Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 31.045
Filtrer
1.
J Transl Med ; 22(1): 771, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39148053

RÉSUMÉ

BACKGROUND: Stroke is a globally dangerous disease capable of causing irreversible neuronal damage with limited therapeutic options. Meldonium, an inhibitor of carnitine-dependent metabolism, is considered an anti-ischemic drug. However, the mechanisms through which meldonium improves ischemic injury and its potential to protect neurons remain largely unknown. METHODS: A rat model with middle cerebral artery occlusion (MCAO) was used to investigate meldonium's neuroprotective efficacy in vivo. Infarct volume, neurological deficit score, histopathology, neuronal apoptosis, motor function, morphological alteration and antioxidant capacity were explored via 2,3,5-Triphenyltetrazolium chloride staining, Longa scoring method, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, rotarod test, transmission electron microscopy and Oxidative stress index related kit. A primary rat hippocampal neuron model subjected to oxygen-glucose deprivation reperfusion was used to study meldonium's protective ability in vitro. Neuronal viability, mitochondrial membrane potential, mitochondrial morphology, respiratory function, ATP production, and its potential mechanism were assayed by MTT cell proliferation and cytotoxicity assay kit, cell-permeant MitoTracker® probes, mitochondrial stress, real-time ATP rate and western blotting. RESULTS: Meldonium markedly reduced the infarct size, improved neurological function and motor ability, and inhibited neuronal apoptosis in vivo. Meldonium enhanced the morphology, antioxidant capacity, and ATP production of mitochondria and inhibited the opening of the mitochondrial permeability transition pore in the cerebral cortex and hippocampus during cerebral ischemia-reperfusion injury (CIRI) in rats. Additionally, meldonium improved the damaged fusion process and respiratory function of neuronal mitochondria in vitro. Further investigation revealed that meldonium activated the Akt/GSK-3ß signaling pathway to inhibit mitochondria-dependent neuronal apoptosis. CONCLUSION: Our study demonstrated that meldonium shows a neuroprotective function during CIRI by preserving the mitochondrial function, thus prevented neurons from apoptosis.


Sujet(s)
Apoptose , Survie cellulaire , Méthylhydrazines , Mitochondries , Neurones , Neuroprotecteurs , Rat Sprague-Dawley , Lésion d'ischémie-reperfusion , Animaux , Neuroprotecteurs/pharmacologie , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Neurones/anatomopathologie , Lésion d'ischémie-reperfusion/anatomopathologie , Lésion d'ischémie-reperfusion/traitement médicamenteux , Mâle , Survie cellulaire/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Méthylhydrazines/pharmacologie , Méthylhydrazines/usage thérapeutique , Encéphalopathie ischémique/anatomopathologie , Encéphalopathie ischémique/traitement médicamenteux , Infarctus du territoire de l'artère cérébrale moyenne/complications , Infarctus du territoire de l'artère cérébrale moyenne/anatomopathologie , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Rats
2.
Wei Sheng Yan Jiu ; 53(4): 540-546, 2024 Jul.
Article de Chinois | MEDLINE | ID: mdl-39155220

RÉSUMÉ

OBJECTIVE: To explore whether tea polyphenols(TP) improve sarcopenia in the aged type 2 diabetes(T2DM)model rats via mitochondrial quality control(MQC). METHODS: A total of 55 2-month-old male SD rats were randomly divided into the control group(n=10), the aged model group(aged, n=10) and the aging T2DM model group(n=35). The aging T2DM model group rats were fed with high-sugar and high-fat diet and intraperitoneally injected with 50 mg/kg D-galactose daily. After 4 weeks, the aging T2DM model group rats were given a single intraperitoneal injection of 30 mg/kg streptozotocin(STZ). After STZ injection for 2 weeks, fasting blood glucose(FBG) ≥ 16.7 mmol/L was defined as successful T2DM model. When the model was successfully induced, the 30 model rats were randomly divided into aged T2DM group(Mod), 300 mg/kg TP teatment group(TP) and 3 mg/kg rosiglitazone treatment group(RSG) according to FBG, with 10 rats in each group. Each group was treated with 50 mg/kg D-galactose to induce senescence and fed with high glucose and fat for 8 weeks. Western blot was used to detect the expression of P53 protein in gastnemius muscle tissue of the model group at the end of the experiment, which was higher than that of the control group, indicating that the aging T2DM model was successfully established. FBG was detected by the blood glucose meter, gastnemius muscle relative weights was calculated, the microstructure of mitochondria of gastnemius muscle was observed by transmission electron microscope(TEM), the expression of mitochondrial biosynthesis-related proteins PGC-1α, mitochondrial dynamics-related proteins(OPA1, DRP1) and mitochondrial autophagy-related proteins(P62, LC3) in gastnemius muscle were detected by western blot. RESULTS: Compared with the control group, the level of FBG and the expression of P53 in the Mod group were increased(P<0.01). The gastnemius muscle relative weights, the expression level of PGC-1α, OPA1 and the ratio of LC3II/LC3I were decreased(P<0.01). The expression level of P62 and DRP1 were significantly increased(P<0.01). The number of mitochondria decreased, the volume decreased and a large number of vacuolization, and there were no obvious autophagolysosomes and fission and fusion. After 8 weeks, compared with the Mod group, the number of mitochondria in the gastrocnemius of TP and RSG groups, vacuolization, fission and fusion were improved, and the autophagolysosomes was significantly increased. The expression levels of P53, DRP1 and P62, the level of FBG in the TP group were significantly decreased(P<0.01, P<0.05). The expression levels of OPA1 and PGC-1α, the ratios of LC3II/LC3I and gastnemius muscle relative weights were significantly increased(P<0.05, P<0.01). CONCLUSION: TP can improve the sarcopenia in the aged T2DM model rats, and its mechanism is related to the regulation of mitochondrial quality control.


Sujet(s)
Diabète expérimental , Diabète de type 2 , Polyphénols , Rat Sprague-Dawley , Sarcopénie , Thé , Animaux , Mâle , Polyphénols/pharmacologie , Rats , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme , Thé/composition chimique , Sarcopénie/prévention et contrôle , Sarcopénie/métabolisme , Sarcopénie/traitement médicamenteux , Sarcopénie/étiologie , Diabète expérimental/métabolisme , Diabète expérimental/traitement médicamenteux , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Vieillissement , Modèles animaux de maladie humaine , Muscles squelettiques/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques
3.
Arch Biochem Biophys ; 759: 110110, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39103009

RÉSUMÉ

There exist very limited non-hazardous therapeutic strategies except for surgical resection and lymphadenectomy against gastric cancer (GC) despite being the third leading cause of cancer deaths worldwide. This study proposes an innovative treatment approach against GC using a drug combination strategy that manipulates mitochondrial dynamics in conjunction with the induction of mitochondrial pathology-mediated cell death. Comparative analysis was done with gastric adenocarcinoma and normal cells by qPCR, western blot, microscopic immunocytochemistry, and live cell imaging. In this study, impairment of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission by Mdivi-1 created an imbalance in mitochondrial structural dynamics in indomethacin-treated AGS cells in which mitophagy-regulator protein PINK1 is downregulated. These drug combinations with the individual sub-lethal doses ultimately led to the activation of cell death machinery upregulating pro-apoptotic proteins like Bax, Puma, and Noxa. Interestingly, this combinatorial therapy did not affect normal gastric epithelial cells significantly and also no significant upregulation of death markers was observed. Moreover, the drug combination strategy also retarded cell migration and reduced stemness in GC cells. In summary, this study offers a pioneering specific therapeutic strategy for GC treatment, sparing normal cells providing opportunities for minimal drug-mediated toxicity utilizing mitochondria as a viable and specific target for anti-cancer therapy in gastric cancer.


Sujet(s)
Adénocarcinome , Mitochondries , Protein kinases , Tumeurs de l'estomac , Tumeurs de l'estomac/anatomopathologie , Tumeurs de l'estomac/traitement médicamenteux , Tumeurs de l'estomac/métabolisme , Tumeurs de l'estomac/génétique , Humains , Adénocarcinome/traitement médicamenteux , Adénocarcinome/anatomopathologie , Adénocarcinome/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Protein kinases/métabolisme , Indométacine/pharmacologie , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Dynamines/métabolisme , Dynamines/génétique , Apoptose/effets des médicaments et des substances chimiques , Mitophagie/effets des médicaments et des substances chimiques , Mort cellulaire/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Quinazolinones
4.
Clin Exp Pharmacol Physiol ; 51(9): e13912, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39103220

RÉSUMÉ

Sevoflurane (Sev) is a commonly used inhalation anaesthetic that has been shown to cause hippocampus dysfunction through multiple underlying molecular processes, including mitochondrial malfunction, oxidative stress and inflammation. Dihydromyricetin (DHM) is a 2,3-dihydroflavonoid with various biological properties, such as anti-inflammation and anti-oxidative stress. The purpose of this study was to investigate the effect of DHM on Sev-induced neuronal dysfunction. HT22 cells were incubated with 10, 20 and 30 µM of DHM for 24 h, and then stimulated with 4% Sev for 6 h. The effects and mechanism of DHM on inflammation, oxidative stress and mitochondrial dysfunction were explored in Sev-induced HT22 cells by Cell Counting Kit-8, flow cytometry, enzyme-linked immunosorbent assay, reverse transcription-quantitative polymerase chain reaction, colorimetric detections, detection of the level of reactive oxygen species (ROS), mitochondrial ROS and mitochondrial membrane potential (MMP), immunofluorescence and western blotting. Our results showed that DHM increased Sev-induced cell viability of HT22 cells. Pretreatment with DHM attenuated apoptosis, inflammation, oxidative stress and mitochondrial dysfunction in Sev-elicited HT22 cells by remedying the abnormality of the indicators involved in these progresses, including apoptosis rate, the cleaved-caspase 3 expression, as well as the level of tumour necrosis factor α, interleukin (IL)-1ß, IL-6, malondialdehyde, superoxide dismutase, catalase, ROS, mitochondrial ROS and MMP. Mechanically, pretreatment with DHM restored the Sev-induced the expression of SIRT1/FOXO3a pathway in HT22 cells. Blocking of SIRT1 counteracted the mitigatory effect of DHM on apoptosis, inflammation, oxidative stress and mitochondrial dysfunction in Sev-elicited HT22 cells. Collectively, pretreatment with DHM improved inflammation, oxidative stress and mitochondrial dysfunction via SIRT1/FOXO3a pathway in Sev-induced HT22 cells.


Sujet(s)
Apoptose , Flavonols , Hippocampe , Mitochondries , Stress oxydatif , Sévoflurane , Flavonols/pharmacologie , Animaux , Souris , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Hippocampe/cytologie , Hippocampe/anatomopathologie , Lignée cellulaire , Sévoflurane/pharmacologie , Stress oxydatif/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Survie cellulaire/effets des médicaments et des substances chimiques , Sirtuine-1/métabolisme , Neuroprotecteurs/pharmacologie
5.
CNS Neurosci Ther ; 30(8): e14878, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39097923

RÉSUMÉ

BACKGROUND: This work elucidated the effect of honokiol (HKL) on hippocampal neuronal mitochondrial function in Alzheimer's disease (AD). METHODS: APP/PS1 mice were used as AD mice models and exposed to HKL and 3-TYP. Morris water maze experiment was performed to appraise cognitive performance of mice. Hippocampal Aß+ plaque deposition and neuronal survival was evaluated by immunohistochemistry and Nissl staining. Hippocampal neurons were dissociated from C57BL/6 mouse embryos. Hippocampal neuronal AD model was constructed by Aß oligomers induction and treated with HKL, CsA and 3-TYP. Neuronal viability and apoptosis were detected by cell counting kit-8 assay and TUNEL staining. mRFP-eGFP-LC3 assay, MitoSOX Red, dichlorodihydrofluorescein diacetate, and JC-1 staining were performed to monitor neuronal autophagosomes, mitochondrial reactive oxygen species (ROS), neuronal ROS, and mitochondrial membrane potential. Autophagy-related proteins were detected by Western blot. RESULTS: In AD mice, HKL improved cognitive function, relieved hippocampal Aß1-42 plaque deposition, promoted hippocampal neuron survival, and activated hippocampal SIRT3 expression and mitochondrial autophagy. These effects of HKL on AD mice were abolished by 3-TYP treatment. In hippocampal neuronal AD model, HKL increased neuronal activity, attenuated neuronal apoptosis and Aß aggregation, activated SIRT3 and mitochondrial autophagy, reduced mitochondrial and neuronal ROS, and elevated mitochondrial membrane potential. CsA treatment and 3-TYP treatment abrogated the protection of HKL on hippocampal neuronal AD model. The promotion of mitochondrial autophagy by HKL in hippocampal neuronal AD model was counteracted by 3-TYP. CONCLUSIONS: HKL activates SIRT3-mediated mitochondrial autophagy to mitigate hippocampal neuronal damage in AD. HKL may be effective in treating AD.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Autophagie , Dérivés du biphényle , Hippocampe , Lignanes , Souris de lignée C57BL , Souris transgéniques , Mitochondries , Neurones , Sirtuine-3 , Animaux , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/anatomopathologie , Hippocampe/métabolisme , Sirtuine-3/métabolisme , Souris , Neurones/effets des médicaments et des substances chimiques , Neurones/anatomopathologie , Neurones/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Dérivés du biphényle/pharmacologie , Autophagie/effets des médicaments et des substances chimiques , Lignanes/pharmacologie , Peptides bêta-amyloïdes/toxicité , Fragments peptidiques/toxicité , Mâle , Neuroprotecteurs/pharmacologie , Modèles animaux de maladie humaine , Espèces réactives de l'oxygène/métabolisme , Composés allyliques , Phénols
6.
Commun Biol ; 7(1): 925, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39090373

RÉSUMÉ

Plasma membrane damage in vitrified oocytes is closely linked to mitochondrial dysfunction. However, the mechanism underlying mitochondria-regulated membrane stability is not elucidated. A growing body of evidence indicates that mitochondrial activity plays a pivotal role in cell adaptation. Since mitochondria work at a higher temperature than the constant external temperature of the cell, we hypothesize that suppressing mitochondrial activity would protect oocytes from extreme stimuli during vitrification. Here we show that metformin suppresses mitochondrial activity by reducing mitochondrial temperature. In addition, metformin affects the developmental potential of oocytes and improves the survival rate after vitrification. Transmission electron microscopy results show that mitochondrial abnormalities are markedly reduced in vitrified oocytes pretreated with metformin. Moreover, we find that metformin transiently inhibits mitochondrial activity. Interestingly, metformin pretreatment decreases cell membrane fluidity after vitrification. Furthermore, transcriptome results demonstrate that metformin pretreatment modulates the expression levels of genes involved in fatty acid elongation process, which is further verified by the increased long-chain saturated fatty acid contents in metformin-pretreated vitrified oocytes by lipidomic profile analysis. In summary, our study indicates that metformin alleviates cryoinjuries by reducing membrane fluidity via mitochondrial activity regulation.


Sujet(s)
Fluidité membranaire , Metformine , Mitochondries , Ovocytes , Metformine/pharmacologie , Animaux , Fluidité membranaire/effets des médicaments et des substances chimiques , Ovocytes/effets des médicaments et des substances chimiques , Ovocytes/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Suidae , Femelle , Cryoconservation , Vitrification/effets des médicaments et des substances chimiques
7.
Sci Rep ; 14(1): 18252, 2024 08 06.
Article de Anglais | MEDLINE | ID: mdl-39107469

RÉSUMÉ

Brown fat is a therapeutic target for the treatment of obesity-associated metabolic diseases. However, nutritional intervention strategies for increasing the mass and activity of human brown adipocytes have not yet been established. To identify vitamins required for brown adipogenesis and adipocyte browning, chemical compound-induced brown adipocytes (ciBAs) were converted from human dermal fibroblasts under serum-free and vitamin-free conditions. Choline was found to be essential for adipogenesis. Additional treatment with pantothenic acid (PA) provided choline-induced immature adipocytes with browning properties and metabolic maturation, including uncoupling protein 1 (UCP1) expression, lipolysis, and mitochondrial respiration. However, treatment with high PA concentrations attenuated these effects along with decreased glycolysis. Transcriptome analysis showed that a low PA concentration activated metabolic genes, including the futile creatine cycle-related thermogenic genes, which was reversed by a high PA concentration. Riboflavin treatment suppressed thermogenic gene expression and increased lipolysis, implying a metabolic pathway different from that of PA. Thiamine treatment slightly activated thermogenic genes along with decreased glycolysis. In summary, our results suggest that specific B vitamins and choline are uniquely involved in the regulation of adipocyte browning via cellular energy metabolism in a concentration-dependent manner.


Sujet(s)
Adipocytes bruns , Choline , Acide pantothénique , Riboflavine , Thiamine , Humains , Riboflavine/pharmacologie , Acide pantothénique/pharmacologie , Acide pantothénique/métabolisme , Adipocytes bruns/métabolisme , Adipocytes bruns/effets des médicaments et des substances chimiques , Thiamine/pharmacologie , Thiamine/métabolisme , Choline/métabolisme , Choline/pharmacologie , Protéine-1 de découplage/métabolisme , Protéine-1 de découplage/génétique , Lipolyse/effets des médicaments et des substances chimiques , Métabolisme énergétique/effets des médicaments et des substances chimiques , Thermogenèse/effets des médicaments et des substances chimiques , Adipogenèse/effets des médicaments et des substances chimiques , Glycolyse/effets des médicaments et des substances chimiques , Cellules cultivées , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques
8.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39125588

RÉSUMÉ

Colanic acid (CA) is an exopolysaccharide found in Enterobacteriaceae. Recently, its ability to stimulate physical activity in mice and to prolong the lifespan of invertebrates has been described. In the current work, we use standard MTT assay, fluorescence microscopy, and flow cytometry to describe CA action on several cell lines of different origins. We observed slight antiproliferative activity against colorectal cancer (HCT-116), neuroblastoma (IMR-32), and myoblast (C2C12) cell lines at a concentration of 256 µg/mL, while other cell lines of non-cancerous origin (Vero, HPF) did not show any decrease in the MTT assay. In all cell lines, we observed a rearrangement of mitochondria localization using fluorescence microscopy. CA induces cell differentiation in the myoblast cell line (C2C12) at concentrations of 50-200 µg/mL. Briefly, we observed that the number of apoptotic cells increased and the metabolic activity in the MTT assay decreased, which was accompanied by changes in cell morphology, the quantity of ROS, and the potential of the mitochondrial membrane. Taken together, these results indicate that CA is specific in cytotoxicity to cell lines of different origins and can impact mitochondria and differentiation, consistent with its potential geroprotective function.


Sujet(s)
Prolifération cellulaire , Enterobacteriaceae , Humains , Animaux , Souris , Prolifération cellulaire/effets des médicaments et des substances chimiques , Enterobacteriaceae/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Polyosides/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Lignée cellulaire
9.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39125641

RÉSUMÉ

Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are common retinal diseases responsible for most blindness in working-age and elderly populations. Oxidative stress and mitochondrial dysfunction play roles in these pathogenesis, and new therapies counteracting these contributors could be of great interest. Some molecules, like coenzyme Q10 (CoQ10), are considered beneficial to maintain mitochondrial homeostasis and contribute to the prevention of cellular apoptosis. We investigated the impact of adding CoQ10 (Q) to a nutritional antioxidant complex (Nutrof Total®; N) on the mitochondrial status and apoptosis in an in vitro hydrogen peroxide (H2O2)-induced oxidative stress model in human retinal pigment epithelium (RPE) cells. H2O2 significantly increased 8-OHdG levels (p < 0.05), caspase-3 (p < 0.0001) and TUNEL intensity (p < 0.01), and RANTES (p < 0.05), caspase-1 (p < 0.05), superoxide (p < 0.05), and DRP-1 (p < 0.05) levels, and also decreased IL1ß, SOD2, and CAT gene expression (p < 0.05) vs. control. Remarkably, Q showed a significant recovery in IL1ß gene expression, TUNEL, TNFα, caspase-1, and JC-1 (p < 0.05) vs. H2O2, and NQ showed a synergist effect in caspase-3 (p < 0.01), TUNEL (p < 0.0001), mtDNA, and DRP-1 (p < 0.05). Our results showed that CoQ10 supplementation is effective in restoring/preventing apoptosis and mitochondrial stress-related damage, suggesting that it could be a valid strategy in degenerative processes such as AMD or DR.


Sujet(s)
Apoptose , Peroxyde d'hydrogène , Stress oxydatif , Épithélium pigmentaire de la rétine , Ubiquinones , Humains , Ubiquinones/analogues et dérivés , Ubiquinones/pharmacologie , Épithélium pigmentaire de la rétine/métabolisme , Épithélium pigmentaire de la rétine/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Peroxyde d'hydrogène/métabolisme , Peroxyde d'hydrogène/pharmacologie , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Antioxydants/pharmacologie , Cellules épithéliales/métabolisme , Cellules épithéliales/effets des médicaments et des substances chimiques , Lignée cellulaire , Compléments alimentaires
10.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39125651

RÉSUMÉ

Myocardial damage significantly impacts the prognosis of patients with cancer; however, the mechanisms of myocardial damage induced by cancer and its treatment remain unknown. We previously reported that medium-chain fatty acids (MCFAs) improve cancer-induced myocardial damage but did not evaluate the differences in effect according to MCFA type. Therefore, this study investigated the role of inflammatory cytokines in cancer-induced myocardial damage and the effects of three types of MCFAs (caprylic acid [C8], capric acid [C10], and lauric acid [C12]). In a mouse model, the C8 diet showed a greater effect on improving myocardial damage compared with C10 and C12 diets. Myocardial tubes differentiated from H9C2 cardiomyoblasts demonstrated increased mitochondrial oxidative stress, decreased membrane potential and mitochondrial volume, and inhibited myocardial tube differentiation following treatment with high-mobility group box-1 (HMGB1) but not interleukin-6 and tumor necrosis factor-α cytokines. However, HMGB1 treatment combined with C8 improved HMGB1-induced mitochondrial damage, enhanced autophagy, and increased mitochondrial biogenesis and maturation. However, these effects were only partial when combined with beta-hydroxybutyrate, a C8 metabolite. Thus, HMGB1 may play an important role in cancer-related myocardial damage. C8 counteracts HMGB1's effects and improves cancer-related myocardial damage. Further clinical studies are required to investigate the effects of C8.


Sujet(s)
Caprylates , Protéine HMGB1 , Animaux , Protéine HMGB1/métabolisme , Souris , Caprylates/pharmacologie , Stress oxydatif/effets des médicaments et des substances chimiques , Myocarde/métabolisme , Myocarde/anatomopathologie , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mâle , Acides lauriques/pharmacologie , Lignée cellulaire , Cytokines/métabolisme , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/effets des médicaments et des substances chimiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Acides capriques/pharmacologie , Acide 3-hydroxy-butyrique/pharmacologie , Autophagie/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Souris de lignée C57BL
11.
Sci Rep ; 14(1): 18431, 2024 08 08.
Article de Anglais | MEDLINE | ID: mdl-39117781

RÉSUMÉ

Reactive oxygen species (ROS) serve vital physiological functions, but aberrant ROS production contributes to numerous diseases. Unfortunately, therapeutic progress targeting pathogenic ROS has been hindered by the limited understanding of whether the mechanisms driving pathogenic ROS differ from those governing physiological ROS generation. To address this knowledge gap, we utilised a cellular model of Parkinson's disease (PD), as an exemplar of ROS-associated diseases. We exposed SH-SY5Y neuroblastoma cells to the PD-toxin, MPP+ (1-methyl-4-phenylpyridinium) and studied ROS upregulation leading to cell death, the primary cause of PD. We demonstrate: (1) MPP+ stimulates ROS production by raising cytoplasmic Ca2+ levels, rather than acting directly on mitochondria. (2) To raise the Ca2+, MPP+ co-stimulates NADPH oxidase-2 (NOX2) and the Transient Receptor Potential Melastatin2 (TRPM2) channel that form a positive feedback loop to support each other's function. (3) Ca2+ exacerbates mitochondrial ROS (mtROS) production not directly, but via Zn2+. (4) Zn2+ promotes electron escape from respiratory complexes, predominantly from complex III, to generate mtROS. These conclusions are drawn from data, wherein inhibition of TRPM2 and NOX2, chelation of Ca2+ and Zn2+, and prevention of electron escape from complexes -all abolished the ability of MPP+ to induce mtROS production and the associated cell death. Furthermore, calcium ionophore mimicked the effects of MPP+, while Zn2+ ionophore replicated the effects of both MPP+ and Ca2+. Thus, we unveil a previously unrecognized signalling circuit involving NOX2, TRPM2, Ca2+, Zn2+, and complex III that drives cytotoxic ROS production. This circuit lies dormant in healthy cells but is triggered by pathogenic insults and could therefore represent a safe therapeutic target for PD and other ROS-linked diseases.


Sujet(s)
Calcium , Mitochondries , NADPH Oxidase 2 , Maladie de Parkinson , Espèces réactives de l'oxygène , Canaux cationiques TRPM , Zinc , Espèces réactives de l'oxygène/métabolisme , Humains , NADPH Oxidase 2/métabolisme , NADPH Oxidase 2/génétique , Zinc/métabolisme , Canaux cationiques TRPM/métabolisme , Maladie de Parkinson/métabolisme , Maladie de Parkinson/anatomopathologie , Calcium/métabolisme , Lignée cellulaire tumorale , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , 1-Méthyl-4-phényl-pyridinium
12.
J Gene Med ; 26(8): e3722, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39117601

RÉSUMÉ

BACKGROUND: Lovastatin, a type of statin usually considered as a lipid-lowering drug that lowers blood cholesterol and low-density lipoprotein cholesterol levels, has been rediscovered to have anticancer activity. Fewer studies exist regarding the effect of lovastatin on esophageal squamous cell carcinoma (ESCC). METHODS: Here, we report that lovastatin shows anticancer effect on ESCC By affecting the mitochondrial autophagy pathway. Moreover, based on proteomics and computer molecular simulations found that RAB38 and RAB27A may be a target of lovastatin. RESULTS: We observed that autophagy of mitochondria is inhibited by lovastatin, affecting esophageal squamous cell proliferation. There is a possible link between the expression of RAB38, RAB27A and immune cell invasion in esophageal cancer. CONCLUSIONS: These results demonstrate the huge potential of lovastatin as an RAB38, RAB27A inhibitor in esophageal cancer chemotherapy and chemoprevention.


Sujet(s)
Autophagie , Prolifération cellulaire , Tumeurs de l'oesophage , Carcinome épidermoïde de l'oesophage , Lovastatine , Protéomique , Lovastatine/pharmacologie , Humains , Carcinome épidermoïde de l'oesophage/traitement médicamenteux , Carcinome épidermoïde de l'oesophage/métabolisme , Carcinome épidermoïde de l'oesophage/anatomopathologie , Prolifération cellulaire/effets des médicaments et des substances chimiques , Protéomique/méthodes , Tumeurs de l'oesophage/traitement médicamenteux , Tumeurs de l'oesophage/métabolisme , Tumeurs de l'oesophage/anatomopathologie , Lignée cellulaire tumorale , Autophagie/effets des médicaments et des substances chimiques , Protéines G rab/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Simulation de docking moléculaire
13.
Sci Rep ; 14(1): 18875, 2024 08 14.
Article de Anglais | MEDLINE | ID: mdl-39143185

RÉSUMÉ

Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is one of the most important neglected diseases in Latin America. The limited use of the current nitro-derivative-based chemotherapy highlights the need for alternative drugs and the identification of their molecular targets. In this study, we investigated the trypanocidal effect of the sesquiterpene lactone dehydroleucodine (DhL) and its derivatives, focusing on the antioxidative defense of the parasites. DhL and two derivatives, at lesser extent, displayed antiproliferative effect on the parasites. This effect was blocked by the reducing agent glutathione (GSH). Treated parasites exhibited increased intracellular ROS concentration and trypanothione synthetase activity, accompanied by mitochondrial swelling. Although molecular dynamics studies predicted that GSH would not interact with DhL, 1H-NMR analysis confirmed that GSH could protect parasites by interacting with the lactone. When parasites overexpressing mitochondrial tryparedoxin peroxidase were incubated with DhL, its effect was attenuated. Overexpression of cytosolic tryparedoxin peroxidase also provided some protection against DhL. These findings suggest that DhL induces oxidative imbalance in T. cruzi, offering new insights into potential drug targets against this parasite.


Sujet(s)
Lactones , Espèces réactives de l'oxygène , Sesquiterpènes , Trypanosoma cruzi , Trypanosoma cruzi/effets des médicaments et des substances chimiques , Trypanosoma cruzi/métabolisme , Sesquiterpènes/pharmacologie , Lactones/pharmacologie , Espèces réactives de l'oxygène/métabolisme , Trypanocides/pharmacologie , Glutathion/métabolisme , Maladie de Chagas/traitement médicamenteux , Maladie de Chagas/parasitologie , Protéines de protozoaire/métabolisme , Animaux , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Amide synthases
14.
C R Biol ; 347: 59-75, 2024 Aug 22.
Article de Français | MEDLINE | ID: mdl-39171610

RÉSUMÉ

A large body of literature highlights the importance of energy metabolism in the response of haematological malignancies to therapy. In this review, we are particularly interested in acute myeloid leukaemia, where mitochondrial metabolism plays a key role in response and resistance to treatment. We describe the new concept of mitohormesis in the response to therapy-induced stress and in the initiation of relapse in this disease.


De nombreux travaux de la littérature illustrent l'importance de l'étude du métabolisme énergétique pour la compréhension de la réponse aux thérapies des hémopathies malignes. Dans cette revue, nous nous sommes particulièrement intéressés aux leucémies aiguës myéloïdes pour lesquelles le métabolisme mitochondrial joue un rôle clé dans la réponse et la résistance aux traitements. Nous avons décrit le nouveau concept de mitohormesis dans la réponse aux stress induits par les thérapies et dans l'initiation des rechutes dans cette pathologie.


Sujet(s)
Résistance aux médicaments antinéoplasiques , Mitochondries , Humains , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Métabolisme énergétique/effets des médicaments et des substances chimiques , Leucémie aigüe myéloïde/traitement médicamenteux , Leucémie aigüe myéloïde/anatomopathologie , Tumeurs/traitement médicamenteux , Antinéoplasiques/pharmacologie , Animaux
15.
Redox Rep ; 29(1): 2391139, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39138590

RÉSUMÉ

Oxalate-induced damage to renal tubular epithelial cells (RTECs) is an essential factor in the incident kidney stone, but the specific mechanism is unclear. Recent research has pinpointed interacting areas within the endoplasmic reticulum and mitochondria, called mitochondria-associated membranes (MAMs). These studies have linked endoplasmic reticulum stress (ERS) and oxidative imbalance to kidney disease development. The sigma-1 receptor (S1R), a specific protein found in MAMs, is involved in various physiological processes, but its role in oxalate-induced kidney stone formation remains unclear. In this study, we established cellular and rat models of oxalate-induced kidney stone formation to elucidate the S1R's effects against ERS and apoptosis and its mechanism in oxalate-induced RTEC injury. We found that oxalate downregulated S1R expression in RTECs and escalated oxidative stress and ERS, culminating in increased apoptosis. The S1R agonist dimemorfan up-regulated S1R expression and mitigated ERS and oxidative stress, thereby reducing apoptosis. This protective effect was mediated through S1R inhibition of the CHOP pathway. Animal experiments demonstrated that S1R's activation attenuated oxalate-induced kidney injury and alleviated kidney stone formation. This is the first study to establish the connection between S1R and kidney stones, suggesting S1R's protective role in inhibiting ERS-mediated apoptosis to ameliorate kidney stone formation.


Sujet(s)
Apoptose , Stress du réticulum endoplasmique , Réticulum endoplasmique , Cellules épithéliales , Tubules rénaux , Mitochondries , Néphrolithiase , Récepteur sigma , , Récepteur sigma/métabolisme , Animaux , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Rats , Cellules épithéliales/métabolisme , Cellules épithéliales/effets des médicaments et des substances chimiques , Tubules rénaux/métabolisme , Tubules rénaux/anatomopathologie , Néphrolithiase/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Réticulum endoplasmique/métabolisme , Réticulum endoplasmique/effets des médicaments et des substances chimiques , Mâle , Stress oxydatif/effets des médicaments et des substances chimiques , Rat Sprague-Dawley
16.
Redox Biol ; 75: 103306, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39133964

RÉSUMÉ

In orthopedic research, many studies have applied vitamin E as a protective antioxidant or used tert-butyl hydroperoxide to induce oxidative injury to chondrocytes. These studies often support the hypothesis that joint pathology causes oxidative stress and increased lipid peroxidation that might be prevented with lipid antioxidants to improve cell survival or function and joint health; however, lipid antioxidant supplementation was ineffective against osteoarthritis in clinical trials and animal data have been equivocal. Moreover, increased circulating vitamin E is associated with increased rates of osteoarthritis. This disconnect between benchtop and clinical results led us to hypothesize that oxidative stress-driven paradigms of chondrocyte redox function do not capture the metabolic and physiologic effects of lipid antioxidants and prooxidants on articular chondrocytes. We used ex vivo and in vivo cartilage models to investigate the effect of lipid antioxidants on healthy, primary, articular chondrocytes and applied immuno-spin trapping techniques to provide a broad indicator of high levels of oxidative stress independent of specific reactive oxygen species. Key findings demonstrate lipid antioxidants were pro-mitochondrial while lipid prooxidants decreased mitochondrial measures. In the absence of injury, radical formation was increased by lipid antioxidants; however, in the presence of injury, radical formation was decreased. In unstressed conditions, this relationship between chondrocyte mitochondria and redox regulation was reproduced in vivo with overexpression of glutathione peroxidase 4. In mice aged 18 months or more, overexpression of glutathione peroxidase 4 significantly decreased the presence of pro-mitochondrial peroxisome proliferation activated receptor gamma and deranged the relationship between mitochondria and the redox environment. This complex interaction suggests strategies targeting articular cartilage may benefit from adopting more nuanced paradigms of articular chondrocyte redox metabolism.


Sujet(s)
Chondrocytes , Peroxydation lipidique , Mitochondries , Oxydoréduction , Stress oxydatif , Chondrocytes/métabolisme , Chondrocytes/effets des médicaments et des substances chimiques , Animaux , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Antioxydants/pharmacologie , Antioxydants/métabolisme , Espèces réactives de l'oxygène/métabolisme , Cartilage articulaire/métabolisme , Souris , Cellules cultivées
17.
Cells ; 13(15)2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39120291

RÉSUMÉ

A substantial challenge in human brain aging is to find a suitable model to mimic neuronal aging in vitro as accurately as possible. Using directly converted neurons (iNs) from human fibroblasts is considered a promising tool in human aging since it retains the aging-associated mitochondrial donor signature. Still, using iNs from aged donors can pose certain restrictions due to their lower reprogramming and conversion efficacy than those from younger individuals. To overcome these limitations, our study aimed to establish an in vitro neuronal aging model mirroring features of in vivo aging by acute exposure on young iNs to either human stress hormone cortisol or the mitochondrial stressor rotenone, considering stress as a trigger of in vivo aging. The impact of rotenone was evident in mitochondrial bioenergetic properties by showing aging-associated deficits in mitochondrial respiration, cellular ATP, and MMP and a rise in glycolysis, mitochondrial superoxide, and mitochondrial ROS; meanwhile, cortisol only partially induced an aging-associated mitochondrial dysfunction. To replicate the in vivo aging-associated mitochondrial dysfunctions, using rotenone, a mitochondrial complex I inhibitor, proved to be superior to the cortisol model. This work is the first to use stress on young iNs to recreate aging-related mitochondrial impairments.


Sujet(s)
Mitochondries , Neurones , Roténone , Humains , Neurones/métabolisme , Neurones/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Roténone/pharmacologie , Vieillissement , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Hydrocortisone/métabolisme , Espèces réactives de l'oxygène/métabolisme , Donneurs de tissus , Glycolyse/effets des médicaments et des substances chimiques , Adénosine triphosphate/métabolisme
18.
PLoS One ; 19(8): e0308665, 2024.
Article de Anglais | MEDLINE | ID: mdl-39121069

RÉSUMÉ

Development of resistance and tolerance to antifungal drugs in Candida albicans can compromise treatment of infections caused by this pathogenic yeast species. The uniquely expanded C. albicans TLO gene family is comprised of 14 paralogous genes which encode Med2, a subunit of the multiprotein Mediator complex which is involved in the global control of transcription. This study investigates the acquisition of fluconazole tolerance in a mutant in which the entire TLO gene family has been deleted. This phenotype was reversed to varying degrees upon reintroduction of representative members of the alpha- and beta-TLO clades (i.e. TLO1 and TLO2), but not by TLO11, a gamma-clade representative. Comparative RNA sequencing analysis revealed changes in the expression of genes involved in a range of cellular functions, including ergosterol biosynthesis, mitochondrial function, and redox homeostasis. This was supported by the results of mass spectrometry analysis, which revealed alterations in sterol composition of the mutant cell membrane. Our data suggest that members of the C. albicans TLO gene family are involved in the control of ergosterol biosynthesis and mitochondrial function and may play a role in the responses of C. albicans to azole antifungal agents.


Sujet(s)
Antifongiques , Candida albicans , Résistance des champignons aux médicaments , Fluconazole , Protéines fongiques , Candida albicans/effets des médicaments et des substances chimiques , Candida albicans/génétique , Candida albicans/métabolisme , Fluconazole/pharmacologie , Antifongiques/pharmacologie , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Résistance des champignons aux médicaments/génétique , Stérols/métabolisme , Membrane cellulaire/métabolisme , Membrane cellulaire/effets des médicaments et des substances chimiques , Ergostérol/biosynthèse , Ergostérol/métabolisme , Délétion de gène , Régulation de l'expression des gènes fongiques/effets des médicaments et des substances chimiques , Famille multigénique , Tests de sensibilité microbienne , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/génétique
19.
Cryo Letters ; 45(5): 301-308, 2024.
Article de Anglais | MEDLINE | ID: mdl-39126332

RÉSUMÉ

BACKGROUND: Vitrification is commonly used for in vitro fertilization and has significant impact on gametes. OBJECTIVE: To investigate changes in ultrastructure, membrane potential and distribution of mitochondria in mouse oocytes after vitrification. MATERIALS AND METHODS: Mouse oocytes were divided into three groups: one group as fresh control, one group for the toxicity test (treated with cryoprotectant but without vitrification), and the other for vitrification. RESULTS: Most mitochondria in oocytes were damaged after cooling and warming, being rough and fuzzy in appearance, even swollen and broken. The membrane potential of the toxicity test group and the vitrification group was 0.320 +/-0.030 and 0.244 +/- 0.038, respectively, in comparison to the fresh group (0.398 +/- 0.043). The membrane potential of the vitrified oocytes was significantly lower than fresh oocytes and the toxicity test oocytes (P % 0.05), but there was no significant difference between fresh oocytes and the toxicity test oocytes (P > 0.05). Mitochondria in fresh oocytes were denser and strained stronger, with 59.5> distributed homogeneously and 36.4> polarized. The majority of mitochondria in the toxicity-tested oocytes were clustered (69.3>) and only a small portion were distributed homogeneously (19.6>), while mitochondria in vitrified oocytes were clustered (56.3>) and deficient (24.4>), and their fluorescent staining was weak and blurred. There was a significant disruption in mitochondrial function after vitrification. CONCLUSION: Vitrification alters the ultrastructure, membrane potential and distribution of mitochondria in oocytes, most likely caused by toxicity and mechanical injury. Doi.org/10.54680/fr24510110212.


Sujet(s)
Cryoconservation , Cryoprotecteurs , Potentiel de membrane mitochondriale , Mitochondries , Ovocytes , Vitrification , Animaux , Ovocytes/effets des médicaments et des substances chimiques , Ovocytes/ultrastructure , Ovocytes/cytologie , Souris , Cryoconservation/méthodes , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/ultrastructure , Mitochondries/métabolisme , Femelle , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Cryoprotecteurs/pharmacologie
20.
Sci Rep ; 14(1): 17937, 2024 08 02.
Article de Anglais | MEDLINE | ID: mdl-39095405

RÉSUMÉ

Advanced glycation end products (AGEs) are the final products of the Maillard reaction, formed through the interaction of carbohydrates and proteins. Reactive dicarbonyl compounds such as methylglyoxal (MGO) serve as precursors for AGEs formation. Elevated levels of MGO/AGEs are observed in conditions like obesity, polycystic ovarian syndrome (PCOS), and diabetes, negatively impacting oocyte development. Previous studies have shown that hydrogen sulfide, a gasotransmitter with anti-AGEs effects, is produced in a process influenced by vitamin B6. R-α-lipoic acid (ALA) inhibits protein glycation and AGEs formation while stimulating glutathione (GSH) production. Taurine mitigates oxidative stress and acts as an anti-glycation compound, preventing in vitro glycation and AGEs accumulation. This study aimed to explore the ameliorative effects of a micronutrient support (Taurine, ALA and B6: TAB) on mouse oocytes challenged with MGO. Our results indicate that MGO reduces oocyte developmental competence, while TAB supplementation improves maturation, fertilization, and blastocyst formation rates. TAB also restores cell lineage allocation, redox balance and mitigates mitochondrial dysfunction in MGO-challenged oocytes. Furthermore, cumulus cells express key enzymes in the transsulfuration pathway, and TAB enhances their mRNA expression. However, TAB does not rescue MGO-induced damage in denuded oocytes, emphasizing the supportive role of cumulus cells. Overall, these findings suggest that TAB interventions may have significant implications for addressing reproductive dysfunctions associated with elevated MGO/AGEs levels. This study highlights the potential of TAB supplementation in preserving the developmental competence of COCs exposed to MGO stress, providing insights into mitigating the impact of dicarbonyl stress on oocyte quality and reproductive outcomes.


Sujet(s)
Ovocytes , Méthylglyoxal , Taurine , Acide lipoïque , Vitamine B6 , Animaux , Taurine/pharmacologie , Méthylglyoxal/pharmacologie , Méthylglyoxal/métabolisme , Ovocytes/effets des médicaments et des substances chimiques , Ovocytes/métabolisme , Souris , Acide lipoïque/pharmacologie , Femelle , Vitamine B6/pharmacologie , Vitamine B6/métabolisme , Produits terminaux de glycation avancée/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE