Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 9.751
Filtrer
1.
Biomed Pharmacother ; 179: 117346, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39232385

RÉSUMÉ

Oxidative damage contributes to age-related macular degeneration. Irigenin possesses diverse pharmacologic properties, including antioxidative and antiapoptotic effects. Our in vivo experiments indicated that irigenin mitigates UVB-induced histopathologic changes and oxidative DNA damage. Histologic analyses and TUNEL staining revealed that this compound dose-dependently ameliorated UVB-induced retinal damage and apoptosis. Furthermore, irigenin substantially reduced the level of 8-hydroxyguanosine, a biomarker of UVB-induced oxidative DNA damage. We further explored the molecular mechanisms that mediate the protective effects of irigenin. Our findings suggested that UVB-induced generation of ROS disrupts the stability of the mitochondrial membrane, activating intrinsic apoptotic pathways; the underlying mechanisms include the release of cytochrome c, activation of caspase-9 and caspase-3, and subsequent degradation of PARP-1. Notably, irigenin reversed mitochondrial disruption and apoptosis. It also modulated the Bax and Bcl-2 expression but influenced the mitochondrial apoptotic pathways. Our study highlights the role of the Nrf2 pathway in mitigating the effects of oxidative stress. We found that UVB exposure downregulated, but irigenin treatment upregulated the expression of Nrf2 and antioxidant enzymes. Therefore, irigenin activates the Nrf2 pathway to address oxidative stress. In conclusion, irigenin exhibits protective effects against UVB-induced ocular damage, evidenced by the diminution of histological alterations. It mitigates oxidative DNA damage and apoptosis in the retinal tissues by modulating the intrinsic apoptotic pathways and the AIF mechanisms. Furthermore, irigenin effectively reduces lipid peroxidation, enhancing the activity of antioxidant enzymes by stimulating the Nrf2 pathway. This protective mechanism underscores the potential benefit of irigenin in combating UVB-mediated ocular damage.


Sujet(s)
Apoptose , Stress oxydatif , Rayons ultraviolets , Stress oxydatif/effets des médicaments et des substances chimiques , Stress oxydatif/effets des radiations , Apoptose/effets des médicaments et des substances chimiques , Apoptose/effets des radiations , Animaux , Rayons ultraviolets/effets indésirables , Altération de l'ADN/effets des médicaments et des substances chimiques , Antioxydants/pharmacologie , Mâle , Souris , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Mitochondries/effets des radiations , Espèces réactives de l'oxygène/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Facteur-2 apparenté à NF-E2/métabolisme
2.
Pharmacol Res ; 208: 107394, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39233055

RÉSUMÉ

Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with ß-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.


Sujet(s)
Diabète de type 2 , Neuropathies diabétiques , Mitophagie , Humains , Mitophagie/effets des médicaments et des substances chimiques , Neuropathies diabétiques/métabolisme , Neuropathies diabétiques/anatomopathologie , Animaux , Diabète de type 2/métabolisme , Diabète de type 2/anatomopathologie , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Stress oxydatif
3.
J Neuroinflammation ; 21(1): 228, 2024 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-39294744

RÉSUMÉ

BACKGROUND: During brain aging, disturbances in neuronal phospholipid metabolism result in impaired cognitive function and dysregulation of neurological processes. Mutations in iPLA2ß are associated with neurodegenerative conditions that significantly impact brain phospholipids. iPLA2ß deficiency exacerbates mitochondrial dysfunction and abnormal mitochondrial accumulation. We hypothesized that iPLA2ß contributes to age-related cognitive decline by disrupting neuronal mitophagy. METHODOLOGY: We used aged wild-type (WT) mice and iPLA2ß-/- mice as natural aging models to assess cognitive performance, iPLA2ß expression in the cortex, levels of chemokines and inflammatory cytokines, and mitochondrial dysfunction, with a specific focus on mitophagy and the mitochondrial phospholipid profile. To further elucidate the role of iPLA2ß, we employed adeno-associated virus (AAV)-mediated iPLA2ß overexpression in aged mice and re-evaluated these parameters. RESULTS: Our findings revealed a significant reduction in iPLA2ß levels in the prefrontal cortex of aged brains. Notably, iPLA2ß-deficient mice exhibited impaired learning and memory. Loss of iPLA2ß in the PFC of aged mice led to increased levels of chemokines and inflammatory cytokines. This damage was associated with altered mitochondrial morphology, reduced ATP levels due to dysregulation of the parkin-independent mitophagy pathway, and changes in the mitochondrial phospholipid profile. AAV-mediated overexpression of iPLA2ß alleviated age-related parkin-independent mitophagy pathway dysregulation in primary neurons and the PFC of aged mice, reduced inflammation, and improved cognitive function. CONCLUSIONS: Our study suggests that age-related iPLA2ß loss in the PFC leads to cognitive decline through the disruption of mitophagy. These findings highlight the potential of targeting iPLA2ß to ameliorate age-related neurocognitive disorders.


Sujet(s)
Vieillissement , Dysfonctionnement cognitif , Group VI Phospholipases A2 , Mitophagie , Maladies neuro-inflammatoires , Neurones , Animaux , Mâle , Souris , Vieillissement/métabolisme , Vieillissement/anatomopathologie , Dysfonctionnement cognitif/métabolisme , Dysfonctionnement cognitif/anatomopathologie , Dysfonctionnement cognitif/génétique , Group VI Phospholipases A2/génétique , Group VI Phospholipases A2/métabolisme , Group VI Phospholipases A2/déficit , Souris de lignée C57BL , Souris knockout , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Mitophagie/physiologie , Maladies neuro-inflammatoires/métabolisme , Maladies neuro-inflammatoires/anatomopathologie , Neurones/métabolisme , Neurones/anatomopathologie
4.
J Exp Med ; 221(11)2024 Nov 04.
Article de Anglais | MEDLINE | ID: mdl-39320470

RÉSUMÉ

Impaired pulmonary angiogenesis plays a pivotal role in the progression of pulmonary arterial hypertension (PAH) and patient mortality, yet the molecular mechanisms driving this process remain enigmatic. Our study uncovered a striking connection between mitochondrial dysfunction (MD), caused by a humanized mutation in the NFU1 gene, and severely disrupted pulmonary angiogenesis in adult lungs. Restoring the bioavailability of the NFU1 downstream target, lipoic acid (LA), alleviated MD and angiogenic deficiency and rescued the progressive PAH phenotype in the NFU1G206C model. Notably, significant NFU1 expression and signaling insufficiencies were also identified in idiopathic PAH (iPAH) patients' lungs, emphasizing this study's relevance beyond NFU1 mutation cases. The remarkable improvement in mitochondrial function of PAH patient-derived pulmonary artery endothelial cells (PAECs) following LA supplementation introduces LA as a potential therapeutic approach. In conclusion, this study unveils a novel role for MD in dysregulated pulmonary angiogenesis and PAH manifestation, emphasizing the need to correct MD in PAH patients with unrecognized NFU1/LA deficiency.


Sujet(s)
Mitochondries , Acide lipoïque , Humains , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Animaux , Acide lipoïque/pharmacologie , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , Hypertension artérielle pulmonaire/métabolisme , Hypertension artérielle pulmonaire/génétique , Hypertension artérielle pulmonaire/anatomopathologie , Néovascularisation pathologique/métabolisme , Souris , Mâle , Artère pulmonaire/anatomopathologie , Artère pulmonaire/métabolisme , Poumon/vascularisation , Poumon/métabolisme , Poumon/anatomopathologie , Mutation , Femelle , Hypertension artérielle pulmonaire primitive familiale/métabolisme , Hypertension artérielle pulmonaire primitive familiale/génétique , Hypertension artérielle pulmonaire primitive familiale/anatomopathologie , Souris de lignée C57BL , Transduction du signal , Hypertension pulmonaire/métabolisme , Hypertension pulmonaire/anatomopathologie , Hypertension pulmonaire/génétique
5.
PeerJ ; 12: e18005, 2024.
Article de Anglais | MEDLINE | ID: mdl-39221263

RÉSUMÉ

Background: Non-steroidal anti-inflammatory drugs (NSAIDs), such as diclofenac (DCF), form a significant group of environmental contaminants. When the toxic effects of DCF on plants are analyzed, authors often focus on photosynthesis, while mitochondrial respiration is usually overlooked. Therefore, an in vivo investigation of plant mitochondria functioning under DCF treatment is needed. In the present work, we decided to use the green alga Chlamydomonas reinhardtii as a model organism. Methods: Synchronous cultures of Chlamydomonas reinhardtii strain CC-1690 were treated with DCF at a concentration of 135.5 mg × L-1, corresponding to the toxicological value EC50/24. To assess the effects of short-term exposure to DCF on mitochondrial activity, oxygen consumption rate, mitochondrial membrane potential (MMP) and mitochondrial reactive oxygen species (mtROS) production were analyzed. To inhibit cytochrome c oxidase or alternative oxidase activity, potassium cyanide (KCN) or salicylhydroxamic acid (SHAM) were used, respectively. Moreover, the cell's structure organization was analyzed using confocal microscopy and transmission electron microscopy. Results: The results indicate that short-term exposure to DCF leads to an increase in oxygen consumption rate, accompanied by low MMP and reduced mtROS production by the cells in the treated populations as compared to control ones. These observations suggest an uncoupling of oxidative phosphorylation due to the disruption of mitochondrial membranes, which is consistent with the malformations in mitochondrial structures observed in electron micrographs, such as elongation, irregular forms, and degraded cristae, potentially indicating mitochondrial swelling or hyper-fission. The assumption about non-specific DCF action is further supported by comparing mitochondrial parameters in DCF-treated cells to the same parameters in cells treated with selective respiratory inhibitors: no similarities were found between the experimental variants. Conclusions: The results obtained in this work suggest that DCF strongly affects cells that experience mild metabolic or developmental disorders, not revealed under control conditions, while more vital cells are affected only slightly, as it was already indicated in literature. In the cells suffering from DCF treatment, the drug influence on mitochondria functioning in a non-specific way, destroying the structure of mitochondrial membranes. This primary effect probably led to the mitochondrial inner membrane permeability transition and the uncoupling of oxidative phosphorylation. It can be assumed that mitochondrial dysfunction is an important factor in DCF phytotoxicity. Because studies of the effects of NSAIDs on the functioning of plant mitochondria are relatively scarce, the present work is an important contribution to the elucidation of the mechanism of NSAID toxicity toward non-target plant organisms.


Sujet(s)
Anti-inflammatoires non stéroïdiens , Chlamydomonas reinhardtii , Diclofenac , Potentiel de membrane mitochondriale , Mitochondries , Consommation d'oxygène , Espèces réactives de l'oxygène , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Diclofenac/toxicité , Chlamydomonas reinhardtii/effets des médicaments et des substances chimiques , Chlamydomonas reinhardtii/métabolisme , Chlamydomonas reinhardtii/ultrastructure , Anti-inflammatoires non stéroïdiens/toxicité , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Consommation d'oxygène/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Complexe IV de la chaîne respiratoire/métabolisme , Cyanure de potassium/toxicité , Oxidoreductases/métabolisme , Salicylamides , Microscopie électronique à transmission , Protéines végétales , Protéines mitochondriales
6.
Commun Biol ; 7(1): 1075, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39223298

RÉSUMÉ

Subretinal fibrosis permanently impairs the vision of patients with neovascular age-related macular degeneration. Despite emerging evidence revealing the association between disturbed metabolism in retinal pigment epithelium (RPE) and subretinal fibrosis, the underlying mechanism remains unclear. In the present study, single-cell RNA sequencing revealed, prior to subretinal fibrosis, genes in mitochondrial fatty acid oxidation are downregulated in the RPE lacking very low-density lipoprotein receptor (VLDLR), especially the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). We found that overexpression of CPT1A in the RPE of Vldlr-/- mice suppresses epithelial-to-mesenchymal transition and fibrosis. Mechanistically, TGFß2 induces fibrosis by activating a Warburg-like effect, i.e. increased glycolysis and decreased mitochondrial respiration through ERK-dependent CPT1A degradation. Moreover, VLDLR blocks the formation of the TGFß receptor I/II complex by interacting with unglycosylated TGFß receptor II. In conclusion, VLDLR suppresses fibrosis by attenuating TGFß2-induced metabolic reprogramming, and CPT1A is a potential target for treating subretinal fibrosis.


Sujet(s)
Carnitine O-palmitoyltransferase , Fibrose , Dégénérescence maculaire , Mitochondries , Récepteurs aux lipoprotéines LDL , Épithélium pigmentaire de la rétine , Facteur de croissance transformant bêta-2 , Épithélium pigmentaire de la rétine/métabolisme , Épithélium pigmentaire de la rétine/anatomopathologie , Animaux , Dégénérescence maculaire/métabolisme , Dégénérescence maculaire/anatomopathologie , Dégénérescence maculaire/génétique , Souris , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Carnitine O-palmitoyltransferase/métabolisme , Carnitine O-palmitoyltransferase/génétique , Carnitine O-palmitoyltransferase/déficit , Facteur de croissance transformant bêta-2/métabolisme , Facteur de croissance transformant bêta-2/génétique , Récepteurs aux lipoprotéines LDL/métabolisme , Récepteurs aux lipoprotéines LDL/génétique , Récepteurs aux lipoprotéines LDL/déficit , Humains , Souris knockout , Transition épithélio-mésenchymateuse , Métabolisme énergétique , Souris de lignée C57BL
7.
Respir Res ; 25(1): 328, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39223619

RÉSUMÉ

BACKGROUND: The interplay between intrauterine and early postnatal environments has been associated with an increased risk of cardiovascular diseases in adulthood, including pulmonary arterial hypertension (PAH). While emerging evidence highlights the crucial role of mitochondrial pathology in PAH, the specific mechanisms driving fetal-originated PAH remain elusive. METHODS AND RESULTS: To elucidate the role of mitochondrial dynamics in the pathogenesis of fetal-originated PAH, we established a rat model of postnatal catch-up growth following intrauterine growth restriction (IUGR) to induce pulmonary arterial hypertension (PAH). RNA-seq analysis of pulmonary artery samples from the rats revealed dysregulated mitochondrial metabolic genes and pathways associated with increased pulmonary arterial pressure and pulmonary arterial remodeling in the RC group (postnatal catch-up growth following IUGR). In vitro experiments using pulmonary arterial smooth muscle cells (PASMCs) from the RC group demonstrated elevated proliferation, migration, and impaired mitochondrial functions. Notably, reduced expression of Mitofusion 2 (Mfn2), a mitochondrial outer membrane protein involved in mitochondrial fusion, was observed in the RC group. Reconstitution of Mfn2 resulted in enhanced mitochondrial fusion and improved mitochondrial functions in PASMCs of RC group, effectively reversing the Warburg effect. Importantly, Mfn2 reconstitution alleviated the PAH phenotype in the RC group rats. CONCLUSIONS: Imbalanced mitochondrial dynamics, characterized by reduced Mfn2 expression, plays a critical role in the development of fetal-originated PAH following postnatal catch-up growth after IUGR. Mfn2 emerges as a promising therapeutic strategy for managing IUGR-catch-up growth induced PAH.


Sujet(s)
Retard de croissance intra-utérin , dGTPases , Rat Sprague-Dawley , Animaux , Retard de croissance intra-utérin/métabolisme , dGTPases/métabolisme , dGTPases/génétique , Rats , Femelle , Hypertension artérielle pulmonaire/métabolisme , Hypertension artérielle pulmonaire/génétique , Hypertension artérielle pulmonaire/anatomopathologie , Hypertension artérielle pulmonaire/physiopathologie , Dynamique mitochondriale/physiologie , Mâle , Cellules cultivées , Grossesse , Myocytes du muscle lisse/métabolisme , Myocytes du muscle lisse/anatomopathologie , Artère pulmonaire/métabolisme , Artère pulmonaire/anatomopathologie , Artère pulmonaire/physiopathologie , Modèles animaux de maladie humaine , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Animaux nouveau-nés , Protéines mitochondriales
8.
Acta Neuropathol Commun ; 12(1): 144, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39227882

RÉSUMÉ

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease leading to motor neuron loss. Currently mutations in > 40 genes have been linked to ALS, but the contribution of many genes and genetic mutations to the ALS pathogenic process remains poorly understood. Therefore, we first performed comparative interactome analyses of five recently discovered ALS-associated proteins (C21ORF2, KIF5A, NEK1, TBK1, and TUBA4A) which highlighted many novel binding partners, and both unique and shared interactors. The analysis further identified C21ORF2 as a strongly connected protein. The role of C21ORF2 in neurons and in the nervous system, and of ALS-associated C21ORF2 variants is largely unknown. Therefore, we combined human iPSC-derived motor neurons with other models and different molecular cell biological approaches to characterize the potential pathogenic effects of C21ORF2 mutations in ALS. First, our data show C21ORF2 expression in ALS-relevant mouse and human neurons, such as spinal and cortical motor neurons. Further, the prominent ALS-associated variant C21ORF2-V58L caused increased apoptosis in mouse neurons and movement defects in zebrafish embryos. iPSC-derived motor neurons from C21ORF2-V58L-ALS patients, but not isogenic controls, show increased apoptosis, and changes in DNA damage response, mitochondria and neuronal excitability. In addition, C21ORF2-V58L induced post-transcriptional downregulation of NEK1, an ALS-associated protein implicated in apoptosis and DDR. In all, our study defines the pathogenic molecular and cellular effects of ALS-associated C21ORF2 mutations and implicates impaired post-transcriptional regulation of NEK1 downstream of mutant C21ORF72 in ALS.


Sujet(s)
Sclérose latérale amyotrophique , Cellules souches pluripotentes induites , Mitochondries , Motoneurones , Kinase-1 apparentée à NIMA , Danio zébré , Humains , Sclérose latérale amyotrophique/génétique , Sclérose latérale amyotrophique/métabolisme , Sclérose latérale amyotrophique/anatomopathologie , Kinase-1 apparentée à NIMA/génétique , Kinase-1 apparentée à NIMA/métabolisme , Animaux , Motoneurones/métabolisme , Motoneurones/anatomopathologie , Cellules souches pluripotentes induites/métabolisme , Souris , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Réparation de l'ADN/génétique , Altération de l'ADN , Mutation
9.
Int J Med Sci ; 21(11): 2040-2051, 2024.
Article de Anglais | MEDLINE | ID: mdl-39239540

RÉSUMÉ

Myofibrillar myopathy (MFM) is a group of hereditary myopathies that mainly involves striated muscles. This study aimed to use tandem mass tag (TMT)-based proteomics to investigate the underlying pathomechanisms of two of the most common MFM subtypes, desminopathy and titinopathy. Muscles from 7 patients with desminopathy, 5 with titinopathy and 5 control individuals were included. Samples were labelled with TMT and then underwent high-resolution liquid chromatography-mass spectrometry analysis. Compared with control samples, there were 436 differentially abundant proteins (DAPs) in the desminopathy group and 269 in the titinopathy group. When comparing the desminopathy with the titinopathy group, there were 113 DAPs. In desminopathy, mitochondrial ATP production, muscle contraction, and cytoskeleton organization were significantly suppressed. Activated cellular components and pathways were mostly related to extracellular matrix (ECM). In titinopathy, mitochondrial-related pathways and the cellular component ECM were downregulated, while gluconeogenesis was activated. Direct comparison between desminopathy and titinopathy revealed hub genes that were all involved in glycolytic process. The disparity in glycolysis in the two MFM subtypes is likely due to fiber type switching. This study has revealed disorganization of cytoskeleton and mitochondrial dysfunction as the common pathophysiological processes in MFM, and glycolysis and ECM as the differential pathomechanism between desminopathy and titinopathy. This offers a future direction for targeted therapy for MFM.


Sujet(s)
Connectine , Humains , Mâle , Femelle , Adulte , Adulte d'âge moyen , Connectine/génétique , Connectine/métabolisme , Protéomique/méthodes , Myopathies congénitales structurales/génétique , Myopathies congénitales structurales/anatomopathologie , Myopathies congénitales structurales/métabolisme , Muscles squelettiques/anatomopathologie , Muscles squelettiques/métabolisme , Desmine/génétique , Desmine/métabolisme , Glycolyse/génétique , Mitochondries/métabolisme , Mitochondries/génétique , Mitochondries/anatomopathologie , Matrice extracellulaire/métabolisme , Matrice extracellulaire/anatomopathologie , Dystrophies musculaires , Cardiomyopathies
10.
Med Oncol ; 41(10): 238, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39218840

RÉSUMÉ

Despite the high incidence of breast cancer in women worldwide, there are still great challenges in the treatment process. Mitochondria are highly dynamic organelles, and their dynamics involve cellular energy conversion, signal conduction and other processes. In recent years, an increasing number of studies have affirmed the dynamics of mitochondria as the basis for cancer progression and metastasis; that is, an imbalance between mitochondrial fission and fusion may lead to the progression and metastasis of breast cancer. Here, we review the latest insights into mitochondrial dynamics in the progression of breast cancer and emphasize the clinical value of mitochondrial dynamics in diagnosis and prognosis, as well as important advances in clinical research.


Sujet(s)
Tumeurs du sein , Évolution de la maladie , Dynamique mitochondriale , Humains , Dynamique mitochondriale/physiologie , Tumeurs du sein/anatomopathologie , Tumeurs du sein/métabolisme , Femelle , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Pronostic
11.
Toxicology ; 508: 153926, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39147092

RÉSUMÉ

Mitochondria are essential for various physiological functions in astrocytes in the brain, such as maintaining ion and pH homeostasis, regulating neurotransmission, and modulating neuroinflammation. Mitophagy, a form of autophagy specific to mitochondria, is essential for ensuring mitochondrial quality and function. Benzo[a]pyrene (BaP) accumulates in the brain, and exposure to it is recognized as an environmental risk factor for neurodegenerative diseases. However, while the toxic mechanisms of BaP have been investigated in neurons, their effects on astrocytes-the most prevalent glial cells in the brain-are not clearly understood. Therefore, this study aims to investigate the toxic effects of exposure to BaP on mitochondria in primary astrocytes. Fluorescent probes and genetically encoded indicators were utilized to visualize mitochondrial morphology and physiology, and regulatory factors involved in mitochondrial morphology and mitophagy were assessed. Additionally, the mitochondrial respiration rate was measured in BaP-exposed astrocytes. BaP exposure resulted in mitochondrial enlargement owing to the suppression of mitochondrial fission factors. Furthermore, BaP-exposed astrocytes demonstrated reduced mitophagy and exhibited aberrant mitochondrial function and physiology, such as altered mitochondrial respiration rates, increased mitochondrial superoxide, disrupted mitochondrial membrane potential, and dysregulated mitochondrial Ca2+. These findings offer insights into the underlying toxic mechanisms of BaP exposure in neurodegenerative diseases by inducing aberrant mitophagy and mitochondrial dysfunction in astrocytes.


Sujet(s)
Astrocytes , Potentiel de membrane mitochondriale , Mitochondries , Dynamique mitochondriale , Mitophagie , Protein kinases , Ubiquitin-protein ligases , Astrocytes/effets des médicaments et des substances chimiques , Astrocytes/métabolisme , Astrocytes/anatomopathologie , Mitophagie/effets des médicaments et des substances chimiques , Animaux , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Protein kinases/métabolisme , Ubiquitin-protein ligases/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Cellules cultivées , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Benzo[a]pyrène/toxicité , Calcium/métabolisme , Souris
12.
JCI Insight ; 9(18)2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39115943

RÉSUMÉ

Organelle stress exacerbates podocyte injury, contributing to perturbed lipid metabolism. Simultaneous organelle stresses can occur in the kidney in the diseased state; therefore, a thorough analysis of organelle communication is crucial for understanding the progression of kidney diseases. Although organelles closely interact with one another at membrane contact sites, limited studies have explored their involvement in kidney homeostasis. The endoplasmic reticulum (ER) protein, PDZ domain-containing 8 (PDZD8), is implicated in multiple-organelle-tethering processes and cellular lipid homeostasis. In this study, we aimed to elucidate the role of organelle communication in podocyte injury using podocyte-specific Pdzd8-knockout mice. Our findings demonstrated that Pdzd8 deletion exacerbated podocyte injury in an accelerated obesity-related kidney disease model. Proteomic analysis of isolated glomeruli revealed that Pdzd8 deletion exacerbated mitochondrial and endosomal dysfunction during podocyte lipotoxicity. Additionally, electron microscopy revealed the accumulation of abnormal, fatty endosomes in Pdzd8-deficient podocytes during obesity-related kidney diseases. Lipidomic analysis indicated that glucosylceramide accumulated in Pdzd8-deficient podocytes, owing to accelerated production and decelerated degradation. Thus, the organelle-tethering factor, PDZD8, plays a crucial role in maintaining mitochondrial and endosomal homeostasis during podocyte lipotoxicity. Collectively, our findings highlight the importance of organelle communication at the 3-way junction among the ER, mitochondria, and endosomes in preserving podocyte homeostasis.


Sujet(s)
Endosomes , Homéostasie , Souris knockout , Mitochondries , Podocytes , Podocytes/métabolisme , Podocytes/anatomopathologie , Animaux , Souris , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Endosomes/métabolisme , Métabolisme lipidique , Obésité/métabolisme , Obésité/anatomopathologie , Maladies du rein/métabolisme , Maladies du rein/anatomopathologie , Maladies du rein/génétique , Réticulum endoplasmique/métabolisme , Mâle
13.
JCI Insight ; 9(18)2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39163131

RÉSUMÉ

Dihydrolipoamide dehydrogenase (DLD) deficiency is a recessive mitochondrial disease caused by variants in DLD, the E3 subunit of mitochondrial α-keto (or 2-oxo) acid dehydrogenase complexes. DLD disease symptoms are multisystemic, variably manifesting as Leigh syndrome, neurodevelopmental disability, seizures, cardiomyopathy, liver disease, fatigue, and lactic acidemia. While most DLD disease symptoms are attributed to dysfunction of the pyruvate dehydrogenase complex, the effects of other α-keto acid dehydrogenase deficiencies remain unclear. Current therapies for DLD deficiency are ineffective, with no vertebrate animal model available for preclinical study. We created a viable Danio rerio (zebrafish) KO model of DLD deficiency, dldhcri3. Detailed phenotypic characterization revealed shortened larval survival, uninflated swim bladder, hepatomegaly and fatty liver, and reduced swim activity. These animals displayed increased pyruvate and lactate levels, with severe disruption of branched-chain amino acid catabolism manifest as increased valine, leucine, isoleucine, α-ketoisovalerate, and α-ketoglutarate levels. Evaluation of mitochondrial ultrastructure revealed gross enlargement, severe cristae disruption, and reduction in matrix electron density in liver, intestines, and muscle. Therapeutic modeling of candidate therapies demonstrated that probucol or thiamine improved larval swim activity. Overall, this vertebrate model demonstrated characteristic phenotypic and metabolic alterations of DLD disease, offering a robust platform to screen and characterize candidate therapies.


Sujet(s)
Modèles animaux de maladie humaine , Mitochondries , Probucol , Danio zébré , Animaux , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/ultrastructure , Mitochondries/anatomopathologie , Probucol/pharmacologie , Dihydrolipoamide dehydrogenase/métabolisme , Dihydrolipoamide dehydrogenase/génétique , Protéines de poisson-zèbre/métabolisme , Protéines de poisson-zèbre/génétique , Maladies mitochondriales/traitement médicamenteux , Maladies mitochondriales/anatomopathologie , Maladies mitochondriales/métabolisme , Acides aminés à chaine ramifiée/métabolisme
14.
Environ Int ; 191: 108971, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39180775

RÉSUMÉ

There is no safe level of air pollution for human health. Traffic-related particulate matter (PM2.5) is a major in-utero toxin, mechanisms of action of which are not fully understood. BALB/c dams were exposed to an Australian level of traffic PM2.5 (5 µg/mouse/day, intranasal, 6 weeks before mating, during gestation and lactation). Male offspring had reduced memory in adulthood, whereas memory was normal in female littermates, similar to human responses. Maternal PM2.5 exposure resulted in oxidative stress and abnormal mitochondria in male, but not female, brains. RNA-sequencing analysis showed unique sex-related changes in newborn brains. Two X-chromosome-linked histone lysine demethylases, Kdm6a and Kdm5c, demonstrated higher expression in female compared to male littermates, in addition to upregulated genes with known functions to support mitochondrial function, synapse growth and maturation, cognitive function, and neuroprotection. No significant changes in Kdm6a and Kdm5c were found in male littermates, nor other genes, albeit significantly impaired memory function after birth. In primary foetal cortical neurons, PM2.5 exposure suppressed neuron and synaptic numbers and induced oxidative stress, which was prevented by upregulation of Kdm6a or Kdm5c. Therefore, timely epigenetic adaptation by histone demethylation to open DNA for translation before birth may be the key to protecting females against prenatal PM2.5 exposure-induced neurological disorders, which fail to occur in males associated with their poor cognitive outcomes.


Sujet(s)
Pollution de l'air , Exposition maternelle , Mémoire , Matière particulaire , Animaux , Souris , Souris de lignée BALB C , Matière particulaire/toxicité , Mâle , Femelle , Caractères sexuels , Neurones/cytologie , Encéphale/anatomopathologie , Mitochondries/anatomopathologie , Expression des gènes , Animaux nouveau-nés , Histone Demethylases/génétique , Cellules cultivées
15.
Int J Immunopathol Pharmacol ; 38: 3946320241271724, 2024.
Article de Anglais | MEDLINE | ID: mdl-39116410

RÉSUMÉ

This study aimed to investigate whether the beneficial effects of PCA on chondrocyte senescence are mediated through the regulation of mitophagy. Chondrocyte senescence plays a significant role in the development and progression of knee osteoarthritis (OA). The compound protocatechuic aldehyde (PCA), which is abundant in the roots of Salvia miltiorrhiza, has been reported to have antioxidant properties and the ability to protect against cellular senescence. To achieve this goal, a destabilization of the medial meniscus (DMM)-induced mouse OA model and a lipopolysaccharide (LPS)-induced chondrocyte senescence model were used, in combination with PINK1 gene knockdown or overexpression. After treatment with PCA, cellular senescence was assessed using Senescence-Associated ß-Galactosidase (SA-ß-Gal) staining, DNA damage was evaluated using Hosphorylation of the Ser-139 (γH2AX) staining, reactive oxygen species (ROS) levels were measured using Dichlorodihydrofluorescein diacetate (DCFH-DA) staining, mitochondrial membrane potential was determined using a 5,5',6,6'-TETRACHLORO-1,1',3,3'-*. TETRAETHYBENZIMIDA (JC-1) kit, and mitochondrial autophagy was examined using Mitophagy staining. Western blot analysis was also performed to detect changes in senescence-related proteins, PINK1/Parkin pathway proteins, and mitophagy-related proteins. Our results demonstrated that PCA effectively reduced chondrocyte senescence, increased the mitochondrial membrane potential, facilitated mitochondrial autophagy, and upregulated the PINK1/Parkin pathway. Furthermore, silencing PINK1 weakened the protective effects of PCA, whereas PINK1 overexpression enhanced the effects of PCA on LPS-induced chondrocytes. PCA attenuates chondrocyte senescence by regulating PINK1/Parkin-mediated mitochondrial autophagy, ultimately reducing cartilage degeneration.


Sujet(s)
Benzaldéhydes , Catéchols , Vieillissement de la cellule , Chondrocytes , Mitophagie , Protein kinases , Ubiquitin-protein ligases , Chondrocytes/effets des médicaments et des substances chimiques , Chondrocytes/métabolisme , Chondrocytes/anatomopathologie , Animaux , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Mitophagie/effets des médicaments et des substances chimiques , Protein kinases/métabolisme , Souris , Catéchols/pharmacologie , Benzaldéhydes/pharmacologie , Espèces réactives de l'oxygène/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Mâle , Souris de lignée C57BL , Autophagie/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Gonarthrose/anatomopathologie , Gonarthrose/métabolisme , Gonarthrose/traitement médicamenteux
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167459, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39134286

RÉSUMÉ

Accumulation in the brain of amyloid-ß (Aß), derived from cleavage of Aß precursor protein (APP), is a hallmark of Alzheimer's disease (AD). Oleanonic acid (OA), a phytochemical from several plants, has proven anti-inflammatory effects, but its role in AD remains unknown. Here we found that OA reduced APP expression and inhibited oxidative stress via Nrf2/HO-1 signaling in SH-SY5Y neuroblastoma cells stably overexpressing APP. OA suppressed phosphorylated mTOR but increased autophagy markers ATG5 and LC3-II. Moreover, OA rescued ferroptosis-related factors GPX4, NCOA, and COX2 and ER stress markers GRP78, CHOP, and three main induction pathways of ER stress including IRE1/XBP1s, PERK/EIF2α, and ATF6. OA alleviated mitochondrial damage through MFN1, MFN2, OPA1, FIS1, and DRP1. Furthermore, OA upregulated GDF11 expression and downregulated phosphorylation of ErbB4 and TrkB without affecting BDNF levels. Thus, OA might protect neurons from APP-induced neurotoxicity by inhibiting oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in AD, providing a new promising therapeutic strategy in patients with AD.


Sujet(s)
Précurseur de la protéine bêta-amyloïde , Autophagie , Chaperonne BiP du réticulum endoplasmique , Stress du réticulum endoplasmique , Ferroptose , Mitochondries , Stress oxydatif , Humains , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Ferroptose/effets des médicaments et des substances chimiques , Ferroptose/génétique , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/anatomopathologie , Autophagie/effets des médicaments et des substances chimiques , Précurseur de la protéine bêta-amyloïde/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Lignée cellulaire tumorale , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/génétique , Transduction du signal/effets des médicaments et des substances chimiques
17.
Pharmacol Res ; 208: 107383, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39214266

RÉSUMÉ

Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.


Sujet(s)
Mitochondries , Dynamique mitochondriale , Ostéoporose , Ostéoporose/métabolisme , Ostéoporose/anatomopathologie , Humains , Animaux , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Remodelage osseux , Mort cellulaire , Apoptose , Os et tissu osseux/métabolisme , Os et tissu osseux/anatomopathologie
18.
Cells ; 13(15)2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39120284

RÉSUMÉ

Mitochondria are crucial for cellular ATP production. They are highly dynamic organelles, whose morphology and function are controlled through mitochondrial fusion and fission. The specific roles of mitochondria in podocytes, the highly specialized cells of the kidney glomerulus, remain less understood. Given the significant structural, functional, and molecular similarities between mammalian podocytes and Drosophila nephrocytes, we employed fly nephrocytes to explore the roles of mitochondria in cellular function. Our study revealed that alterations in the Pink1-Park (mammalian PINK1-PRKN) pathway can disrupt mitochondrial dynamics in Drosophila nephrocytes. This disruption led to either fragmented or enlarged mitochondria, both of which impaired mitochondrial function. The mitochondrial dysfunction subsequently triggered defective intracellular endocytosis, protein aggregation, and cellular damage. These findings underscore the critical roles of mitochondria in nephrocyte functionality.


Sujet(s)
Protéines de Drosophila , Drosophila melanogaster , Endocytose , Mitochondries , Dynamique mitochondriale , Podocytes , Animaux , Podocytes/métabolisme , Podocytes/anatomopathologie , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Drosophila melanogaster/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Ubiquitin-protein ligases
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167477, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39173889

RÉSUMÉ

Alterations in autophagy have been observed in epilepsy, although their exact etiopathogenesis remains elusive. Transient Receptor Potential Mucolipin Protein 1 (TRPML1) is an ion channel protein that regulates autophagy and lysosome biogenesis. To explore the role of TRPML1 in seizures-induced neuronal injury and the potential mechanisms involved, an hyperexcitable neuronal model induced by Mg2+-free solution was used for the study. Our results revealed that TRPML1 expression was upregulated after seizures, which was accompanied by intracellular ROS accumulation, mitochondrial damage, and neuronal apoptosis. Activation of TRPML1 by ML-SA1 diminished intracellular ROS, restored mitochondrial function, and subsequently alleviated neuronal apoptosis. Conversely, inhibition of TRPML1 had the opposite effect. Further examination revealed that the accumulation of ROS and damaged mitochondria was associated with interrupted mitophagy flux and enlarged defective lysosomes, which were attenuated by TRPML1 activation. Mechanistically, TRPML1 activation allows more Ca2+ to permeate from the lysosome into the cytoplasm, resulting in the dephosphorylation of TFEB and its nuclear translocation. This process further enhances autophagy initiation and lysosomal biogenesis. Additionally, the expression of TRPML1 is positively regulated by WTAP-mediated m6A modification. Our findings highlighted crucial roles of TRPML1 and autophagy in seizures-induced neuronal injury, which provides a new target for epilepsy treatment.


Sujet(s)
Autophagie , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines , Calcium , Lysosomes , Neurones , Crises épileptiques , Canaux cationiques TRP , Lysosomes/métabolisme , Animaux , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/métabolisme , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/génétique , Canaux cationiques TRP/métabolisme , Canaux cationiques TRP/génétique , Crises épileptiques/métabolisme , Crises épileptiques/anatomopathologie , Neurones/métabolisme , Neurones/anatomopathologie , Calcium/métabolisme , Souris , Espèces réactives de l'oxygène/métabolisme , Transduction du signal , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Mâle , Apoptose
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167470, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39153665

RÉSUMÉ

Aging disrupts brain function, leading to cognitive decline and neurodegenerative diseases. Senescent astrocytes, a hallmark of aging, contribute to this process through unknown mechanisms. This study investigates how senescence impacts astrocytic mitochondrial dynamics, which are critical for brain health. Our research, conducted using aged mouse brains, represents the first evidence of morphologically damaged mitochondria in astrocytes, along with functional alterations in mitochondrial respiration. In vitro experiments revealed that senescent astrocytes exhibit an increase in mitochondrial fragmentation and impaired mitophagy. Concurrently, there was an upregulation of mitochondrial biogenesis, indicating a compensatory response to mitochondrial damage. Importantly, these senescent astrocytes were more susceptible to mitochondrial stress, a vulnerability reversed by rapamycin treatment. These findings suggest a potential link between senescence, impaired mitochondrial quality control, and increased susceptibility to mitochondrial stress in astrocytes. Overall, our study highlights the importance of addressing mitochondrial dysfunction and senescence-related changes in astrocytes as a promising approach for developing therapies to counter age-related neurodegeneration and improve brain health.


Sujet(s)
Astrocytes , Vieillissement de la cellule , Mitochondries , Mitophagie , Astrocytes/métabolisme , Astrocytes/anatomopathologie , Animaux , Mitophagie/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Souris , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Vieillissement/anatomopathologie , Vieillissement/métabolisme , Souris de lignée C57BL , Mâle , Encéphale/métabolisme , Encéphale/anatomopathologie , Cellules cultivées , Dynamique mitochondriale/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE