Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 214
Filtrer
1.
Plant Physiol Biochem ; 212: 108767, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38797009

RÉSUMÉ

Salt stress is a critical limiting factor for fruit yield and quality of apples. Brassinosteroids (BRs) play an important role in response to abiotic stresses. In the present study, application of 2,4- Epicastasterone on seedlings of Malus 'M9T337' and Malus domestica 'Gala3' alleviated the physiological effects, such as growth inhibition and leaf yellowing, induced by salt stress. Further analysis revealed that treatment with NaCl induced expression of genes involved in BR biosynthesis in 'M9T337' and 'Gala3'. Among which, the expression of BR biosynthetic gene MdBR6OX2 showed a three-fold upregulation upon salt treatment, suggesting its potential role in response to salt stress in apple. MdBR6OX2, belonging to the CYP450 family, contains a signal peptide region and a P450 domain. Expression patterns analysis showed that the expression of MdBR6OX2 can be significantly induced by different abiotic stresses. Overexpressing MdBR6OX2 enhanced the tolerance of apple callis to salt stress, and the contents of endogenous BR-related compounds, such as Typhastero (TY), Castasterone (CS) and Brassinolide (BL) were significantly increased in transgenic calli compared with that of wild-type. Extopic expression of MdBR6OX2 enhanced tolerance to salt stress in Arabidopsis. Genes associated with salt stress were significantly up-regulated, and the contents of BR-related compounds were significantly elevated under salt stress. Our data revealed that BR-biosynthetic gene MdBR6OX2 positively regulates salt stress tolerance in both apple calli and Arabidopsis.


Sujet(s)
Arabidopsis , Brassinostéroïdes , Régulation de l'expression des gènes végétaux , Malus , Protéines végétales , Tolérance au sel , Malus/génétique , Malus/métabolisme , Malus/effets des médicaments et des substances chimiques , Brassinostéroïdes/métabolisme , Brassinostéroïdes/biosynthèse , Brassinostéroïdes/pharmacologie , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/effets des médicaments et des substances chimiques , Tolérance au sel/génétique , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Protéines végétales/génétique , Protéines végétales/métabolisme , Végétaux génétiquement modifiés , Stress salin/génétique , Cytochrome P-450 enzyme system/génétique , Cytochrome P-450 enzyme system/métabolisme
2.
J Agric Food Chem ; 72(23): 13001-13014, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38812066

RÉSUMÉ

Phloridzin significantly influences apple plant growth, development, and resistance to environmental stresses by engaging in various metabolic processes. Its excessive accumulation in soil, attributed to continuous monoculture practices, not only inhibits plant growth but also disrupts the rhizosphere microbial community. This study aims to explore the remedial effects of dopamine, a known antioxidant and stress resistance modulator in plants, on the adverse impacts of phloridzin stress in apple. Through hydroponic and pot experiments, it was demonstrated that dopamine significantly mitigates the growth inhibition caused by phloridzin stress in apple by reducing reactive oxygen species levels and enhancing photosynthesis and nitrogen transport. Additionally, dopamine reduced phloridzin concentrations in both the rhizosphere and roots. Furthermore, dopamine positively influences the structure of the rhizosphere microbial community, enriching beneficial microbes associated with nitrogen cycling. It increases the potential for soil nitrogen degradation and fixation by upregulating the abundance of ureC, GDH, and nifH, as revealed by metagenomic analysis. This aids in alleviating phloridzin stress. The study reveals dopamine's pivotal roles in modulating rhizosphere ecology under phloridzin stress and suggests its potential in sustainable apple cultivation practices to counter ARD and enhance productivity.


Sujet(s)
Bactéries , Dopamine , Malus , Phloridzine , Racines de plante , Rhizosphère , Microbiologie du sol , Malus/microbiologie , Malus/métabolisme , Malus/effets des médicaments et des substances chimiques , Bactéries/génétique , Bactéries/métabolisme , Bactéries/classification , Bactéries/effets des médicaments et des substances chimiques , Bactéries/isolement et purification , Dopamine/métabolisme , Racines de plante/microbiologie , Racines de plante/métabolisme , Racines de plante/effets des médicaments et des substances chimiques , Racines de plante/croissance et développement , Phloridzine/pharmacologie , Microbiote/effets des médicaments et des substances chimiques , Azote/métabolisme , Espèces réactives de l'oxygène/métabolisme , Photosynthèse/effets des médicaments et des substances chimiques
3.
Plant Cell Environ ; 47(7): 2614-2630, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38712467

RÉSUMÉ

The dynamics of the physiological adaptability of plants and the rhizosphere soil environment after waterlogging remain unclear. Here we investigated the mechanisms regulating plant condition and shaping of the rhizosphere microbiome in a pot experiment. In the experiment, we added melatonin to waterlogged plants, which promoted waterlogging relief. The treatment significantly enhanced photosynthesis and the antioxidant capacity of apple plants, and significantly promoted nitrogen (N) utilization efficiency by upregulating genes related to N transport and metabolism. Multiperiod soil microbiome analysis showed the dynamic effects of melatonin on the diversity of the microbial community during waterlogging recovery. Random forest and linear regression analyses were used to screen for potential beneficial bacteria (e.g., Azoarcus, Pseudomonas and Nocardioides) specifically regulated by melatonin and revealed a positive correlation with soil nutrient levels and plant growth. Furthermore, metagenomic analyses revealed the regulatory effects of melatonin on genes involved in N cycling in soil. Melatonin positively contributed to the accumulation of plant dry weight by upregulating the expression of nifD and nifK (N fixation). In summary, melatonin positively regulates physiological functions in plants and the structure and function of the microbial community; it promoted the recovery of apple plants after waterlogging stress.


Sujet(s)
Malus , Mélatonine , Microbiote , Rhizosphère , Mélatonine/pharmacologie , Mélatonine/métabolisme , Malus/effets des médicaments et des substances chimiques , Malus/génétique , Malus/microbiologie , Malus/physiologie , Malus/métabolisme , Microbiote/effets des médicaments et des substances chimiques , Microbiologie du sol , Azote/métabolisme , Photosynthèse/effets des médicaments et des substances chimiques , Bactéries/métabolisme , Bactéries/génétique , Bactéries/effets des médicaments et des substances chimiques
4.
Plant J ; 119(1): 197-217, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38565306

RÉSUMÉ

Poor management and excess fertilization of apple (Malus domestica Borkh.) orchards are causing increasingly serious soil acidification, resulting in Al toxicity and direct poisoning of roots. Strigolactones (SLs) are reported to be involved in plant responses to abiotic stress, but their role and mechanism under AlCl3 stress remain unknown. Here, we found that applying 1 µm GR24 (an SL analoge) significantly alleviated AlCl3 stress of M26 apple rootstock, mainly by blocking the movement of Al through cell wall and by vacuolar compartmentalization of Al. RNA-seq analysis identified the core transcription factor gene MdWRKY53, and overexpressing MdWRKY53 enhanced AlCl3 tolerance in transgenic apple plants through the same mechanism as GR24. Subsequently, we identified MdPMEI45 (encoding pectin methylesterase inhibitor) and MdALS3 (encoding an Al transporter) as downstream target genes of MdWRKY53 using chromatin immunoprecipitation followed by sequencing (ChIP-seq). GR24 enhanced the interaction between MdWRKY53 and the transcription factor MdTCP15, further increasing the binding of MdWRKY53 to the MdPMEI45 promoter and inducing MdPMEI45 expression to prevent Al from crossing cell wall. MdWRKY53 also bound to the promoter of MdALS3 and enhanced its transcription to compartmentalize Al in vacuoles under AlCl3 stress. We therefore identified two modules involved in alleviating AlCl3 stress in woody plant apple: the SL-WRKY+TCP-PMEI module required for excluding external Al by blocking the entry of Al3+ into cells and the SL-WRKY-ALS module allowing internal detoxification of Al through vacuolar compartmentalization. These findings lay a foundation for the practical application of SLs in agriculture.


Sujet(s)
Chlorure d'aluminium , Paroi cellulaire , Régulation de l'expression des gènes végétaux , Malus , Protéines végétales , Vacuoles , Malus/génétique , Malus/métabolisme , Malus/effets des médicaments et des substances chimiques , Vacuoles/métabolisme , Paroi cellulaire/métabolisme , Paroi cellulaire/effets des médicaments et des substances chimiques , Protéines végétales/génétique , Protéines végétales/métabolisme , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Lactones/métabolisme , Lactones/pharmacologie , Végétaux génétiquement modifiés , Stress physiologique , Racines de plante/métabolisme , Racines de plante/génétique , Racines de plante/effets des médicaments et des substances chimiques , Composés hétérocycliques 3 noyaux/métabolisme , Composés hétérocycliques 3 noyaux/pharmacologie , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Régions promotrices (génétique)
5.
Plant Physiol ; 195(3): 2053-2072, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38536032

RÉSUMÉ

Carotenoids are major pigments contributing to fruit coloration. We previously reported that the apple (Malus domestica Borkh.) mutant fruits of "Beni Shogun" and "Yanfu 3" show a marked difference in fruit coloration. However, the regulatory mechanism underlying this phenomenon remains unclear. In this study, we determined that carotenoid is the main factor influencing fruit flesh color. We identified an R1-type MYB transcription factor (TF), MdMYBS1, which was found to be highly associated with carotenoids and abscisic acid (ABA) contents of apple fruits. Overexpression of MdMYBS1 promoted, and silencing of MdMYBS1 repressed, ß-branch carotenoids synthesis and ABA accumulation. MdMYBS1 regulates carotenoid biosynthesis by directly activating the major carotenoid biosynthetic genes encoding phytoene synthase (MdPSY2-1) and lycopene ß-cyclase (MdLCYb). 9-cis-epoxycarotenoid dioxygenase 1 (MdNCED1) contributes to ABA biosynthesis, and MdMYBS1 enhances endogenous ABA accumulation by activating the MdNCED1 promoter. In addition, the basic leucine zipper domain TF ABSCISIC ACID-INSENSITIVE5 (MdABI5) was identified as an upstream activator of MdMYBS1, which promotes carotenoid and ABA accumulation. Furthermore, ABA promotes carotenoid biosynthesis and enhances MdMYBS1 and MdABI5 promoter activities. Our findings demonstrate that the MdABI5-MdMYBS1 cascade activated by ABA regulates carotenoid-derived fruit coloration and ABA accumulation in apple, providing avenues in breeding and planting for improvement of fruit coloration and quality.


Sujet(s)
Acide abscissique , Caroténoïdes , Fruit , Régulation de l'expression des gènes végétaux , Malus , Protéines végétales , Facteurs de transcription , Acide abscissique/métabolisme , Acide abscissique/pharmacologie , Malus/génétique , Malus/métabolisme , Malus/effets des médicaments et des substances chimiques , Caroténoïdes/métabolisme , Fruit/génétique , Fruit/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Pigmentation/génétique , Pigmentation/effets des médicaments et des substances chimiques
6.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1592-1600, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37694422

RÉSUMÉ

To investigate the efficacy of foliar application of GR24, a strigolactone analogue, in alleviating low-nitrogen stress in Malus baccata, we applied GR24 with different concentrations (0, 1, 5, 10, and 20 µmol·L-1) to leaves of plants under low nitrogen stress. We evaluated the changes in photosynthetic characteristics of leaves, reactive oxygen metabolism, and nitrogen assimilation in roots. The results showed that shoot biomass of seedling significantly decreased and root-shoot ratio increased under low-nitrogen stress. The chlorophyll contents decreased, the carotenoid content increased, and the photosynthetic activity decreased. The activities of superoxide dismutase and catalase enzymes in roots changed little, while the activities of peroxidase and ascorbic acid peroxidase enzymes, along with the levels of soluble sugar, free proline, and reactive oxygen species showed a significant increase, and the soluble protein content decreased. The NO3- content in roots decreased, the NH4+ content increased, while activities of nitrate reductase and glutamine synthase decreased. Compared to the control group without GR24 application, foliar sprays of 10 and 20 µmol·L-1 GR24 under both normal and low-nitrogen increased biomass and root-shoot ratio to varying degrees. Additionally, GR24 application increased chlorophyll content, photosynthesis indices (net photosynthetic rate, transpiration rate and stomatal conductance), and fluorescence (maximum photochemical efficiency of PSⅡ and quantum yield of electron transfer per unit area) performance parameters, as well as the contents of osmotic regulation substances (soluble protein, soluble sugar, and free proline) and glutamine synthase activity. Application of 10 and 20 µmol·L-1 GR24 under low-nitrogen stress decreased carotenoid, reactive oxygen species, and NH4+ contents, while increased the activities of antioxidases and key enzymes in nitrogen metabolism (nitrate reductase and glutamine synthase) and NO3- content. The 10 µmol·L-1 GR24 treatment was the most effective in alleviating low nitrogen stress, which has potential for application in apple orchards with low nitrogen soil.


Sujet(s)
Lactones , Malus , Plant , Malus/effets des médicaments et des substances chimiques , Malus/physiologie , Azote , Photosynthèse , Lactones/pharmacologie , Plant/physiologie , Feuilles de plante/effets des médicaments et des substances chimiques
7.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article de Anglais | MEDLINE | ID: mdl-34884481

RÉSUMÉ

Drought seriously affects the yield and quality of apples. γ-aminobutyric acid (GABA) plays an important role in the responses of plants to various stresses. However, the role and possible mechanism of GABA in the drought response of apple seedlings remain unknown. To explore the effect of GABA on apple seedlings under drought stress, seedlings of Malus hupehensis were treated with seven concentrations of GABA, and the response of seedlings under 15-day drought stress was observed. The results showed that 0.5 mM GABA was the most effective at relieving drought stress. Treatment with GABA reduced the relative electrical conductivity and MDA content of leaves induced by drought stress and significantly increased the relative water content of leaves. Exogenous GABA significantly decreased the stomatal conductance and intercellular carbon dioxide concentration and transpiration rate, and it significantly increased the photosynthetic rate under drought. GABA also reduced the accumulation of superoxide anions and hydrogen peroxide in leaf tissues under drought and increased the activities of POD, SOD, and CAT and the content of GABA. Exogenous treatment with GABA acted through the accumulation of abscisic acid (ABA) in the leaves to significantly decrease stomatal conductance and increase the stomatal closure rate, and the levels of expression of ABA-related genes PYL4, ABI1, ABI2, HAB1, ABF3, and OST1 changed in response to drought. Taken together, exogenous GABA can enhance the drought tolerance of apple seedlings.


Sujet(s)
Acide abscissique/pharmacologie , Sécheresses , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Malus/croissance et développement , Protéines végétales/métabolisme , Plant/croissance et développement , Acide gamma-amino-butyrique/pharmacologie , Agents GABA/pharmacologie , Malus/effets des médicaments et des substances chimiques , Malus/génétique , Malus/métabolisme , Facteur de croissance végétal/pharmacologie , Protéines végétales/génétique , Plant/effets des médicaments et des substances chimiques , Plant/génétique , Plant/métabolisme , Stress physiologique
8.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article de Anglais | MEDLINE | ID: mdl-34830311

RÉSUMÉ

Abiotic stresses are increasingly harmful to crop yield and quality. Calcium and its signaling pathway play an important role in modulating plant stress tolerance. As specific Ca2+ sensors, calcineurin B-like (CBL) proteins play vital roles in plant stress response and calcium signaling. The CBL family has been identified in many plant species; however, the characterization of the CBL family and the functional study of apple MdCBL proteins in salt response have yet to be conducted in apple. In this study, 11 MdCBL genes were identified from the apple genome. The coding sequences of these MdCBL genes were cloned, and the gene structure and conserved motifs were analyzed in detail. The phylogenetic analysis indicated that these MdCBL proteins could be divided into four groups. The functional identification in Na+-sensitive yeast mutant showed that the overexpression of seven MdCBL genes could confer enhanced salt stress resistance in transgenic yeast. The function of MdCBL10.1 in regulating salt tolerance was also verified in cisgenic apple calli and apple plants. These results provided valuable insights for future research examining the function and mechanism of CBL proteins in regulating apple salt tolerance.


Sujet(s)
Protéines de liaison au calcium/génétique , Régulation de l'expression des gènes végétaux , Génome végétal , Malus/génétique , Protéines végétales/génétique , Tolérance au sel/génétique , Séquence d'acides aminés , Arabidopsis/classification , Arabidopsis/effets des médicaments et des substances chimiques , Arabidopsis/génétique , Arabidopsis/métabolisme , Calcium/métabolisme , Protéines de liaison au calcium/métabolisme , Clonage moléculaire , Vecteurs génétiques/composition chimique , Vecteurs génétiques/métabolisme , Malus/classification , Malus/effets des médicaments et des substances chimiques , Malus/métabolisme , Famille multigénique , Phylogenèse , Protéines végétales/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Stress salin , Alignement de séquences , Similitude de séquences d'acides aminés , Transduction du signal , Sodium/métabolisme , Chlorure de sodium/pharmacologie , Stress physiologique
9.
Sci Rep ; 11(1): 18412, 2021 09 16.
Article de Anglais | MEDLINE | ID: mdl-34531497

RÉSUMÉ

A novel composite edible coating film was developed from 0.8% chitosan (CS) and 0.5% sandalwood oil (SEO). Cellulose nanofibers (CNFs) were used as a stabilizer agent of oil-in-water Pickering emulsion. We found four typical groups of CNF level-dependent emulsion stabilization, including (1) unstable emulsion in the absence of CNFs; (2) unstable emulsion (0.006-0.21% CNFs); (3) stable emulsion (0.24-0.31% CNFs); and (4) regular emulsion with the addition of surfactant. Confocal laser scanning microscopy was performed to reveal the characteristics of droplet diameter and morphology. Antifungal tests against Botrytis cinerea and Penicillium digitatum, between emulsion coating stabilized with CNFs (CS-SEOpick) and CS or CS-SEO was tested. The effective concentration of CNFs (0.24%) may improve the performance of CS coating and maintain CS-SEO antifungal activity synergistically confirmed with a series of assays (in vitro, in vivo, and membrane integrity changes). The incorporation of CNFs contributed to improve the functional properties of CS and SEO-loaded CS including light transmission at UV and visible light wavelengths and tensile strength. Atomic force microscopy and scanning electron microscopy were employed to characterize the biocompatibility of each coating film formulation. Emulsion-CNF stabilized coating may have potential applications for active coating for fresh fruit commodities.


Sujet(s)
Antifongiques/pharmacologie , Cellulose/composition chimique , Chitosane/composition chimique , Émulsions/composition chimique , Fruit/effets des médicaments et des substances chimiques , Nanofibres/composition chimique , Huiles végétales/composition chimique , Sesquiterpènes/composition chimique , Perméabilité des membranes cellulaires/effets des médicaments et des substances chimiques , Citrus sinensis/effets des médicaments et des substances chimiques , Couleur , Champignons/effets des médicaments et des substances chimiques , Champignons/croissance et développement , Lumière , Malus/effets des médicaments et des substances chimiques , Microscopie à force atomique , Nanofibres/ultrastructure , Propriétés de surface , Résistance à la traction
10.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-34445535

RÉSUMÉ

Apples (Malus domestica Borkh) are prone to preharvest fruit drop, which is more pronounced in 'Honeycrisp'. Hexanal is known to improve fruit retention in several economically important crops. The effects of hexanal on the fruit retention of 'Honeycrisp' apples were assessed using physiological, biochemical, and transcriptomic approaches. Fruit retention and fruit firmness were significantly improved by hexanal, while sugars and fresh weight did not show a significant change in response to hexanal treatment. At commercial maturity, abscisic acid and melatonin levels were significantly lower in the treated fruit abscission zone (FAZ) compared to control. At this stage, a total of 726 differentially expressed genes (DEGs) were identified between treated and control FAZ. Functional classification of the DEGs showed that hexanal downregulated ethylene biosynthesis genes, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1-carboxylic acid oxidases (ACO3, ACO4, and ACO4-like), while it upregulated the receptor genes ETR2 and ERS1. Genes related to ABA biosynthesis (FDPS and CLE25) were also downregulated. On the contrary, key genes involved in gibberellic acid biosynthesis (GA20OX-like and KO) were upregulated. Further, hexanal downregulated the expression of genes related to cell wall degrading enzymes, such as polygalacturonase (PG1), glucanases (endo-ß-1,4-glucanase), and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Our findings reveal that hexanal reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell wall integrity of FAZ cells by regulating genes involved in cell wall modifications. Thus, delayed fruit abscission by hexanal is most likely achieved by minimizing ABA through an ethylene-dependent mechanism.


Sujet(s)
Acide abscissique/métabolisme , Aldéhydes/pharmacologie , Paroi cellulaire/métabolisme , Fruit/croissance et développement , Malus/croissance et développement , Mélatonine/métabolisme , Protéines végétales/métabolisme , Fruit/effets des médicaments et des substances chimiques , Fruit/métabolisme , Régulation de l'expression des gènes végétaux , Malus/effets des médicaments et des substances chimiques , Malus/métabolisme , Protéines végétales/génétique
11.
Plant J ; 107(6): 1663-1680, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-34218490

RÉSUMÉ

Adventitious root (AR) formation is a critical factor in the vegetative propagation of forestry and horticultural plants. Competence for AR formation declines in many species during the miR156/SPL-mediated vegetative phase change. Auxin also plays a regulatory role in AR formation. In apple rootstock, both high miR156 expression and exogenous auxin application are prerequisites for AR formation. However, the mechanism by which the miR156/SPL module interacts with auxin in controlling AR formation is unclear. In this paper, leafy cuttings of juvenile (Mx-J) and adult (Mx-A) phase Malus xiaojinensis were used in an RNA-sequencing experiment. The results revealed that numerous genes involved in phytohormone signaling, carbohydrate metabolism, cell dedifferentiation, and reactivation were downregulated in Mx-A cuttings in response to indole butyric acid treatment. Among the differentially expressed genes, an HD-ZIP transcription factor gene, MxHB13, was found to be under negative regulation of MdSPL26 by directly binding to MxHB13 promoter. MxTIFY9 interacts with MxSPL26 and may play a role in co-repressing the expression of MxHB13. The expression of MxTIFY9 was induced by exogenous indole butyric acid. MxHB13 binds to the promoter of MxABCB19-2 and positively affects the expression. A model is proposed in which MxHB13 links juvenility-limited and auxin-limited AR recalcitrance mechanisms in Mx-A.


Sujet(s)
Malus/croissance et développement , Protéines végétales/métabolisme , Racines de plante/croissance et développement , Facteurs de transcription/métabolisme , Différenciation cellulaire , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Acides indolacétiques/métabolisme , Indoles/métabolisme , Indoles/pharmacologie , Malus/effets des médicaments et des substances chimiques , Malus/génétique , Malus/métabolisme , Cellules végétales , Facteur de croissance végétal/métabolisme , Protéines végétales/génétique , Racines de plante/génétique , Tiges de plante/cytologie , Tiges de plante/génétique , Tiges de plante/croissance et développement , Végétaux génétiquement modifiés , Nicotiana/génétique , Facteurs de transcription/génétique
12.
Molecules ; 26(11)2021 May 28.
Article de Anglais | MEDLINE | ID: mdl-34071647

RÉSUMÉ

BACKGROUND: Filtration of osmotic solution affects selective penetration during osmotic dehydration (OD), and after drying is finished, this can influence the chemical composition of the material, which is also modified by OD. METHODS: Osmotic dehydration was carried out in filtrated and non-filtrated concentrated chokeberry juice with the addition of mint infusion. Then, this underwent convective drying, vacuum-microwave drying and combined convective pre-drying, followed by vacuum-microwave finishing drying. Drying kinetics were presented and mathematical models were selected. The specific energy consumption for each drying method was calculated and the energy efficiency was determined. RESULTS AND DISCUSSION: The study revealed that filtration of osmotic solution did not have significant effect on drying kinetics; however, it affected selective penetration during OD. The highest specific energy consumption was obtained for the samples treated by convective drying (CD) (around 170 kJ·g-1 fresh weight (fw)) and the lowest for the samples treated by vacuum-microwave drying (VMD) (around 30 kJ·g-1 fw), which is due to the differences in the time of drying and when these methods are applied. CONCLUSIONS: Filtration of the osmotic solution can be used to obtain the desired material after drying and the VMD method is the most appropriate considering both phenolic acid content and the energy aspect of drying.


Sujet(s)
Dessiccation/méthodes , Malus/effets des médicaments et des substances chimiques , Mentha/métabolisme , Osmose , Extraits de plantes/composition chimique , Antioxydants/composition chimique , Acides caféiques/composition chimique , Chimie physique/méthodes , Acide chlorogénique/composition chimique , Chromatographie en phase liquide , Cinnamates/composition chimique , Couleur , Depsides/composition chimique , Métabolisme énergétique , Filtration , Manipulation des aliments , Fruit/composition chimique , Hydroxybenzoates/analyse , Cinétique , Micro-ondes , Modèles théoriques , Phénol , Spectrométrie de masse en tandem , Température ,
13.
Plant Cell Rep ; 40(7): 1127-1139, 2021 Jul.
Article de Anglais | MEDLINE | ID: mdl-33973072

RÉSUMÉ

KEY MESSAGE: MdBZR1 directly binds to the promoter of MdABI5 and suppresses its expression to mediate ABA response. The plant hormones brassinosteroids (BRs) and abscisic acid (ABA) antagonistically regulate various aspects of plant growth and development. However, the association between BR and ABA signaling is less clear. Here, we identified MdBZR1 in apple (Malus domestica) and demonstrated that it was activated by BRs and could respond to ABA treatment. Overexpression of MdBZR1 in apple calli and Arabidopsis reduced ABA-hypersensitive phenotypes, suggesting that MdBZR1 negatively regulates ABA signaling. Subsequently, we found that MdBZR1 directly bound to the promoter region of MdABI5 and suppressed its expression. MdABI5 was significantly induced by ABA treatment. And overexpression of MdABI5 in apple calli increased sensitivity to ABA. Ectopic expression of MdABI5 in Arabidopsis inhibited seed germination and seedling growth. In addition, overexpression of MdBZR1 partially attenuated MdABI5-mediated ABA sensitivity. Taken together, our data indicate that MdBZR1 directly binds to the promoter of MdABI5 and suppresses its expression to antagonistically mediate ABA response. Our work contributes to the functional studies of BZR1 and further broadens the insight into the between BR and ABA signaling.


Sujet(s)
Acide abscissique/métabolisme , Malus/génétique , Protéines végétales/génétique , Acide abscissique/pharmacologie , Arabidopsis/effets des médicaments et des substances chimiques , Arabidopsis/génétique , Régulation de l'expression des gènes végétaux , Malus/effets des médicaments et des substances chimiques , Malus/métabolisme , Facteur de croissance végétal/métabolisme , Protéines végétales/métabolisme , Végétaux génétiquement modifiés , Régions promotrices (génétique) , Stress salin/génétique
14.
J Plant Physiol ; 261: 153427, 2021 Jun.
Article de Anglais | MEDLINE | ID: mdl-33940557

RÉSUMÉ

Metamitron (MET) is a fruitlet thinning compound for apple trees, needing better understanding of its action on leaf energy metabolism, depending on nighttime temperature. A trial under environmental controlled conditions was set with 'Golden Reinders' potted trees, under 25/7.5 and 25/15 °C (diurnal/nighttime temperature), with (MET, 247.5 ppm) or without (CTR) application, and considering the monitoring of photosynthetic and respiration components from day 1 (D1) to 14 (D14). Net photosynthesis (Pn) decline promoted by MET after D1 was not stomatal related. Instead, non-stomatal constraints, reflected on the photosynthetic capacity (Amax), included a clear photosystem (PS) II inhibition (but barely of PSI), as shown by severe reductions in thylakoid electron transport at PSII level, maximal (Fv/Fm) and actual (Fv'/Fm') PSII photochemical efficiencies, estimate of quantum yield of linear electron transport (Y(II)), and the rise in PSII photoinhibition status (Fs/Fm' and PIChr) and uncontrolled energy dissipation (Y(NO)). To Pn inhibition also contributed the impact in RuBisCO along the entire experiment, regardless of night temperature, here reported for the first time. Globally, MET impact on the photosynthetic parameters was usually greater under 7.5 °C, with maximal impacts between D4 and D7, probably associated to a less active metabolism at lower temperature. Cellular energy metabolism was further impaired under 7.5 °C, through moderate inhibition of NADH-dependent malate dehydrogenase (MDH) and pyruvate kinase (PK) enzymes involved in respiration, in contrast with the increase of dark respiration in MET 7.5 until D7. The lower impact on PK and MDH under 15 °C and a likely global higher active metabolism at that temperature would agree with the lowest sucrose levels in MET 15 at D4 and D7. Our findings showed that MET alters the cell energy machinery in a temperature dependent manner, affecting the sucrose balance mainly at 15 °C, justifying the observed greater thinning potential.


Sujet(s)
Malus/métabolisme , Photosynthèse , Feuilles de plante/métabolisme , Température , Triazines/métabolisme , Dioxyde de carbone/métabolisme , Transport d'électrons/effets des médicaments et des substances chimiques , Malus/effets des médicaments et des substances chimiques , Photopériode , Photosynthèse/effets des médicaments et des substances chimiques , Complexe protéique du photosystème II/métabolisme , Feuilles de plante/effets des médicaments et des substances chimiques , Thylacoïdes/effets des médicaments et des substances chimiques , Thylacoïdes/métabolisme , Triazines/administration et posologie
15.
Biotechnol Lett ; 43(7): 1503-1512, 2021 Jul.
Article de Anglais | MEDLINE | ID: mdl-33856593

RÉSUMÉ

Botrytis cinerea cause postharvest diseases on fruit and lead economic losses. Application of environment-friendly natural compounds is an alternative for synthetic fungicides to control postharvest disease. Lycorine is an indolizidine alkaloid which is widely used for human drug design, however, application of lycorine in controlling postharvest disease and the underlying mechanisms have not been reported. In this study, the effects of lycorine on mycelium growth, spore germination, disease development in apple fruit, cell viability, cell membrane integrity, cell wall deposition, and expression of mitogen-activated protein kinase (MAPK) and GTPase of B. cinerea were investigated. Our results showed that lycorine was effective in controlling postharvest gray mold caused by B. cinerea on apple fruit. In the in vitro tests, lycorine strongly inhibited spore germination and mycelium spreading in culture medium. Investigation via fluorescein diacetate and propidium iodide staining suggested that lycorine could damage the membrane integrity and impair cell viability of B. cinerea. Furthermore, the expression levels of several MAPK and GTPase coding genes were reduced upon the lycorine treatment. Taken together, lycorine is an effective and promising way to control postharvest disease caused by B. cinerea.


Sujet(s)
Alcaloïdes des Amaryllidaceae/pharmacologie , Antifongiques/pharmacologie , Botrytis/physiologie , Malus/croissance et développement , Phénanthridines/pharmacologie , Alcaloïdes des Amaryllidaceae/isolement et purification , Antifongiques/isolement et purification , Botrytis/composition chimique , Résistance à la maladie , Protéines fongiques/génétique , dGTPases/génétique , Régulation de l'expression des gènes codant pour des enzymes/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes fongiques/effets des médicaments et des substances chimiques , Germination , Malus/effets des médicaments et des substances chimiques , Malus/microbiologie , Mitogen-Activated Protein Kinases/génétique , Phénanthridines/isolement et purification , Spores fongiques/composition chimique , Spores fongiques/physiologie
16.
Food Chem ; 346: 128881, 2021 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-33482531

RÉSUMÉ

This study was carried out to investigate the effect of acibenzolar-S-methyl (ASM) and ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA) treatments on calcium-dependent protein kinases (CDPKs) and reactive oxygen species (ROS) metabolism in apples. Postharvest ASM treatment increased H2O2 content, reduced glutathione and ascorbic acid contents, and NADPH oxidase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase activities and retarded catalase activity and MdCAT expression in apples. ASM treatment enhanced MdSOD, MdPOD, MdAPX, MdGR, MdCDPK1, MdCDPK4, MdCDPK5, MdCDPK7, and MdCDPK21 expressions in apples. However, EGTA + ASM treatments suppressed H2O2, glutathione and ascorbic acid contents, NADPH oxidase, peroxidase, superoxide dismutase, ascorbate peroxidase and glutathione reductase activities. EGTA + ASM treatments suppressed the selected genes expressions in ROS metabolism and CDPKs, but up-regulated MdCAT expression in apples. These findings suggest that CDPKs play a vital role in regulating ROS metabolism and involve in inducing resistance in apples by ASM.


Sujet(s)
Peroxyde d'hydrogène/métabolisme , Malus/métabolisme , Protéines végétales/métabolisme , Protein kinases/métabolisme , Thiadiazoles/pharmacologie , Régulation positive/effets des médicaments et des substances chimiques , Acide egtazique/pharmacologie , Fruit/effets des médicaments et des substances chimiques , Fruit/métabolisme , Glutathion/métabolisme , Peroxyde d'hydrogène/composition chimique , Malus/effets des médicaments et des substances chimiques , Oxidoreductases/génétique , Oxidoreductases/métabolisme , Protéines végétales/génétique , Protein kinases/génétique
17.
Plant Cell Environ ; 44(6): 1869-1884, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-33459386

RÉSUMÉ

Iron (Fe) is an essential element for plant growth, development and metabolism. Due to its lack of solubility and low bioavailability in soil, Fe levels are usually far below the optimum amount for most plants' growth and development. In apple production, excessive use of nitrogen fertilizer may cause iron chlorosis symptoms in the newly growing leaves, but the regulatory mechanisms underlying this phenomenon are unclear. In this study, low nitrate (NO3- , LN) application alleviated the symptoms of Fe deficiency and promoted lower rhizosphere pH, which was beneficial for root Fe acquisition. At the same time, LN treatment increased citrate and abscisic acid accumulation in roots, which promoted Fe transport from root to shoot and maintained Fe homeostasis. Moreover, qRT-PCR analysis showed that nitrate application caused differential expression of genes related to Fe uptake and transport, as well as transcriptional regulators. In summary, our data reveal that low nitrate alleviated Fe deficiency through multiple pathways, demonstrating a new option for minimizing Fe deficiency by regulating the balance between nutrients.


Sujet(s)
Fer/métabolisme , Malus/métabolisme , Nitrates/métabolisme , Acide abscissique/métabolisme , Acide abscissique/pharmacologie , Arabidopsis/effets des médicaments et des substances chimiques , Arabidopsis/métabolisme , Acide citrique/pharmacologie , Régulation de l'expression des gènes végétaux , Homéostasie , Concentration en ions d'hydrogène , Malus/effets des médicaments et des substances chimiques , Malus/génétique , Nitrates/pharmacologie , Feuilles de plante/croissance et développement , Feuilles de plante/métabolisme , Racines de plante/métabolisme , Pousses de plante/métabolisme , Rhizosphère
18.
Biol Res ; 54(1): 1, 2021 Jan 06.
Article de Anglais | MEDLINE | ID: mdl-33407933

RÉSUMÉ

BACKGROUND: Apple is one of the oldest and most valuable fruits. Water restriction is one of the major problems in the production of this fruit in some planting areas. METHODS: Effects of kaolin spray treatments were studied on two early apple cultivars of Golab and Shafi-Abadi under sustained deficit irrigation (SDI) in Alborz province, Iran during 2017 and 2018. Irrigation treatments were 100%, 85%, and 70% ETc and kaolin application were concentrations of 0, 3 and 6% in 2017 and 0, 1.5 and 3% in 2018. RESULTS: Results showed that 85% ETc treatment compared to other irrigation treatments improved apple tree crown volume in 2017. Deficit irrigation treatments significantly reduced fruit weight in both years. Application with 6% kaolin resulted in 33.3% increase in apple fruit weight compared to non-kaolin treatment at 100% ETc irrigation in the first year. Severe deficit irrigation (70% ETc) significantly reduced apple fruit length in both years, but 6% kaolin increased fruit length in both apple cultivars in 2017. Severe deficit irrigation treatment increased the firmness of apple fruit compared to control and mild deficit irrigation (85% ETc) in the first year of experiment. There was no significant difference between irrigation treatments for apple fruit firmness in the second year of experiment. Kaolin treatments of 1.5% and 3% at full irrigation increased the soluble solids content of apple fruit by 36.6% and 44.1% in 2018, respectively. Deficit irrigation treatments significantly increased leaf proline content compared to control in both years. In the first year, kaolin treatments increased leaf proline but in the second year, leaf proline was not significant. Deficit irrigation treatment of 70% ETc and 6% kaolin had the highest amount of glycine betaine content, malondialdehyde and hydrogen peroxide in apple leaf in the first year of experiment. CONCLUSIONS: Severe deficit irrigation stress (70% ETc) increased the activity of nonenzymatic defense systems of apple trees. Kaolin as a drought stress reducing agent can be recommended in apple orchards of Golab and Shafi-Abadi cultivars as an effective and inexpensive method to improve tolerance to drought stress conditions.


Sujet(s)
Fruit/croissance et développement , Kaolin/pharmacologie , Malus/croissance et développement , Feuilles de plante/composition chimique , Eau , Irrigation agricole , Fruit/effets des médicaments et des substances chimiques , Iran , Malus/effets des médicaments et des substances chimiques , Proline/composition chimique
19.
BMC Plant Biol ; 21(1): 52, 2021 Jan 19.
Article de Anglais | MEDLINE | ID: mdl-33468049

RÉSUMÉ

BACKGROUND: Soil salinity is a critical threat to global agriculture. In plants, the accumulation of xanthine activates xanthine dehydrogenase (XDH), which catalyses the oxidation/conversion of xanthine to uric acid to remove excess reactive oxygen species (ROS). The nucleobase-ascorbate transporter (NAT) family is also known as the nucleobase-cation symporter (NCS) or AzgA-like family. NAT is known to transport xanthine and uric acid in plants. The expression of MdNAT is influenced by salinity stress in apple. RESULTS: In this study, we discovered that exogenous application of xanthine and uric acid enhanced the resistance of apple plants to salinity stress. In addition, MdNAT7 overexpression transgenic apple plants showed enhanced xanthine and uric acid concentrations and improved tolerance to salinity stress compared with nontransgenic plants, while opposite phenotypes were observed for MdNAT7 RNAi plants. These differences were probably due to the enhancement or impairment of ROS scavenging and ion homeostasis abilities. CONCLUSION: Our results demonstrate that xanthine and uric acid have potential uses in salt stress alleviation, and MdNAT7 can be utilized as a candidate gene to engineer resistance to salt stress in plants.


Sujet(s)
Malus/physiologie , Protéines végétales/génétique , Tolérance au sel/physiologie , Acide urique/pharmacologie , Xanthine/pharmacologie , Antioxydants/analyse , Antioxydants/métabolisme , Régulation de l'expression des gènes végétaux , Homéostasie , Peroxyde d'hydrogène/métabolisme , Malus/effets des médicaments et des substances chimiques , Malus/génétique , Transporteurs de nucléobases/génétique , Transporteurs de nucléobases/métabolisme , Feuilles de plante/composition chimique , Feuilles de plante/métabolisme , Protéines végétales/métabolisme , Végétaux génétiquement modifiés/génétique , Potassium/analyse , Tolérance au sel/effets des médicaments et des substances chimiques , Sodium/analyse , Acide urique/analyse , Xanthine/analyse
20.
Plant Physiol Biochem ; 159: 113-122, 2021 Feb.
Article de Anglais | MEDLINE | ID: mdl-33359960

RÉSUMÉ

AIMS: In recent years, the application of large amounts of potash fertilizer in apple orchards leads to worsening KCl stress. Strigolactone (SL), as a novel phytohormone, reportedly participates in plant tolerance to NaCl and drought stresses. However, the underlying mechanism and the effects of exogenous SL on the KCl stress of apple seedlings remain unclear. METHODS: We sprayed different concentrations of exogenous SL on Malus hupehensis Rehd. under KCl stress and measured the physiological indexes like, photosynthetic parameter, content of ROS, osmolytes and mineral element. In addition, the expressions of KCl-responding genes and SL-signaling genes were also detected and analyzed. RESULTS: Application of exogenous SL protected the chlorophyll and maintained the photosynthetic rate of apple seedlings under KCl stress. Exogenous SL strengthened the enzyme activities of peroxidase and catalase, thereby eliminating reactive oxygen species production induced by KCl stress, promoting the accumulation of proline, and maintaining osmotic balance. Exogenous SL expelled K+ outside of the cytoplasm and compartmentalized K+ into the vacuole, increased the contents of Na+, Mg2+, Fe2+, and Mn2+ in the cytoplasm to maintain the ion homeostasis under KCl stress. CONCLUSIONS: Exogenous SL can regulate photosynthesis, ROS migration and ion transport in apple seedlings to alleviate KCl stress.


Sujet(s)
Composés hétérocycliques 3 noyaux , Transport des ions , Lactones , Malus , Photosynthèse , Espèces réactives de l'oxygène , Stress physiologique , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Gènes de plante/génétique , Composés hétérocycliques 3 noyaux/pharmacologie , Transport des ions/effets des médicaments et des substances chimiques , Lactones/pharmacologie , Malus/effets des médicaments et des substances chimiques , Photosynthèse/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Plant/effets des médicaments et des substances chimiques , Stress physiologique/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...