiquitinates OsPPKL2, a protein phosphatase with Kelch-like repeat domains that exerts positive roles in regulating rice immunity against M. oryzae and chitin-triggered immune responses, for degradation. The glycogen synthase kinase 2 (OsGSK2), which acts as a negative regulator of rice immunity against M. oryzae and chitin-triggered immune responses, phosphorylates OsATL32 to elevate its protein stability and E3 ligase activity on OsPPKL2. Moreover, OsPPKL2 directly dephosphorylates OsGSK2, affecting its kinase activity on substrates including OsATL32 for phosphorylation. Like OsGSK2 as a BR signaling repressor, OsATL32 negatively regulates BR signaling; conversely, OsPPKL2 plays a positive role in BR signaling. These findings provide a molecular mechanism in which OsATL32 serves as a node connecting BR signaling and immunity by associating with OsPPKL2 and OsGSK2, assembling into a distinct protein posttranslational modifications-linked loop that functions in rice BR signaling and immunity.


Sujet(s)
Oryza , Maladies des plantes , Immunité des plantes , Protéines végétales , Maturation post-traductionnelle des protéines , Oryza/génétique , Oryza/immunologie , Oryza/microbiologie , Oryza/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Phosphorylation , Ubiquitination , Transduction du signal , Magnaporthe/physiologie , Brassinostéroïdes/métabolisme , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Régulation de l'expression des gènes végétaux , Chitine/métabolisme , Glycogen Synthase Kinases/métabolisme , Phosphoprotein Phosphatases/métabolisme , Phosphoprotein Phosphatases/génétique , Ascomycota
7.
Plant Physiol Biochem ; 214: 108879, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38964088

RÉSUMÉ

Cell cycle progression, autophagic cell death during appressorium development, and ROS degradation at the infection site are important for the development of rice blast disease. However, the association of cell cycle, autophagy and ROS detoxification remains largely unknown in M. oryzae. Here, we identify the dual-specificity kinase MoLKH1, which serves as an important cell cycle regulator required for appressorium formation by regulating cytokinesis and cytoskeleton in M. oryzae. MoLKH1 is transcriptionally activated by H2O2 and required for H2O2-induced autophagic cell death and suppression of ROS-activated plant defense during plant invasion of M. oryzae. In addition, the Molkh1 mutant also showed several phenotypic defects, including delayed growth, abnormal conidiation, damaged cell wall integrity, impaired glycogen and lipid transport, reduced secretion of extracellular enzymes and effectors, and attenuated virulence of M. oryzae. Nuclear localization of MoLKH1 requires the nuclear localization sequence, Lammer motif, as well as the kinase active site and ATP-binding site in this protein. Site-directed mutagenesis showed that each of them plays crucial roles in fungal growth and pathogenicity of M. oryzae. In conclusion, our results demonstrate that MoLKH1-mediated cell cycle, autophagy, and suppression of plant immunity play crucial roles in development and pathogenicity of M. oryzae.


Sujet(s)
Autophagie , Cycle cellulaire , Oryza , Maladies des plantes , Immunité des plantes , Oryza/microbiologie , Oryza/immunologie , Oryza/génétique , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Immunité des plantes/génétique , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Ascomycota/pathogénicité , Peroxyde d'hydrogène/métabolisme , Virulence , Magnaporthe/pathogénicité
8.
Proc Natl Acad Sci U S A ; 121(28): e2402872121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38968126

RÉSUMÉ

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.


Sujet(s)
Protéines fongiques , Protéines NLR , Oryza , Maladies des plantes , Protéines végétales , Oryza/microbiologie , Oryza/immunologie , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Protéines NLR/métabolisme , Protéines végétales/métabolisme , Protéines végétales/immunologie , Protéines végétales/génétique , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Protéines fongiques/composition chimique , Protéines fongiques/immunologie , Interactions hôte-pathogène/immunologie , Résistance à la maladie/immunologie , Immunité des plantes , Bioingénierie/méthodes , Magnaporthe/immunologie , Magnaporthe/génétique , Magnaporthe/métabolisme , Liaison aux protéines , Récepteurs immunologiques/métabolisme , Ascomycota
9.
PLoS Pathog ; 20(6): e1012277, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38885263

RÉSUMÉ

Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.


Sujet(s)
Protéines fongiques , Maladies des plantes , Doigts de zinc , Maladies des plantes/microbiologie , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Interactions hôte-pathogène , Oryza/microbiologie , Ascomycota/génétique , Ascomycota/métabolisme , Magnaporthe/génétique , Magnaporthe/métabolisme , Phylogenèse
10.
Nat Plants ; 10(6): 994-1004, 2024 06.
Article de Anglais | MEDLINE | ID: mdl-38834685

RÉSUMÉ

Blast disease caused by the fungus Magnaporthe oryzae is one of the most devastating rice diseases. Disease resistance genes such as Pi-ta or Pi-ta2 are critical in protecting rice production from blast. Published work reports that Pi-ta codes for a nucleotide-binding and leucine-rich repeat domain protein (NLR) that recognizes the fungal protease-like effector AVR-Pita by direct binding. However, this model was challenged by the recent discovery that Pi-ta2 resistance, which also relies on AVR-Pita detection, is conferred by the unconventional resistance gene Ptr, which codes for a membrane protein with a cytoplasmic armadillo repeat domain. Here, using NLR Pi-ta and Ptr RNAi knockdown and CRISPR/Cas9 knockout mutant rice lines, we found that AVR-Pita recognition relies solely on Ptr and that the NLR Pi-ta has no role in it, indicating that it is not the Pi-ta resistance gene. Different alleles of Ptr confer different recognition specificities. The A allele of Ptr (PtrA) detects all natural sequence variants of the effector and confers Pi-ta2 resistance, while the B allele of Ptr (PtrB) recognizes a restricted set of AVR-Pita alleles and, thereby, confers Pi-ta resistance. Analysis of the natural diversity in AVR-Pita and of mutant and transgenic strains identified one specific polymorphism in the effector sequence that controls escape from PtrB-mediated resistance. Taken together, our work establishes that the M. oryzae effector AVR-Pita is detected in an allele-specific manner by the unconventional rice resistance protein Ptr and that the NLR Pi-ta has no function in Pi-ta resistance and the recognition of AVR-Pita.


Sujet(s)
Allèles , Résistance à la maladie , Oryza , Maladies des plantes , Protéines végétales , Oryza/microbiologie , Oryza/génétique , Oryza/immunologie , Oryza/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Maladies des plantes/génétique , Résistance à la maladie/génétique , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Ascomycota , Magnaporthe
11.
Dev Cell ; 59(15): 2017-2033.e5, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-38781974

RÉSUMÉ

Broad-spectrum disease resistance (BSR) is crucial for controlling plant diseases and relies on immune signals that are subject to transcriptional and post-translational regulation. How plants integrate and coordinate these signals remains unclear. We show here that the rice really interesting new gene (RING)-type E3 ubiquitin ligase OsRING113 targets APIP5, a negative regulator of plant immunity and programmed cell death (PCD), for 26S proteasomal degradation. The osring113 mutants in Nipponbare exhibited decreased BSR, while the overexpressing OsRING113 plants showed enhanced BSR against Magnaporthe oryzae (M. oryzae) and Xanthomonas oryzae pv. oryzae (Xoo). Furthermore, APIP5 directly suppressed the transcription of the Bowman-Birk trypsin inhibitor genes OsBBTI5 and AvrPiz-t-interacting protein 4 (APIP4). Overexpression of these two genes, which are partially required for APIP5-mediated PCD and disease resistance, conferred BSR. OsBBTI5 and APIP4 associated with and stabilized the pathogenesis-related protein OsPR1aL, which promotes M. oryzae resistance. Our results identify an immune module with integrated and coordinated hierarchical regulations that confer BSR in plants.


Sujet(s)
Résistance à la maladie , Régulation de l'expression des gènes végétaux , Oryza , Maladies des plantes , Protéines végétales , Inhibiteurs trypsiques , Ubiquitin-protein ligases , Xanthomonas , Oryza/microbiologie , Oryza/métabolisme , Oryza/génétique , Résistance à la maladie/génétique , Protéines végétales/métabolisme , Protéines végétales/génétique , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Xanthomonas/pathogénicité , Inhibiteurs trypsiques/métabolisme , Inhibiteurs trypsiques/pharmacologie , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Immunité des plantes , Végétaux génétiquement modifiés , Magnaporthe
12.
Int J Mol Sci ; 25(9)2024 May 06.
Article de Anglais | MEDLINE | ID: mdl-38732268

RÉSUMÉ

Rice (Oryza sativa) is one of the most important staple foods worldwide. However, rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, seriously affects the yield and quality of rice. Calmodulin-binding transcriptional activators (CAMTAs) play vital roles in the response to biotic stresses. In this study, we showed that OsCAMTA3 and CAMTA PROTEIN LIKE (OsCAMTAPL), an OsCAMTA3 homolog that lacks the DNA-binding domain, functioned together in negatively regulating disease resistance in rice. OsCAMTA3 associated with OsCAMTAPL. The oscamta3 and oscamtapl mutants showed enhanced resistance compared to wild-type plants, and oscamta3/pl double mutants showed more robust resistance to M. oryzae than oscamta3 or oscamtapl. An RNA-Seq analysis revealed that 59 and 73 genes, respectively, were differentially expressed in wild-type plants and oscamta3 before and after inoculation with M. oryzae, including OsALDH2B1, an acetaldehyde dehydrogenase that negatively regulates plant immunity. OsCAMTA3 could directly bind to the promoter of OsALDH2B1, and OsALDH2B1 expression was decreased in oscamta3, oscamtapl, and oscamta3/pl mutants. In conclusion, OsCAMTA3 associates with OsCAMTAPL to regulate disease resistance by binding and activating the expression of OsALDH2B1 in rice, which reveals a strategy by which rice controls rice blast disease and provides important genes for resistance breeding holding a certain positive impact on ensuring food security.


Sujet(s)
Résistance à la maladie , Régulation de l'expression des gènes végétaux , Oryza , Maladies des plantes , Protéines végétales , Oryza/microbiologie , Oryza/génétique , Oryza/immunologie , Résistance à la maladie/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Maladies des plantes/immunologie , Ascomycota/pathogénicité , Régions promotrices (génétique) , Magnaporthe/pathogénicité , Transactivateurs/génétique , Transactivateurs/métabolisme , Mutation
13.
Mol Plant Pathol ; 25(5): e13460, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38695626

RÉSUMÉ

Reverse genetic approaches are common tools in genomics for elucidating gene functions, involving techniques such as gene deletion followed by screening for aberrant phenotypes. If the generation of gene deletion mutants fails, the question arises whether the failure stems from technical issues or because the gene of interest (GOI) is essential, meaning that the deletion causes lethality. In this report, we introduce a novel method for assessing gene essentiality using the phytopathogenic ascomycete Magnaporthe oryzae. The method is based on the observation that telomere vectors are lost in transformants during cultivation without selection pressure. We tested the hypothesis that essential genes can be identified in deletion mutants co-transformed with a telomere vector. The M. oryzae gene MoPKC, described in literature as essential, was chosen as GOI. Using CRISPR/Cas9 technology transformants with deleted GOI were generated and backed up by a telomere vector carrying a copy of the GOI and conferring fenhexamid resistance. Transformants in which the GOI deletion in the genome was not successful lost the telomere vector on media without fenhexamid. In contrast, transformants with confirmed GOI deletion retained the telomere vector even in absence of fenhexamid selection. In the latter case, the maintenance of the telomere indicates that the GOI is essential for the surveillance of the fungi, as it would have been lost otherwise. The method presented here allows to test for essentiality of genes when no mutants can be obtained from gene deletion approaches, thereby expanding the toolbox for studying gene function in ascomycetes.


Sujet(s)
Ascomycota , Gènes essentiels , Vecteurs génétiques , Phénotype , Télomère , Télomère/génétique , Vecteurs génétiques/génétique , Systèmes CRISPR-Cas/génétique , Gènes fongiques/génétique , Délétion de gène , Magnaporthe/génétique , Magnaporthe/pathogénicité
14.
Arch Virol ; 169(6): 128, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38802709

RÉSUMÉ

A novel negative-sense single-stranded RNA mycovirus, designated as "Magnaporthe oryzae mymonavirus 1" (MoMNV1), was identified in the rice blast fungus Magnaporthe oryzae isolate NJ39. MoMNV1 has a single genomic RNA segment consisting of 10,515 nucleotides, which contains six open reading frames. The largest open reading frame contains 5837 bases and encodes an RNA replicase. The six open reading frames have no overlap and are arranged linearly on the genome, but the spacing of the genes is small, with a maximum of 315 bases and a minimum of 80 bases. Genome comparison and phylogenetic analysis indicated that MoMNV1 is a new member of the genus Penicillimonavirus of the family Mymonaviridae.


Sujet(s)
Virus fongiques , Génome viral , Cadres ouverts de lecture , Oryza , Phylogenèse , Maladies des plantes , Virus à ARN , ARN viral , Virus à ARN/génétique , Virus à ARN/isolement et purification , Virus à ARN/classification , Virus fongiques/génétique , Virus fongiques/isolement et purification , Virus fongiques/classification , Oryza/microbiologie , Oryza/virologie , Maladies des plantes/microbiologie , Maladies des plantes/virologie , ARN viral/génétique , Ascomycota/virologie , Ascomycota/génétique , Protéines virales/génétique , Magnaporthe/virologie , Magnaporthe/génétique
15.
Planta ; 259(6): 143, 2024 May 04.
Article de Anglais | MEDLINE | ID: mdl-38704489

RÉSUMÉ

MAIN CONCLUSION: The investigation is the first report on genome-wide identification and characterization of NBLRR genes in pearl millet. We have shown the role of gene loss and purifying selection in the divergence of NBLRRs in Poaceae lineage and candidate CaNBLRR genes for resistance to Magnaporthe grisea infection. Plants have evolved multiple integral mechanisms to counteract the pathogens' infection, among which plant immunity through NBLRR (nucleotide-binding site, leucine-rich repeat) genes is at the forefront. The genome-wide mining in pearl millet (Cenchrus americanus (L.) Morrone) revealed 146 CaNBLRRs. The variation in the branch length of NBLRRs showed the dynamic nature of NBLRRs in response to evolving pathogen races. The orthology of NBLRRs showed a predominance of many-to-one orthologs, indicating the divergence of NBLRRs in the pearl millet lineage mainly through gene loss events followed by gene gain through single-copy duplications. Further, the purifying selection (Ka/Ks < 1) shaped the expansion of NBLRRs within the lineage of pear millet and other members of Poaceae. Presence of cis-acting elements, viz. TCA element, G-box, MYB, SARE, ABRE and conserved motifs annotated with P-loop, kinase 2, RNBS-A, RNBS-D, GLPL, MHD, Rx-CC and LRR suggests their putative role in disease resistance and stress regulation. The qRT-PCR analysis in pearl millet lines showing contrasting responses to Magnaporthe grisea infection identified CaNBLRR20, CaNBLRR33, CaNBLRR46 CaNBLRR51, CaNBLRR78 and CaNBLRR146 as putative candidates. Molecular docking showed the involvement of three and two amino acid residues of LRR domains forming hydrogen bonds (histidine, arginine and threonine) and salt bridges (arginine and lysine) with effectors. Whereas 14 and 20 amino acid residues of CaNBLRR78 and CaNBLRR20 showed hydrophobic interactions with 11 and 9 amino acid residues of effectors, Mg.00g064570.m01 and Mg.00g006570.m01, respectively. The present investigation gives a comprehensive overview of CaNBLRRs and paves the foundation for their utility in pearl millet resistance breeding through understanding of host-pathogen interactions.


Sujet(s)
Cenchrus , Résistance à la maladie , Maladies des plantes , Résistance à la maladie/génétique , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Maladies des plantes/immunologie , Cenchrus/génétique , Phylogenèse , Magnaporthe/physiologie , Famille multigénique , Protéines végétales/génétique , Protéines végétales/métabolisme , Évolution moléculaire , Génome végétal/génétique , Pennisetum/génétique , Pennisetum/microbiologie , Pennisetum/immunologie
16.
PLoS One ; 19(4): e0301519, 2024.
Article de Anglais | MEDLINE | ID: mdl-38578751

RÉSUMÉ

Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a severe threat to rice production, particularly in Asia where rice is a staple food. Concerns over fungicide resistance and environmental impact have sparked interest in exploring natural fungicides as potential alternatives. This study aimed to identify highly potent natural fungicides against M. oryzae to combat rice blast disease, using advanced molecular dynamics techniques. Four key proteins (CATALASE PEROXIDASES 2, HYBRID PKS-NRPS SYNTHETASE TAS1, MANGANESE LIPOXYGENASE, and PRE-MRNA-SPLICING FACTOR CEF1) involved in M. oryzae's infection process were identified. A list of 30 plant metabolites with documented antifungal properties was compiled for evaluation as potential fungicides. Molecular docking studies revealed that 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin exhibited superior binding affinities compared to reference fungicides (Azoxystrobin and Tricyclazole). High throughput molecular dynamics simulations were performed, analyzing parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds, contact analysis, Gibbs free energy, and cluster analysis. The results revealed stable interactions between the selected metabolites and the target proteins, involving important hydrogen bonds and contacts. The SwissADME server analysis indicated that the metabolites possess fungicide properties, making them effective and safe fungicides with low toxicity to the environment and living beings. Additionally, bioactivity assays confirmed their biological activity as nuclear receptor ligands and enzyme inhibitors. Overall, this study offers valuable insights into potential natural fungicides for combating rice blast disease, with 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin standing out as promising and environmentally friendly alternatives to conventional fungicides. These findings have significant implications for developing crop protection strategies and enhancing global food security, particularly in rice-dependent regions.


Sujet(s)
Ascomycota , Fongicides industriels , Magnaporthe , Oryza , Acide quinique/analogues et dérivés , Antifongiques/pharmacologie , Fongicides industriels/pharmacologie , Quercétine/pharmacologie , Simulation de docking moléculaire , Oryza/microbiologie , Flavonoïdes/pharmacologie , Maladies des plantes/prévention et contrôle , Maladies des plantes/microbiologie
17.
Int J Biol Macromol ; 268(Pt 1): 131867, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38670181

RÉSUMÉ

Polarized growth is critical for the development of filamentous phytopathogens, and the CHY-type zinc finger protein Chy1 regulates microtubule assembly to influence polarized growth and thereby affect plant infections. However, the biological role of a Chy1 homolog MoChy1 remains unknown in Magnaporthe oryzae. We found here that the MoChy1-GFP was distributed in the cytoplasm outside the vacuole in hyphae and localized mainly to the vacuole compartments as the appressorium matured. The Mochy1 mutants showed an extremely slow growth rate, curved and branched mycelium, reduced conidiation, and a smaller size in the appressorium. Meanwhile, the Mochy1 mutants showed increased sensitivity to benomyl, damaged microtubule cytoskeleton, and mislocalized polarisome protein MoSpa2 and chitin synthase MoChs6 in hyphae. Compared to Guy11, the Mochy1 mutants exhibited increased sensitivity to H2O2, impaired ability to eliminate host-derived ROS and reduced penetration into host plants, resulting in a strong reduction in pathogenicity of Mochy1 mutants. Furthermore, the Mochy1 mutants also exhibited defects in chitin distribution, osmotic stress tolerance, and septin ring organization during appressorium differentiation and fungal development. Nonselective autophagy was negatively regulated in Mochy1 mutants compared to Guy11. In summary, MoChy1 plays multiple roles in fungal polar growth and full virulence of M. oryzae.


Sujet(s)
Autophagie , Protéines fongiques , Spores fongiques , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Spores fongiques/croissance et développement , Spores fongiques/génétique , Mutation , Doigts de zinc , Hyphae/croissance et développement , Hyphae/métabolisme , Virulence/génétique , Magnaporthe/pathogénicité , Magnaporthe/génétique , Magnaporthe/croissance et développement , Magnaporthe/métabolisme , Maladies des plantes/microbiologie , Oryza/microbiologie , Régulation de l'expression des gènes fongiques , Ascomycota
18.
Dev Cell ; 59(12): 1609-1622.e4, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38640925

RÉSUMÉ

Although the antagonistic effects of host resistance against biotrophic and necrotrophic pathogens have been documented in various plants, the underlying mechanisms are unknown. Here, we investigated the antagonistic resistance mediated by the transcription factor ETHYLENE-INSENSITIVE3-LIKE 3 (OsEIL3) in rice. The Oseil3 mutant confers enhanced resistance to the necrotroph Rhizoctonia solani but greater susceptibility to the hemibiotroph Magnaporthe oryzae and biotroph Xanthomonas oryzae pv. oryzae. OsEIL3 directly activates OsERF040 transcription while repressing OsWRKY28 transcription. The infection of R. solani and M. oryzae or Xoo influences the extent of binding of OsEIL3 to OsWRKY28 and OsERF040 promoters, resulting in the repression or activation of both salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways and enhanced susceptibility or resistance, respectively. These results demonstrate that the distinct effects of plant immunity to different pathogen types are determined by two transcription factor modules that control transcriptional reprogramming and the SA and JA pathways.


Sujet(s)
Cyclopentanes , Régulation de l'expression des gènes végétaux , Oryza , Oxylipines , Maladies des plantes , Immunité des plantes , Protéines végétales , Acide salicylique , Xanthomonas , Cyclopentanes/métabolisme , Oryza/microbiologie , Oryza/génétique , Oryza/immunologie , Oryza/métabolisme , Oxylipines/métabolisme , Acide salicylique/métabolisme , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Xanthomonas/pathogénicité , Immunité des plantes/génétique , Protéines végétales/métabolisme , Protéines végétales/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Rhizoctonia , Transduction du signal , Résistance à la maladie/génétique , Régions promotrices (génétique)/génétique , Magnaporthe , Transcription génétique
19.
Mol Plant ; 17(5): 807-823, 2024 May 06.
Article de Anglais | MEDLINE | ID: mdl-38664971

RÉSUMÉ

The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.


Sujet(s)
Résistance à la maladie , Oryza , Maladies des plantes , Protéines végétales , Oryza/microbiologie , Oryza/génétique , Oryza/métabolisme , Oryza/immunologie , Résistance à la maladie/génétique , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Protéines végétales/métabolisme , Protéines végétales/génétique , Régulation de l'expression des gènes végétaux , Immunité des plantes , Magnaporthe/physiologie , Ascomycota/physiologie
20.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article de Anglais | MEDLINE | ID: mdl-38473921

RÉSUMÉ

Cytoskeletal microtubules (MTs) play crucial roles in many aspects of life processes in eukaryotic organisms. They dynamically assemble physiologically important MT arrays under different cell conditions. Currently, aspects of MT assembly underlying the development and pathogenesis of the model plant pathogenic fungus Magnaporthe oryzae (M. oryzae) are unclear. In this study, we characterized the MT plus end binding protein MoMal3 in M. oryzae. We found that knockout of MoMal3 results in defects in hyphal polar growth, appressorium-mediated host penetration and nucleus division. Using high-resolution live-cell imaging, we further found that the MoMal3 mutant assembled a rigid MT in parallel with the MT during hyphal polar growth, the cage-like network in the appressorium and the stick-like spindle in nuclear division. These aberrant MT organization patterns in the MoMal3 mutant impaired actin-based cell growth and host infection. Taken together, these findings showed that M. oryzae relies on MoMal3 to assemble elaborate MT arrays for growth and infection. The results also revealed the assembly mode of MTs in M. oryzae, indicating that MTs are pivotal for M. oryzae growth and host infection and may be new targets for devastating fungus control.


Sujet(s)
Ascomycota , Magnaporthe , Oryza , Protéines de transport/métabolisme , Magnaporthe/physiologie , Ascomycota/métabolisme , Microtubules/métabolisme , Oryza/métabolisme , Maladies des plantes/microbiologie , Protéines fongiques/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE