Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 5.923
Filtrer
1.
Cell Death Dis ; 15(8): 562, 2024 Aug 04.
Article de Anglais | MEDLINE | ID: mdl-39098929

RÉSUMÉ

The investigation of aberrations in lipid metabolism within tumor has become a burgeoning field of study that has garnered significant attention in recent years. Lipids can serve as a potent source of highly energetic fuel to support the rapid growth of neoplasia, in where the ER-mitochondrial membrane domains (ERMMDs) provide an interactive network for facilitating communication between ER and mitochondria as well as their intermembrane space and adjunctive proteins. In this review, we discuss fatty acids (FAs) anabolic and catabolic metabolism, as well as how CPT1A-VDAC-ACSL clusters on ERMMDs participate in FAs transport, with a major focus on ERMMDs mediated collaborative loop of FAO, Ca2+ transmission in TCA cycle and OXPHOS process. Here, we present a comprehensive perspective on the regulation of aberrant lipid metabolism through ERMMDs conducted tumor physiology might be a promising and potential target for tumor starvation therapy.


Sujet(s)
Métabolisme lipidique , Tumeurs , Humains , Tumeurs/métabolisme , Tumeurs/anatomopathologie , Tumeurs/traitement médicamenteux , Tumeurs/génétique , Membranes mitochondriales/métabolisme , Animaux , Acides gras/métabolisme , Réticulum endoplasmique/métabolisme , Mitochondries/métabolisme , Carnitine O-palmitoyltransferase/métabolisme , Carnitine O-palmitoyltransferase/génétique
2.
Biochemistry (Mosc) ; 89(6): 1061-1078, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38981701

RÉSUMÉ

Voltage-dependent anion channels (VDAC1-3) of the outer mitochondrial membrane are a family of pore-forming ß-barrel proteins that carry out controlled "filtration" of small molecules and ions between the cytoplasm and mitochondria. Due to the conformational transitions between the closed and open states and interaction with cytoplasmic and mitochondrial proteins, VDACs not only regulate the mitochondrial membrane permeability for major metabolites and ions, but also participate in the control of essential intracellular processes and pathological conditions. This review discusses novel data on the molecular structure, regulatory mechanisms, and pathophysiological role of VDAC proteins, as well as future directions in this area of research.


Sujet(s)
Membranes mitochondriales , Canaux anioniques voltage-dépendants , Humains , Canaux anioniques voltage-dépendants/métabolisme , Membranes mitochondriales/métabolisme , Animaux , Mitochondries/métabolisme
3.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-39000360

RÉSUMÉ

Mitochondrial dysfunction has been increasingly recognized as a trigger for systemic lupus erythematosus (SLE). Recent bioinformatics studies have suggested Fam210b as a significant candidate for the classification and therapeutic targeting of SLE. To experimentally prove the role of Fam210b in SLE, we constructed Fam210b knockout (Fam210b-/-) mice using the CRISPR-Cas9 method. We found that approximately 15.68% of Fam210b-/- mice spontaneously developed lupus-like autoimmunity, which was characterized by skin ulcerations, splenomegaly, and an increase in anti-double-stranded DNA (anti-dsDNA) IgG antibodies and anti-nuclear antibodies(ANA). Single-cell sequencing showed that Fam210b was mainly expressed in erythroid cells. Critically, the knockout of Fam210b resulted in abnormal erythrocyte differentiation and development in the spleens of mice. Concurrently, the spleens exhibited an increased number of CD71+ erythroid cells, along with elevated levels of reactive oxygen species (ROS) in the erythrocytes. The co-culture of CD71+ erythroid cells and lymphocytes resulted in lymphocyte activation and promoted dsDNA and IgG production. In summary, Fam210b knockout leads to a low probability of lupus-like symptoms in mice through the overproduction of ROS in CD71+ erythroid cells. Thus, Fam210b reduction may serve as a novel key marker that triggers the development of SLE.


Sujet(s)
Lupus érythémateux disséminé , Souris knockout , Animaux , Lupus érythémateux disséminé/génétique , Lupus érythémateux disséminé/métabolisme , Lupus érythémateux disséminé/anatomopathologie , Souris , Protéines mitochondriales/génétique , Protéines mitochondriales/métabolisme , Espèces réactives de l'oxygène/métabolisme , Anticorps antinucléaires , Membranes mitochondriales/métabolisme , Cellules érythroïdes/métabolisme , Cellules érythroïdes/anatomopathologie , Modèles animaux de maladie humaine , Immunoglobuline G/métabolisme , Souris de lignée C57BL , Rate/métabolisme , Rate/anatomopathologie , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Femelle
4.
Proc Natl Acad Sci U S A ; 121(30): e2313609121, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39012824

RÉSUMÉ

Mitofusins (Mfn1 and Mfn2) are the mitochondrial outer-membrane fusion proteins in mammals and belong to the dynamin superfamily of multidomain GTPases. Recent structural studies of truncated variants lacking alpha helical transmembrane domains suggested that Mfns dimerize to promote the approximation and the fusion of the mitochondrial outer membranes upon the hydrolysis of guanine 5'-triphosphate disodium salt (GTP). However, next to the presence of GTP, the fusion activity seems to require multiple regulatory factors that control the dynamics and kinetics of mitochondrial fusion through the formation of Mfn1-Mfn2 heterodimers. Here, we purified and reconstituted the full-length murine Mfn2 protein into giant unilamellar vesicles (GUVs) with different lipid compositions. The incubation with GTP resulted in the fusion of Mfn2-GUVs. High-speed video-microscopy showed that the Mfn2-dependent membrane fusion pathway progressed through a zipper mechanism where the formation and growth of an adhesion patch eventually led to the formation of a membrane opening at the rim of the septum. The presence of physiological concentration (up to 30 mol%) of dioleoyl-phosphatidylethanolamine (DOPE) was shown to be a requisite to observe GTP-induced Mfn2-dependent fusion. Our observations show that Mfn2 alone can promote the fusion of micron-sized DOPE-enriched vesicles without the requirement of regulatory cofactors, such as membrane curvature, or the assistance of other proteins.


Sujet(s)
dGTPases , Fusion membranaire , Animaux , dGTPases/métabolisme , dGTPases/génétique , Souris , Fusion membranaire/physiologie , Liposomes unilamellaires/métabolisme , Liposomes unilamellaires/composition chimique , Guanosine triphosphate/métabolisme , Phosphatidyléthanolamine/métabolisme , Membranes mitochondriales/métabolisme , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Mitochondries/métabolisme
5.
Biochem J ; 481(14): 903-922, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38985308

RÉSUMÉ

Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.


Sujet(s)
Apoptose , Protéines proto-oncogènes c-bcl-2 , Protéines proto-oncogènes c-bcl-2/métabolisme , Protéines proto-oncogènes c-bcl-2/génétique , Protéines proto-oncogènes c-bcl-2/composition chimique , Humains , Apoptose/physiologie , Animaux , Membranes mitochondriales/métabolisme , Liaison aux protéines
6.
PLoS Biol ; 22(7): e3002671, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38949997

RÉSUMÉ

Mitochondrial shape and network formation have been primarily associated with the well-established processes of fission and fusion. However, recent research has unveiled an intricate and multifaceted landscape of mitochondrial morphology that extends far beyond the conventional fission-fusion paradigm. These less-explored dimensions harbor numerous unresolved mysteries. This review navigates through diverse processes influencing mitochondrial shape and network formation, highlighting the intriguing complexities and gaps in our understanding of mitochondrial architecture. The exploration encompasses various scales, from biophysical principles governing membrane dynamics to molecular machineries shaping mitochondria, presenting a roadmap for future research in this evolving field.


Sujet(s)
Mitochondries , Dynamique mitochondriale , Dynamique mitochondriale/physiologie , Mitochondries/métabolisme , Animaux , Humains , Membranes mitochondriales/métabolisme , Forme de l'organelle , Protéines mitochondriales/métabolisme , Fusion membranaire/physiologie
7.
Life Sci Alliance ; 7(9)2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38991726

RÉSUMÉ

PPTC7 is a mitochondrial-localized phosphatase that suppresses BNIP3- and NIX-mediated mitophagy, but the mechanisms underlying this regulation remain ill-defined. Here, we demonstrate that loss of PPTC7 upregulates BNIP3 and NIX post-transcriptionally and independent of HIF-1α stabilization. Loss of PPTC7 prolongs the half-life of BNIP3 and NIX while blunting their accumulation in response to proteasomal inhibition, suggesting that PPTC7 promotes the ubiquitin-mediated turnover of BNIP3 and NIX. Consistently, overexpression of PPTC7 limits the accumulation of BNIP3 and NIX protein levels, which requires an intact catalytic motif but is surprisingly independent of its targeting to mitochondria. Consistently, we find that PPTC7 is dual-localized to the outer mitochondrial membrane and the matrix. Importantly, anchoring PPTC7 to the outer mitochondrial membrane is sufficient to blunt BNIP3 and NIX accumulation, and proximity labeling and fluorescence co-localization experiments demonstrate that PPTC7 dynamically associates with BNIP3 and NIX within the native cellular environment. Collectively, these data reveal that a fraction of PPTC7 localizes to the outer mitochondrial membrane to promote the proteasomal turnover of BNIP3 and NIX, limiting basal mitophagy.


Sujet(s)
Protéines membranaires , Mitochondries , Membranes mitochondriales , Protéines mitochondriales , Mitophagie , Protéines proto-oncogènes , Mitophagie/génétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Humains , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Protéines proto-oncogènes/métabolisme , Protéines proto-oncogènes/génétique , Mitochondries/métabolisme , Membranes mitochondriales/métabolisme , Phosphoprotein Phosphatases/métabolisme , Phosphoprotein Phosphatases/génétique , Protéines suppresseurs de tumeurs/métabolisme , Protéines suppresseurs de tumeurs/génétique , Cellules HeLa , Animaux
8.
Toxins (Basel) ; 16(7)2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-39057927

RÉSUMÉ

In this paper, we provide an overview of mitochondrial bioenergetics and specific conditions that lead to the formation of non-bilayer structures in mitochondria. Secondly, we provide a brief overview on the structure/function of cytotoxins and how snake venom cytotoxins have contributed to increasing our understanding of ATP synthesis via oxidative phosphorylation in mitochondria, to reconcile some controversial aspects of the chemiosmotic theory. Specifically, we provide an emphasis on the biochemical contribution of delocalized and localized proton movement, involving direct transport of protons though the Fo unit of ATP synthase or via the hydrophobic environment at the center of the inner mitochondrial membrane (proton circuit) on oxidative phosphorylation, and how this influences the rate of ATP synthesis. Importantly, we provide new insights on the molecular mechanisms through which cobra venom cytotoxins affect mitochondrial ATP synthesis, mitochondrial structure, and dynamics. Finally, we provide a perspective for the use of cytotoxins as novel pharmacological tools to study membrane bioenergetics and mitochondrial biology, how they can be used in translational research, and their potential therapeutic applications.


Sujet(s)
Venins des élapidés , Métabolisme énergétique , Mitochondries , Membranes mitochondriales , Animaux , Métabolisme énergétique/effets des médicaments et des substances chimiques , Membranes mitochondriales/effets des médicaments et des substances chimiques , Membranes mitochondriales/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Humains , Venins des élapidés/composition chimique , Venins des élapidés/toxicité , Venins des élapidés/métabolisme , Cytotoxines/pharmacologie , Cytotoxines/toxicité , Cytotoxines/composition chimique , Adénosine triphosphate/métabolisme , Phosphorylation oxydative/effets des médicaments et des substances chimiques
9.
Biol Pharm Bull ; 47(7): 1376-1382, 2024.
Article de Anglais | MEDLINE | ID: mdl-39085077

RÉSUMÉ

Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutation in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. SDS has a variety of clinical features, including exocrine pancreatic insufficiency and hematological dysfunction. Neutropenia is the most common symptom in patients with SDS. SDS is also associated with an elevated risk of developing myelodysplastic syndromes and acute myeloid leukemia. The SBDS protein is involved in ribosome biogenesis, ribosomal RNA metabolism, stabilization of mitotic spindles and cellular stress responses, yet the function of SBDS in detail is still incompletely understood. Considering the diverse function of SBDS, the effect of SBDS seems to be different in different cells and tissues. In this study, we established myeloid cell line 32Dcl3 with a common pathogenic SBDS variant on both alleles in intron 2, 258 + 2T > C, and examined the cellular damage that resulted. We found that the protein synthesis was markedly decreased in the mutant cells. Furthermore, reactive oxygen species (ROS) production was increased, and oxidation of the mitochondrial membrane lipids and DNA damage were induced. These findings provide new insights into the cellular and molecular pathology caused by SBDS deficiency in myeloid cells.


Sujet(s)
Altération de l'ADN , Membranes mitochondriales , Mutation , Espèces réactives de l'oxygène , Espèces réactives de l'oxygène/métabolisme , Animaux , Souris , Membranes mitochondriales/métabolisme , Lignée cellulaire , Oxydoréduction , Cellules myéloïdes/métabolisme , Protéines/métabolisme , Protéines/génétique , Maladie de Shwachman
10.
Curr Biol ; 34(12): R581-R583, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38889682

RÉSUMÉ

A new study reports the identification of a fission yeast dynamin superfamily protein, Mmc1, that self-assembles on the matrix side of the inner mitochondrial membrane and interacts with subunits of the mitochondrial contact site and cristae organizing system to maintain cristae architecture.


Sujet(s)
Mitochondries , Membranes mitochondriales , Schizosaccharomyces , Membranes mitochondriales/métabolisme , Schizosaccharomyces/métabolisme , Schizosaccharomyces/physiologie , Mitochondries/métabolisme , Mitochondries/physiologie , Protéines de Schizosaccharomyces pombe/métabolisme , Protéines de Schizosaccharomyces pombe/génétique , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Dynamines/métabolisme , Dynamines/génétique
11.
Nat Commun ; 15(1): 4740, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38834545

RÉSUMÉ

Mitophagy is critical for mitochondrial quality control and function to clear damaged mitochondria. Here, we found that Burkholderia pseudomallei maneuvered host mitophagy for its intracellular survival through the type III secretion system needle tip protein BipD. We identified BipD, interacting with BTB-containing proteins KLHL9 and KLHL13 by binding to the Back and Kelch domains, recruited NEDD8 family RING E3 ligase CUL3 in response to B. pseudomallei infection. Although evidently not involved in regulation of infectious diseases, KLHL9/KLHL13/CUL3 E3 ligase complex was essential for BipD-dependent ubiquitination of mitochondria in mouse macrophages. Mechanistically, we discovered the inner mitochondrial membrane IMMT via host ubiquitome profiling as a substrate of KLHL9/KLHL13/CUL3 complex. Notably, K63-linked ubiquitination of IMMT K211 was required for initiating host mitophagy, thereby reducing mitochondrial ROS production. Here, we show a unique mechanism used by bacterial pathogens that hijacks host mitophagy for their survival.


Sujet(s)
Protéines bactériennes , Burkholderia pseudomallei , Macrophages , Mitochondries , Mitophagie , Burkholderia pseudomallei/métabolisme , Burkholderia pseudomallei/pathogénicité , Burkholderia pseudomallei/physiologie , Burkholderia pseudomallei/génétique , Animaux , Souris , Mitochondries/métabolisme , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Humains , Macrophages/microbiologie , Macrophages/métabolisme , Ubiquitination , Mélioïdose/microbiologie , Mélioïdose/métabolisme , Interactions hôte-pathogène , Espèces réactives de l'oxygène/métabolisme , Systèmes de sécrétion de type III/métabolisme , Systèmes de sécrétion de type III/génétique , Souris de lignée C57BL , Membranes mitochondriales/métabolisme , Cellules HEK293 , Cellules RAW 264.7
12.
Nat Commun ; 15(1): 4700, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38830851

RÉSUMÉ

BAX and BAK are proapoptotic members of the BCL2 family that directly mediate mitochondrial outer membrane permeabilition (MOMP), a central step in apoptosis execution. However, the molecular architecture of the mitochondrial apoptotic pore remains a key open question and especially little is known about the contribution of lipids to MOMP. By performing a comparative lipidomics analysis of the proximal membrane environment of BAK isolated in lipid nanodiscs, we find a significant enrichment of unsaturated species nearby BAK and BAX in apoptotic conditions. We then demonstrate that unsaturated lipids promote BAX pore activity in model membranes, isolated mitochondria and cellular systems, which is further supported by molecular dynamics simulations. Accordingly, the fatty acid desaturase FADS2 not only enhances apoptosis sensitivity, but also the activation of the cGAS/STING pathway downstream mtDNA release. The correlation of FADS2 levels with the sensitization to apoptosis of different lung and kidney cancer cell lines by co-treatment with unsaturated fatty acids supports the relevance of our findings. Altogether, our work provides an insight on how local lipid environment affects BAX and BAK function during apoptosis.


Sujet(s)
Apoptose , Membranes mitochondriales , Protéine Bak , Protéine Bax , Protéine Bak/métabolisme , Protéine Bak/génétique , Protéine Bax/métabolisme , Humains , Membranes mitochondriales/métabolisme , Simulation de dynamique moléculaire , Mitochondries/métabolisme , Lignée cellulaire tumorale , Acides gras insaturés/métabolisme , Acides gras insaturés/pharmacologie , Animaux
13.
Acta Biochim Pol ; 71: 13126, 2024.
Article de Anglais | MEDLINE | ID: mdl-38863652

RÉSUMÉ

Mitochondrial investigations have extended beyond their traditional functions, covering areas such as ATP synthesis and metabolism. Mitochondria are now implicated in new functional areas such as cytoprotection, cellular senescence, tumor function and inflammation. The basis of these new areas still relies on fundamental biochemical/biophysical mitochondrial functions such as synthesis of reactive oxygen species, mitochondrial membrane potential, and the integrity of the inner mitochondrial membrane i.e., the passage of various molecules through the mitochondrial membranes. In this view transport of potassium cations, known as the potassium cycle, plays an important role. It is believed that K+ influx is mediated by various potassium channels present in the inner mitochondrial membrane. In this article, we present an overview of the key findings and characteristics of mitochondrial potassium channels derived from research of many groups conducted over the past 33 years. We propose a list of six fundamental observations and most important ideas dealing with mitochondrial potassium channels. We also discuss the contemporary challenges and future prospects associated with research on mitochondrial potassium channels.


Sujet(s)
Mitochondries , Canaux potassiques , Potassium , Humains , Mitochondries/métabolisme , Canaux potassiques/métabolisme , Animaux , Potassium/métabolisme , Membranes mitochondriales/métabolisme , Potentiel de membrane mitochondriale , Espèces réactives de l'oxygène/métabolisme
14.
Viruses ; 16(6)2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38932171

RÉSUMÉ

Proteins of the Bcl-2 family regulate cellular fate via multiple mechanisms including apoptosis, autophagy, senescence, metabolism, inflammation, redox homeostasis, and calcium flux. There are several regulated cell death (RCD) pathways, including apoptosis and autophagy, that use distinct molecular mechanisms to elicit the death response. However, the same proteins/genes may be deployed in multiple biochemical pathways. In apoptosis, Bcl-2 proteins control the integrity of the mitochondrial outer membrane (MOM) by regulating the formation of pores in the MOM and apoptotic cell death. A number of prosurvival genes populate the genomes of viruses including those of the pro-survival Bcl-2 family. Viral Bcl-2 proteins are sequence and structural homologs of their cellular counterparts and interact with cellular proteins in apoptotic and autophagic pathways, potentially allowing them to modulate these pathways and determine cellular fate.


Sujet(s)
Apoptose , Autophagie , Virus à ADN , Protéines proto-oncogènes c-bcl-2 , Protéines virales , Humains , Protéines proto-oncogènes c-bcl-2/métabolisme , Protéines proto-oncogènes c-bcl-2/génétique , Virus à ADN/génétique , Virus à ADN/physiologie , Protéines virales/métabolisme , Protéines virales/génétique , Animaux , Membranes mitochondriales/métabolisme
15.
Sci Rep ; 14(1): 14784, 2024 06 26.
Article de Anglais | MEDLINE | ID: mdl-38926476

RÉSUMÉ

The complex architecture and biochemistry of the inner mitochondrial membrane generate ultra-structures with different phospholipid and protein compositions, shapes, characteristics, and functions. The crista junction (CJ) serves as an important barrier separating the cristae (CM) and inner boundary membranes (IBM). Thereby CJ regulates the movement of ions and ensures distinct electrical potentials across the cristae (ΔΨC) and inner boundary (ΔΨIBM) membranes. We have developed a robust and flexible approach to visualize the CJ permeability with super-resolution microscopy as a readout of local mitochondrial membrane potential (ΔΨmito) fluctuations. This method involves analyzing the distribution of TMRM fluorescence intensity in a model that is restricted to the mitochondrial geometry. We show that mitochondrial Ca2+ elevation hyperpolarizes the CM most likely caused by Ca2+ sensitive increase of mitochondrial tricarboxylic acid cycle (TCA) and subsequent oxidative phosphorylation (OXPHOS) activity in the cristae. Dynamic multi-parameter correlation measurements of spatial mitochondrial membrane potential gradients, ATP levels, and mitochondrial morphometrics revealed a CJ-based membrane potential overflow valve mechanism protecting the mitochondrial integrity during excessive cristae hyperpolarization.


Sujet(s)
Adénosine triphosphate , Potentiel de membrane mitochondriale , Membranes mitochondriales , Potentiel de membrane mitochondriale/physiologie , Adénosine triphosphate/métabolisme , Animaux , Membranes mitochondriales/métabolisme , Transduction du signal , Phosphorylation oxydative , Calcium/métabolisme , Mitochondries/métabolisme , Microscopie/méthodes , Humains
16.
Mol Cell Biol ; 44(6): 226-244, 2024.
Article de Anglais | MEDLINE | ID: mdl-38828998

RÉSUMÉ

TIMM50 is a core subunit of the TIM23 complex, the mitochondrial inner membrane translocase responsible for the import of pre-sequence-containing precursors into the mitochondrial matrix and inner membrane. Here we describe a mitochondrial disease patient who is homozygous for a novel variant in TIMM50 and establish the first proteomic map of mitochondrial disease associated with TIMM50 dysfunction. We demonstrate that TIMM50 pathogenic variants reduce the levels and activity of endogenous TIM23 complex, which significantly impacts the mitochondrial proteome, resulting in a combined oxidative phosphorylation (OXPHOS) defect and changes to mitochondrial ultrastructure. Using proteomic data sets from TIMM50 patient fibroblasts and a TIMM50 HEK293 cell model of disease, we reveal that laterally released substrates imported via the TIM23SORT complex pathway are most sensitive to loss of TIMM50. Proteins involved in OXPHOS and mitochondrial ultrastructure are enriched in the TIM23SORT substrate pool, providing a biochemical mechanism for the specific defects in TIMM50-associated mitochondrial disease patients. These results highlight the power of using proteomics to elucidate molecular mechanisms of disease and uncovering novel features of fundamental biology, with the implication that human TIMM50 may have a more pronounced role in lateral insertion than previously understood.


Sujet(s)
Mitochondries , Maladies mitochondriales , Protéines du complexe d'import des protéines précurseurs mitochondriales , Phosphorylation oxydative , Transport des protéines , Humains , Fibroblastes/métabolisme , Cellules HEK293 , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/génétique , Mitochondries/métabolisme , Maladies mitochondriales/métabolisme , Maladies mitochondriales/anatomopathologie , Maladies mitochondriales/génétique , Protéines de transport de la membrane mitochondriale/métabolisme , Protéines de transport de la membrane mitochondriale/génétique , Membranes mitochondriales/métabolisme , Protéines du complexe d'import des protéines précurseurs mitochondriales/métabolisme , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Mutation/génétique , Protéomique/méthodes
17.
J Virol ; 98(7): e0035624, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-38837380

RÉSUMÉ

The controlled release of mitochondrial content into the cytosol has emerged as one of the key steps in mitochondrial signaling. In particular, the release of mitochondrial DNA (mtDNA) into the cytosol has been shown to activate interferon beta (IFN-ß) gene expression to execute the innate immune response. In this report, we show that human adenovirus type 5 (HAdV-C5) infection induces the release of mtDNA into the cytosol. The release of mtDNA is mediated by the viral minor capsid protein VI (pVI), which localizes to mitochondria. The presence of the mitochondrial membrane proteins Bak and Bax are needed for the mtDNA release, whereas the viral E1B-19K protein blocked pVI-mediated mtDNA release. Surprisingly, the pVI-mediated mtDNA release did not increase but inhibited the IFN-ß gene expression. Notably, the pVI expression caused mitochondrial leakage of the HSP60 protein. The latter prevented specific phosphorylation of the interferon regulatory factor 3 (IRF3) needed for IFN-ß gene expression. Overall, we assign a new mitochondria and IFN-ß signaling-modulating function to the HAdV-C5 minor capsid protein VI. IMPORTANCE: Human adenoviruses (HAdVs) are common pathogens causing various self-limiting diseases, including conjunctivitis and the common cold. HAdVs need to interfere with multiple cellular signaling pathways during the infection to gain control over the host cell. In this study, we identified human adenovirus type 5 (HAdV-C5) minor capsid protein VI as a factor modulating mitochondrial membrane integrity and mitochondrial signaling. We show that pVI-altered mitochondrial signaling impedes the cell's innate immune response, which may benefit HAdV growth. Overall, our study provides new detailed insights into the HAdV-mitochondria interactions and signaling. This knowledge is helpful when developing new anti-viral treatments against pathogenic HAdV infections and improving HAdV-based therapeutics.


Sujet(s)
Adénovirus humains , Protéines de capside , ADN mitochondrial , Interféron bêta , Mitochondries , Transduction du signal , Humains , Adénovirus humains/physiologie , Adénovirus humains/génétique , Adénovirus humains/métabolisme , Protéines de capside/métabolisme , Protéines de capside/génétique , Mitochondries/métabolisme , ADN mitochondrial/métabolisme , ADN mitochondrial/génétique , Interféron bêta/métabolisme , Interféron bêta/génétique , Immunité innée , Facteur-3 de régulation d'interféron/métabolisme , Facteur-3 de régulation d'interféron/génétique , Infections humaines à adénovirus/virologie , Infections humaines à adénovirus/métabolisme , Membranes mitochondriales/métabolisme , Cellules HEK293 , Phosphorylation , Cytosol/métabolisme , Cytosol/virologie
18.
EMBO J ; 43(14): 2979-3008, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38839991

RÉSUMÉ

Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.


Sujet(s)
Cardiolipides , Mitochondrial ADP, ATP Translocases , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cardiolipides/métabolisme , Sites de fixation , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/composition chimique , Humains , Mitochondrial ADP, ATP Translocases/métabolisme , Mitochondrial ADP, ATP Translocases/génétique , Mitochondrial ADP, ATP Translocases/composition chimique , Phosphorylation oxydative , Translocateur-1 de nucléotides adényliques/métabolisme , Translocateur-1 de nucléotides adényliques/génétique , Simulation de dynamique moléculaire , Liaison aux protéines , Mitochondries/métabolisme , Mitochondries/génétique , Membranes mitochondriales/métabolisme , Mutation , Mutation faux-sens
19.
J Affect Disord ; 361: 637-650, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-38914161

RÉSUMÉ

BACKGROUND: Pathological changes, such as microglia activation in the hippocampus frequently occur in individuals with animal models of depression; however, they may share a common cellular mechanism, such as endoplasmic reticulum (ER) stress and mitochondrial dysfunction. Mitochondria associated membranes (MAMs) are communication platforms between ER and mitochondria. This study aimed to investigate the role of intracellular stress responses, especially structural and functional changes of MAMs in depression. METHODS: We used chronic social defeat stress (CSDS) to mimic depression in C57 mice to investigate the pathophysiological changes in the hippocampus associated with depression and assess the antidepressant effect of electroacupuncture (EA). Molecular, histological, and electron microscopic techniques were utilized to study intracellular stress responses, including the ER stress pathway reaction, mitochondrial damage, and structural and functional changes in MAMs in the hippocampus after CSDS. Proteomics technology was employed to explore protein-level changes in MAMs caused by CSDS. RESULTS: CSDS caused mitochondrial dysfunction, ER stress, closer contact between ER and mitochondria, and enrichment of functional protein clusters at MAMs in hippocampus along with depressive-like behaviors. Also, EA showed beneficial effects on intracellular stress responses and depressive-like behaviors in CSDS mice. LIMITATION: The cellular specificity of MAMs related protein changes in CSDS mice was not explored. CONCLUSIONS: In the hippocampus, ER stress and mitochondrial damage occur, along with enriched mitochondria-ER interactions and MAM-related protein enrichment, which may contribute to depression's pathophysiology. EA may improve depression by regulating intracellular stress responses.


Sujet(s)
Dépression , Modèles animaux de maladie humaine , Stress du réticulum endoplasmique , Hippocampe , Souris de lignée C57BL , Stress psychologique , Animaux , Hippocampe/anatomopathologie , Hippocampe/physiopathologie , Souris , Stress du réticulum endoplasmique/physiologie , Mâle , Stress psychologique/complications , Stress psychologique/métabolisme , Stress psychologique/physiopathologie , Mitochondries , Électroacupuncture , Membranes mitochondriales/métabolisme , Défaite sociale , Comportement animal/physiologie ,
20.
Cell Rep ; 43(6): 114304, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38843396

RÉSUMÉ

High TRABD expression is associated with tau pathology in patients with Alzheimer's disease; however, the function of TRABD is unknown. Human TRABD encodes a mitochondrial outer-membrane protein. The loss of TRABD resulted in mitochondrial fragmentation, and TRABD overexpression led to mitochondrial clustering and fusion. The C-terminal tail of the TRABD anchored to the mitochondrial outer membrane and the TraB domain could form homocomplexes. Additionally, TRABD forms complexes with MFN2, MIGA2, and PLD6 to facilitate mitochondrial fusion. Flies lacking dTRABD are viable and have normal lifespans. However, aging flies exhibit reduced climbing ability and abnormal mitochondrial morphology in their muscles. The expression of dTRABD is increased in aged flies. dTRABD overexpression leads to neurodegeneration and enhances tau toxicity in fly eyes. The overexpression of dTRABD also increased reactive oxygen species (ROS), ATP production, and protein turnover in the mitochondria. This study suggested that TRABD-induced mitochondrial malfunctions contribute to age-related neurodegeneration.


Sujet(s)
Drosophila melanogaster , Homéostasie , Mitochondries , Espèces réactives de l'oxygène , Animaux , Mitochondries/métabolisme , Humains , Espèces réactives de l'oxygène/métabolisme , Drosophila melanogaster/métabolisme , Protéines tau/métabolisme , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Dynamique mitochondriale , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Membranes mitochondriales/métabolisme , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Vieillissement/métabolisme , dGTPases/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE