Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 13.150
Filtrer
1.
J Biochem Mol Toxicol ; 38(8): e23804, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39132813

RÉSUMÉ

The present study evaluated the cardioprotective effect of astaxanthin (ASX) against isoproterenol (ISO) induced myocardial infarction in rats via the pathway of mitochondrial biogenesis as the possible molecular target of astaxanthin. The control group was injected with normal physiological saline subcutaneously for 2 days. The second group was injected with ISO at a dose of 85 mg/kg bwt subcutaneously for 2 days. The third, fourth and fifth groups were supplemented with ASX at doses of 10, 20, 30 mg/kg bwt, respectively daily by oral gavage for 21 days then injected with ISO dose of 85 mg/kg bwt subcutaneously for 2 successive days. Isoproterenol administration in rats elevated the activities of Creatine kinase-MB (CK-MB), aspartate transaminase (AST), lactate dehydrogenase (LDH), and other serum cardiac biomarkers Troponin-I activities, oxidative stress biomarkers, malondialdehyde(MDA), Nuclear factor-kappa B (NF-KB), while it decreased Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), Nuclear factor erythroid-2-related factor 2 (Nfe212), mitochondrial transcriptional factor A (mt TFA), mitochondrial DNA copy number and glutathione system parameters. However, Astaxanthin decreased the activities of serum AST, LDH, CK-MB, and Troponin I that elevated by ISO. In addition, it increased glutathione peroxidase and reductase activities, total glutathione and reduced GSH content, and GSH/GSSG ratio, mtDNA copy number, PGC-1α expression and Tfam expression that improved mitochondrial biogenesis while it decreased GSSG and MDA contents and NF-KB level in the cardiac tissues. This study indicated that astaxanthin relieved isoproterenol induced myocardial infarction via scavenging free radicals and reducing oxidative damage and apoptosis in cardiac tissue.


Sujet(s)
Antioxydants , Isoprénaline , Infarctus du myocarde , Xanthophylles , Animaux , Xanthophylles/pharmacologie , Isoprénaline/toxicité , Infarctus du myocarde/induit chimiquement , Infarctus du myocarde/métabolisme , Infarctus du myocarde/traitement médicamenteux , Rats , Mâle , Antioxydants/pharmacologie , Antioxydants/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Rat Wistar , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/effets des médicaments et des substances chimiques
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39125651

RÉSUMÉ

Myocardial damage significantly impacts the prognosis of patients with cancer; however, the mechanisms of myocardial damage induced by cancer and its treatment remain unknown. We previously reported that medium-chain fatty acids (MCFAs) improve cancer-induced myocardial damage but did not evaluate the differences in effect according to MCFA type. Therefore, this study investigated the role of inflammatory cytokines in cancer-induced myocardial damage and the effects of three types of MCFAs (caprylic acid [C8], capric acid [C10], and lauric acid [C12]). In a mouse model, the C8 diet showed a greater effect on improving myocardial damage compared with C10 and C12 diets. Myocardial tubes differentiated from H9C2 cardiomyoblasts demonstrated increased mitochondrial oxidative stress, decreased membrane potential and mitochondrial volume, and inhibited myocardial tube differentiation following treatment with high-mobility group box-1 (HMGB1) but not interleukin-6 and tumor necrosis factor-α cytokines. However, HMGB1 treatment combined with C8 improved HMGB1-induced mitochondrial damage, enhanced autophagy, and increased mitochondrial biogenesis and maturation. However, these effects were only partial when combined with beta-hydroxybutyrate, a C8 metabolite. Thus, HMGB1 may play an important role in cancer-related myocardial damage. C8 counteracts HMGB1's effects and improves cancer-related myocardial damage. Further clinical studies are required to investigate the effects of C8.


Sujet(s)
Caprylates , Protéine HMGB1 , Animaux , Protéine HMGB1/métabolisme , Souris , Caprylates/pharmacologie , Stress oxydatif/effets des médicaments et des substances chimiques , Myocarde/métabolisme , Myocarde/anatomopathologie , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mâle , Acides lauriques/pharmacologie , Lignée cellulaire , Cytokines/métabolisme , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/effets des médicaments et des substances chimiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Acides capriques/pharmacologie , Acide 3-hydroxy-butyrique/pharmacologie , Autophagie/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Souris de lignée C57BL
3.
BMC Cardiovasc Disord ; 24(1): 408, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39103773

RÉSUMÉ

BACKGROUND: Acute myocardial infarction (AMI) is a leading cause of death worldwide. Mitochondrial dysfunction is a key determinant of cell death post-AMI. Preventing mitochondrial dysfunction is thus a key therapeutic strategy. This study aimed to explore key genes and target compounds related to mitochondrial dysfunction in AMI patients and their association with major adverse cardiovascular events (MACE). METHODS: Differentially expressed genes in AMI were identified from the Gene Expression Omnibus (GEO) datasets (GSE166780 and GSE24519), and mitochondria-related genes were obtained from MitoCarta3.0 database. By intersection of the two gene groups, mitochondria-related genes in AMI were identified. Next, the identified genes related to mitochondria were subject to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Protein-protein interaction (PPI) network was constructed, and key genes were screened. Then, targeted drug screening and molecular docking were performed. Blood samples from AMI patients and healthy volunteers were analyzed for the key genes expressions using quantitative real time polymerase chain reaction (qRT-PCR). Later, receiver operating characteristic (ROC) curves assessed the diagnostic value of key genes, and univariate and multivariate COX analyses identified risk factors and protective factors for MACE in AMI patients. RESULTS: After screening and identification, 138 mitochondria-related genes were identified, mainly enriched in the processes and pathways of cellular respiration, redox, mitochondrial metabolism, apoptosis, amino acid and fatty acid metabolism. According to the PPI network, 5 key mitochondria-related genes in AMI were obtained: translational activator of cytochrome c oxidase I (TACO1), cytochrome c oxidase subunit Va (COX5A), PTEN-induced putative kinase 1 (PINK1), SURF1, and NDUFA11. Molecular docking showed that Cholic Acid, N-Formylmethionine interacted with COX5A, nicotinamide adenine dinucleotide + hydrogen (NADH) and NDUFA11. Subsequent basic experiments revealed that COX5A and NDUFA11 expressions were significantly lower in the blood of patients with AMI than those in the corresponding healthy volunteers; also, AMI patients with MACE had lower COX5A and NDUFA11 expressions in the blood than those without MACE (P < 0.01). ROC analysis also showed high diagnostic value for COX5A and NDUFA11 [area under the curve (AUC) > 0.85]. In terms of COX results, COX5A, NDUFA11 and left ventricular ejection fraction (LVEF) were protective factors for MACE in AMI, while C-reactive protein (CRP) was a risk factor. CONCLUSION: COX5A and NDUFA11, key mitochondria-related genes in AMI, may be used as biomarkers to diagnose AMI and predict MACE.


Sujet(s)
Bases de données génétiques , Réseaux de régulation génique , Mitochondries du myocarde , Infarctus du myocarde , Valeur prédictive des tests , Cartes d'interactions protéiques , Humains , Mâle , Femelle , Adulte d'âge moyen , Infarctus du myocarde/génétique , Infarctus du myocarde/diagnostic , Infarctus du myocarde/sang , Pronostic , Appréciation des risques , Sujet âgé , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/génétique , Simulation de docking moléculaire , Études cas-témoins , Protéines mitochondriales/génétique , Analyse de profil d'expression de gènes , Transcriptome , Marqueurs génétiques , Prédisposition génétique à une maladie
4.
Cardiovasc Diabetol ; 23(1): 261, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39026280

RÉSUMÉ

Mitochondria play a central role in cellular energy metabolism, and their dysfunction is increasingly recognized as a critical factor in the pathogenesis of diabetes-related cardiac pathophysiology, including vulnerability to ischemic events that culminate in myocardial infarction on the one hand and ventricular arrhythmias on the other. In diabetes, hyperglycemia and altered metabolic substrates lead to excessive production of reactive oxygen species (ROS) by mitochondria, initiating a cascade of oxidative stress that damages mitochondrial DNA, proteins, and lipids. This mitochondrial injury compromises the efficiency of oxidative phosphorylation, leading to impaired ATP production. The resulting energy deficit and oxidative damage contribute to functional abnormalities in cardiac cells, placing the heart at an increased risk of electromechanical dysfunction and irreversible cell death in response to ischemic insults. While cardiac mitochondria are often considered to be relatively autonomous entities in their capacity to produce energy and ROS, their highly dynamic nature within an elaborate network of closely-coupled organelles that occupies 30-40% of the cardiomyocyte volume is fundamental to their ability to exert intricate regulation over global cardiac function. In this article, we review evidence linking the dynamic properties of the mitochondrial network to overall cardiac function and its response to injury. We then highlight select studies linking mitochondrial ultrastructural alterations driven by changes in mitochondrial fission, fusion and mitophagy in promoting cardiac ischemic injury to the diabetic heart.


Sujet(s)
Cardiomyopathies diabétiques , Métabolisme énergétique , Mitochondries du myocarde , Ischémie myocardique , Stress oxydatif , Humains , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Animaux , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/physiopathologie , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/étiologie , Ischémie myocardique/métabolisme , Ischémie myocardique/physiopathologie , Ischémie myocardique/anatomopathologie , Dynamique mitochondriale , Mitophagie , Espèces réactives de l'oxygène/métabolisme , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Transduction du signal
5.
Circ Res ; 135(2): 372-396, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38963864

RÉSUMÉ

Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.


Sujet(s)
Défaillance cardiaque , Mitochondries du myocarde , Humains , Défaillance cardiaque/métabolisme , Défaillance cardiaque/anatomopathologie , Défaillance cardiaque/physiopathologie , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Animaux , Dynamique mitochondriale , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Métabolisme énergétique , Réticulum endoplasmique/métabolisme , Réticulum endoplasmique/anatomopathologie
6.
Cardiovasc Diabetol ; 23(1): 239, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38978010

RÉSUMÉ

BACKGROUND: Type 2 diabetes (T2D) is a frequent comorbidity encountered in patients with severe aortic stenosis (AS), leading to an adverse left ventricular (LV) remodeling and dysfunction. Metabolic alterations have been suggested as contributors of the deleterious effect of T2D on LV remodeling and function in patients with severe AS, but so far, the underlying mechanisms remain unclear. Mitochondria play a central role in the regulation of cardiac energy metabolism. OBJECTIVES: We aimed to explore the mitochondrial alterations associated with the deleterious effect of T2D on LV remodeling and function in patients with AS, preserved ejection fraction, and no additional heart disease. METHODS: We combined an in-depth clinical, biological and echocardiography phenotype of patients with severe AS, with (n = 34) or without (n = 50) T2D, referred for a valve replacement, with transcriptomic and histological analyses of an intra-operative myocardial LV biopsy. RESULTS: T2D patients had similar AS severity but displayed worse cardiac remodeling, systolic and diastolic function than non-diabetics. RNAseq analysis identified 1029 significantly differentially expressed genes. Functional enrichment analysis revealed several T2D-specific upregulated pathways despite comorbidity adjustment, gathering regulation of inflammation, extracellular matrix organization, endothelial function/angiogenesis, and adaptation to cardiac hypertrophy. Downregulated gene sets independently associated with T2D were related to mitochondrial respiratory chain organization/function and mitochondrial organization. Generation of causal networks suggested a reduced Ca2+ signaling up to the mitochondria, with the measured gene remodeling of the mitochondrial Ca2+ uniporter in favor of enhanced uptake. Histological analyses supported a greater cardiomyocyte hypertrophy and a decreased proximity between the mitochondrial VDAC porin and the reticular IP3-receptor in T2D. CONCLUSIONS: Our data support a crucial role for mitochondrial Ca2+ signaling in T2D-induced cardiac dysfunction in severe AS patients, from a structural reticulum-mitochondria Ca2+ uncoupling to a mitochondrial gene remodeling. Thus, our findings open a new therapeutic avenue to be tested in animal models and further human cardiac biopsies in order to propose new treatments for T2D patients suffering from AS. TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov ; Unique Identifier: NCT01862237.


Sujet(s)
Sténose aortique , Signalisation calcique , Diabète de type 2 , Analyse de profil d'expression de gènes , Mitochondries du myocarde , Indice de gravité de la maladie , Transcriptome , Fonction ventriculaire gauche , Remodelage ventriculaire , Humains , Sténose aortique/métabolisme , Sténose aortique/génétique , Sténose aortique/physiopathologie , Sténose aortique/imagerie diagnostique , Sténose aortique/chirurgie , Sténose aortique/anatomopathologie , Mâle , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Femelle , Sujet âgé , Diabète de type 2/génétique , Diabète de type 2/métabolisme , Diabète de type 2/complications , Adulte d'âge moyen , Sujet âgé de 80 ans ou plus , Dysfonction ventriculaire gauche/physiopathologie , Dysfonction ventriculaire gauche/génétique , Dysfonction ventriculaire gauche/métabolisme , Dysfonction ventriculaire gauche/imagerie diagnostique
7.
PeerJ ; 12: e17333, 2024.
Article de Anglais | MEDLINE | ID: mdl-38948204

RÉSUMÉ

Acute heart attack is the primary cause of cardiovascular-related death worldwide. A common treatment is reperfusion of ischemic tissue, which can cause irreversible damage to the myocardium. The number of mitochondria in cardiomyocytes is large, which generate adenosine triphosphate (ATP) to sustain proper cardiac contractile function, and mitochondrial dysfunction plays a crucial role in cell death during myocardial ischemia-reperfusion, leading to an increasing number of studies investigating the impact of mitochondria on ischemia-reperfusion injury. The disarray of mitochondrial dynamics, excessive Ca2+ accumulation, activation of mitochondrial permeable transition pores, swelling of mitochondria, ultimately the death of cardiomyocyte are the consequences of ischemia-reperfusion injury. κ-opioid receptors can alleviate mitochondrial dysfunction, regulate mitochondrial dynamics, mitigate myocardial ischemia-reperfusion injury, exert protective effects on myocardium. The mechanism of κ-OR activation during myocardial ischemia-reperfusion to regulate mitochondrial dynamics and reduce myocardial ischemia-reperfusion injury will be discussed, so as to provide theoretical basis for the protection of ischemic myocardium.


Sujet(s)
Lésion de reperfusion myocardique , Myocytes cardiaques , Récepteur kappa , Lésion de reperfusion myocardique/métabolisme , Lésion de reperfusion myocardique/anatomopathologie , Récepteur kappa/métabolisme , Humains , Animaux , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Dynamique mitochondriale/physiologie , Calcium/métabolisme
9.
BMC Cardiovasc Disord ; 24(1): 350, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987722

RÉSUMÉ

BACKGROUND: Antineoplastic medications, including doxorubicin, idarubicin, and epirubicin, have been found to adversely affect the heart due to oxidative stress - mitochondrial dysfunction - ferroptosis (ORMFs), which act as contributing attributes to anthracycline-induced cardiotoxicity. To better understand this phenomenon, the time-resolved measurements of ORMFS genes were analyzed in this study. METHODS: The effect of three anthracycline drugs on ORMFs genes was studied using a human 3D cardiac microtissue cell model. Transcriptome data was collected over 14 days at two doses (therapeutic and toxic). WGCNA identified key module-related genes, and functional enrichment analysis investigated the biological processes quantified by ssGSEA, such as immune cell infiltration and angiogenesis. Biopsies were collected from heart failure patients and control subjects. GSE59672 and GSE2965 were collected for validation. Molecular docking was used to identify anthracyclines's interaction with key genes. RESULTS: The ORMFs genes were screened in vivo or in vitro. Using WGCNA, six co-expressed gene modules were grouped, with MEblue emerging as the most significant module. Eight key genes intersecting the blue module with the dynamic response genes were obtained: CD36, CDH5, CHI3L1, HBA2, HSD11B1, OGN, RPL8, and VWF. Compared with control samples, all key genes except RPL8 were down-regulated in vitro ANT treatment settings, and their expression levels varied over time. According to functional analyses, the key module-related genes were engaged in angiogenesis and the immune system pathways. In all ANT-treated settings, ssGSEA demonstrated a significant down-regulation of angiogenesis score and immune cell activity, including Activated CD4 T cell, Immature B cell, Memory B cell, Natural killer cell, Type 1 T helper cell, and Type 2 T helper cell. Molecular docking revealed that RPL8 and CHI3L1 show significant binding affinity for anthracyclines. CONCLUSION: This study focuses on the dynamic characteristics of ORMFs genes in both human cardiac microtissues and cardiac biopsies from ANT-treated patients. It has been highlighted that ORMFs genes may contribute to immune infiltration and angiogenesis in cases of anthracycline-induced cardiotoxicity. A thorough understanding of these genes could potentially lead to improved diagnosis and treatment of the disease.


Sujet(s)
Cardiotoxicité , Ferroptose , Simulation de docking moléculaire , Stress oxydatif , Humains , Stress oxydatif/effets des médicaments et des substances chimiques , Ferroptose/effets des médicaments et des substances chimiques , Ferroptose/génétique , Mitochondries du myocarde/effets des médicaments et des substances chimiques , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Mitochondries du myocarde/génétique , Réseaux de régulation génique , Facteurs temps , Transcriptome , Épirubicine/effets indésirables , Doxorubicine , Antibiotiques antinéoplasiques/effets indésirables , Études cas-témoins , Idarubicine , Défaillance cardiaque/induit chimiquement , Défaillance cardiaque/génétique , Défaillance cardiaque/métabolisme , Défaillance cardiaque/physiopathologie , Analyse de profil d'expression de gènes , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Études longitudinales , Anthracyclines/effets indésirables , Régulation de l'expression des gènes , Transduction du signal
10.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-39062885

RÉSUMÉ

BACKGROUND: Mitochondria play a crucial role in adapting to fluctuating energy demands, particularly in various heart diseases. This study investigates mitochondrial morphology near intercalated discs in left ventricular (LV) heart tissues, comparing samples from patients with sinus rhythm (SR), atrial fibrillation (AF), dilated cardiomyopathy (DCM), and ischemic cardiomyopathy (ICM). METHODS: Transmission electron microscopy was used to analyze mitochondria within 0-3.5 µm and 3.5-7 µm of intercalated discs in 9 SR, 10 AF, 9 DCM, and 8 ICM patient samples. Parameters included mean size in µm2 and elongation, count, percental mitochondrial area in the measuring frame, and a conglomeration score. RESULTS: AF patients exhibited higher counts of small mitochondria in the LV myocardium, resembling SR. DCM and ICM groups had fewer, larger, and often hydropic mitochondria. Accumulation rates and percental mitochondrial area were similar across groups. Significant positive correlations existed between other defects/size and hydropic mitochondria and between count/area and conglomeration score, while negative correlations between count and size/other defects and between hydropic mitochondria and count could be seen as well. CONCLUSION: Mitochondrial parameters in the LV myocardium of AF patients were similar to those of SR patients, while DCM and ICM displayed distinct changes, including a decrease in number, an increase in size, and compromised mitochondrial morphology. Further research is needed to fully elucidate the pathophysiological role of mitochondrial morphology in different heart diseases, providing deeper insights into potential therapeutic targets and interventions.


Sujet(s)
Mitochondries du myocarde , Humains , Mâle , Femelle , Projets pilotes , Adulte d'âge moyen , Sujet âgé , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/ultrastructure , Cardiomyopathie dilatée/anatomopathologie , Cardiomyopathie dilatée/métabolisme , Cardiopathies/métabolisme , Cardiopathies/anatomopathologie , Microscopie électronique à transmission , Adulte , Ventricules cardiaques/anatomopathologie , Ventricules cardiaques/métabolisme , Ventricules cardiaques/ultrastructure , Fibrillation auriculaire/métabolisme , Fibrillation auriculaire/anatomopathologie , Fibrillation auriculaire/physiopathologie , Myocarde/métabolisme , Myocarde/anatomopathologie , Myocarde/ultrastructure
11.
Vascul Pharmacol ; 155: 107324, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38985581

RÉSUMÉ

Doxorubicin (DOX) is a highly effective chemotherapeutic agent whose clinical use is hindered by the onset of cardiotoxic effects, resulting in reduced ejection fraction within the first year from treatment initiation. Recently it has been demonstrated that DOX accumulates within mitochondria, leading to disruption of metabolic processes and energetic imbalance. We previously described that phosphoinositide 3-kinase γ (PI3Kγ) contributes to DOX-induced cardiotoxicity, causing autophagy inhibition and accumulation of damaged mitochondria. Here we intend to describe the maladaptive metabolic rewiring occurring in DOX-treated hearts and the contribution of PI3Kγ signalling to this process. Metabolomic analysis of DOX-treated WT hearts revealed an accumulation of TCA cycle metabolites due to a cycle slowdown, with reduced levels of pyruvate, unchanged abundance of lactate and increased Acetyl-CoA production. Moreover, the activity of glycolytic enzymes was upregulated, and fatty acid oxidation downregulated, after DOX, indicative of increased glucose oxidation. In agreement, oxygen consumption was increased in after pyruvate supplementation, with the formation of cytotoxic ROS rather than energy production. These metabolic changes were fully prevented in KD hearts. Interestingly, they failed to increase glucose oxidation in response to DOX even with autophagy inhibition, indicating that PI3Kγ likely controls the fuel preference after DOX through an autophagy-independent mechanism. In vitro experiments showed that inhibition of PI3Kγ inhibits pyruvate dehydrogenase (PDH), the key enzyme of Randle cycle regulating the switch from fatty acids to glucose usage, while decreasing DOX-induced mobilization of GLUT-4-carrying vesicles to the plasma membrane and limiting the ensuing glucose uptake. These results demonstrate that PI3Kγ promotes a maladaptive metabolic rewiring in DOX-treated hearts, through a two-pronged mechanism controlling PDH activation and GLUT-4-mediated glucose uptake.


Sujet(s)
Cardiotoxicité , Doxorubicine , Métabolisme énergétique , Acides gras , Glucose , Oxydoréduction , Animaux , Doxorubicine/toxicité , Glucose/métabolisme , Acides gras/métabolisme , Métabolisme énergétique/effets des médicaments et des substances chimiques , Phosphatidylinositol 3-kinases de classe Ib/métabolisme , Glycolyse/effets des médicaments et des substances chimiques , Autophagie/effets des médicaments et des substances chimiques , Mâle , Transduction du signal/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/anatomopathologie , Cycle citrique/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Cardiopathies/induit chimiquement , Cardiopathies/métabolisme , Cardiopathies/anatomopathologie , Cardiopathies/prévention et contrôle , Cardiopathies/physiopathologie , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/effets des médicaments et des substances chimiques , Mitochondries du myocarde/anatomopathologie , Mitochondries du myocarde/enzymologie , Souris knockout , Modèles animaux de maladie humaine , Espèces réactives de l'oxygène/métabolisme , Transporteur de glucose de type 4/métabolisme , Antibiotiques antinéoplasiques/toxicité , Antibiotiques antinéoplasiques/effets indésirables
16.
Sci Rep ; 14(1): 16715, 2024 07 19.
Article de Anglais | MEDLINE | ID: mdl-39030247

RÉSUMÉ

Alzheimer's Disease (AD) is a progressive neurodegenerative disease caused by the deposition of Aß aggregates or neurofibrillary tangles. AD patients are primarily diagnosed with the concurrent development of several cardiovascular dysfunctions. While few studies have indicated the presence of intramyocardial Aß aggregates, none of the studies have performed detailed analyses for pathomechanism of cardiac dysfunction in AD patients. This manuscript used aged APPSWE/PS1 Tg and littermate age-matched wildtype (Wt) mice to characterize cardiac dysfunction and analyze associated pathophysiology. Detailed assessment of cardiac functional parameters demonstrated the development of diastolic dysfunction in APPSWE/PS1 Tg hearts compared to Wt hearts. Muscle function evaluation showed functional impairment (decreased exercise tolerance and muscle strength) in APPSWE/PS1 Tg mice. Biochemical and histochemical analysis revealed Aß aggregate accumulation in APPSWE/PS1 Tg mice myocardium. APPSWE/PS1 Tg mice hearts also demonstrated histopathological remodeling (increased collagen deposition and myocyte cross-sectional area). Additionally, APPSWE/PS1 Tg hearts showed altered mitochondrial dynamics, reduced antioxidant protein levels, and impaired mitochondrial proteostasis compared to Wt mice. APPSWE/PS1 Tg hearts also developed mitochondrial dysfunction with decreased OXPHOS and PDH protein complex expressions, altered ETC complex dynamics, decreased complex activities, and reduced mitochondrial respiration. Our results indicated that Aß aggregates in APPSWE/PS1 Tg hearts are associated with defects in mitochondrial respiration and complex activities, which may collectively lead to cardiac diastolic dysfunction and myocardial pathological remodeling.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Modèles animaux de maladie humaine , Souris transgéniques , Animaux , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Souris , Peptides bêta-amyloïdes/métabolisme , Myocarde/métabolisme , Myocarde/anatomopathologie , Mitochondries/métabolisme , Diastole , Humains , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Mâle
19.
Int Immunopharmacol ; 139: 112697, 2024 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-39024750

RÉSUMÉ

Heart failure (HF) is a clinical syndrome resulting from left ventricular systolic and diastolic dysfunction, leading to significant morbidity and mortality worldwide. Despite improvements in medical treatment, the prognosis of HF patients remains unsatisfactory, with high rehospitalization rates and substantial economic burdens. The heart, a high-energy-consuming organ, relies heavily on ATP production through oxidative phosphorylation in mitochondria. Mitochondrial dysfunction, characterized by impaired energy production, oxidative stress, and disrupted calcium homeostasis, plays a crucial role in HF pathogenesis. Additionally, inflammation contributes significantly to HF progression, with elevated levels of circulating inflammatory cytokines observed in patients. The interplay between mitochondrial dysfunction and inflammation involves shared risk factors, signaling pathways, and potential therapeutic targets. This review comprehensively explores the mechanisms linking mitochondrial dysfunction and inflammation in HF, including the roles of mitochondrial reactive oxygen species (ROS), calcium dysregulation, and mitochondrial DNA (mtDNA) release in triggering inflammatory responses. Understanding these complex interactions offers insights into novel therapeutic approaches for improving mitochondrial function and relieving oxidative stress and inflammation. Targeted interventions that address the mitochondria-inflammation axis hold promise for enhancing cardiac function and outcomes in HF patients.


Sujet(s)
Défaillance cardiaque , Inflammation , Stress oxydatif , Humains , Défaillance cardiaque/métabolisme , Défaillance cardiaque/immunologie , Inflammation/immunologie , Animaux , Espèces réactives de l'oxygène/métabolisme , Mitochondries/métabolisme , ADN mitochondrial , Calcium/métabolisme , Mitochondries du myocarde/métabolisme
20.
FASEB J ; 38(14): e23826, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39046373

RÉSUMÉ

Cigarette smoking behaviors are harmful and cause one out of ten deaths due to cardiovascular disease. As population sizes grow and number of cigarette smokers increases, it is vital that we understand the mechanisms leading to heart failure in cigarette smokers. We have reported that metabolic regulation of a histone deacetylase, SIRT1, modulates cardiovascular and mitochondrial function under stress. Given this conclusion, we hypothesized that chronic cigarette smoking led to cardiovascular dysfunction via a reduction SIRT1. Mice were randomly organized into smoking or nonsmoking groups, and the smoking group received cigarette smoke exposure for 16 weeks. Following 16-week exposure, diastolic function of the heart was impaired in the smoking group as compared to sham, indicated by a significant increase in E/e'. The electrical function of the heart was also impaired in the smoking group compared to the sham group, indicated by increased PR interval and decreased QTc interval. This diastolic dysfunction was not accompanied by increased fibrosis in mouse hearts, although samples from human chronic smokers indicated increased fibrosis compared to their nonsmoker counterparts. As well as diastolic dysfunction, mitochondria from the 16-week smoking group showed significantly impaired function, evidenced by significant decreases in all parameters measured by the mitochondrial stress test. We further found biochemical evidence of a significantly decreased level of SIRT1 in left ventricles of both mouse and human smoking groups compared to nonsmoking counterparts. Data from this study indicate that decreased SIRT1 levels by cigarette smoking are associated with diastolic dysfunction caused by compromised mitochondrial integrity.


Sujet(s)
Fumer des cigarettes , Souris de lignée C57BL , Mitochondries du myocarde , Sirtuine-1 , Animaux , Souris , Sirtuine-1/métabolisme , Fumer des cigarettes/effets indésirables , Mâle , Humains , Mitochondries du myocarde/métabolisme , Femelle , Adulte d'âge moyen , Diastole , Myocarde/métabolisme , Myocarde/anatomopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE