Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 9.411
Filtrer
1.
J Orthop Surg Res ; 19(1): 396, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982418

RÉSUMÉ

BACKGROUND: The progression of osteoporosis (OP) can dramatically increase the risk of fractures, which seriously disturb the life of elderly individuals. Specific protein 1 (SP1) is involved in OP progression. However, the mechanism by which SP1 regulates OP progression remains unclear. OBJECTIVE: This study investigated the mechanism underlying the function of SP1 in OP. METHODS: SAMP6 mice were used to establish an in vivo model of age-dependent OP, and BALB/c mice were used as controls. BMSCs were extracted from two subtypes of mice. Hematoxylin and eosin staining were performed to mark the intramedullary trabecular bone structure to evaluate histological changes. ChIP assay was used to assess the targeted regulation between SP1 and miR-133a-3p. The binding sites between MAPK3 and miR-133a-3p were verified using a dual-luciferase reporter assay. The mRNA levels of miR-133a-3p and MAPK3 were detected using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The protein expression of SP1, MAPK3, Colla1, OCN, and Runx2 was examined using Western blotting. Alkaline phosphatase (ALP) kit and Alizarin Red S staining were used to investigate ALP activity and mineralized nodules, respectively. RESULTS: The levels of SP1 and miR-133a-3p were upregulated, whereas the expression of MAPK3 was downregulated in BMSCs from SAMP6 mice, and miR-133a-3p inhibitor accelerated osteogenic differentiation in BMSCs. SP1 directly targeted miR-133a-3p, and MAPK3 was the downstream mRNA of miR-133a-3p. Mechanically, SP1 accelerated osteogenic differentiation in BMSCs via transcriptional mediation of the miR-133a-3p/MAPK3 axis. CONCLUSION: SP1 regulates osteogenic differentiation by mediating the miR-133a-3p/MAPK3 axis, which would shed new light on strategies for treating senile OP.


Sujet(s)
Différenciation cellulaire , Cellules souches mésenchymateuses , microARN , Mitogen-Activated Protein Kinase 3 , Ostéogenèse , Ostéoporose , Facteur de transcription Sp1 , Animaux , microARN/génétique , microARN/métabolisme , Ostéogenèse/génétique , Ostéogenèse/physiologie , Différenciation cellulaire/génétique , Différenciation cellulaire/physiologie , Facteur de transcription Sp1/génétique , Facteur de transcription Sp1/métabolisme , Cellules souches mésenchymateuses/métabolisme , Souris , Ostéoporose/génétique , Ostéoporose/anatomopathologie , Ostéoporose/métabolisme , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 3/génétique , Souris de lignée BALB C , Cellules cultivées , Modèles animaux de maladie humaine , Mâle
2.
Science ; 384(6700): eadk0850, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38843329

RÉSUMÉ

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.


Sujet(s)
Mitogen-Activated Protein Kinase 1 , Mitogen-Activated Protein Kinase 3 , Tumeurs du pancréas , Phosphoprotéines , Protéome , Protéines proto-oncogènes p21(ras) , Animaux , Humains , Souris , Lignée cellulaire tumorale , Kinases cyclines-dépendantes/métabolisme , Kinases cyclines-dépendantes/génétique , Système de signalisation des MAP kinases , Mitogen-Activated Protein Kinase 1/métabolisme , Mitogen-Activated Protein Kinase 3/métabolisme , Mutation , Tumeurs du pancréas/génétique , Tumeurs du pancréas/métabolisme , Phosphoprotéines/métabolisme , Phosphoprotéines/génétique , Phosphorylation , Protéines proto-oncogènes p21(ras)/génétique , Protéines proto-oncogènes p21(ras)/métabolisme , Cellules HEK293
3.
Biomolecules ; 14(6)2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38927035

RÉSUMÉ

Lysophosphatidic acid (LPA) is a well-documented pro-oncogenic factor in different cancers, but relatively little is known on its biological activity in neuroblastoma. The LPA effects and the participation of the tyrosine kinase receptor anaplastic lymphoma kinase (ALK) in LPA mitogenic signaling were studied in human neuroblastoma cell lines. We used light microscopy and [3H]-thymidine incorporation to determine cell proliferation, Western blot to study intracellular signaling, and pharmacological and molecular tools to examine the role of ALK. We found that LPA stimulated the growth of human neuroblastoma cells, as indicated by the enhanced cell number, clonogenic activity, and DNA synthesis. These effects were curtailed by the selective ALK inhibitors NPV-TAE684 and alectinib. In a panel of human neuroblastoma cell lines harboring different ALK genomic status, the ALK inhibitors suppressed LPA-induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), which are major regulators of cell proliferation. ALK depletion by siRNA treatment attenuated LPA-induced ERK1/2 activation. LPA enhanced ALK phosphorylation and potentiated ALK activation by the ALK ligand FAM150B. LPA enhanced the inhibitory phosphorylation of the tumor suppressor FoxO3a, and this response was impaired by the ALK inhibitors. These results indicate that LPA stimulates mitogenesis of human neuroblastoma cells through a crosstalk with ALK.


Sujet(s)
Kinase du lymphome anaplasique , Prolifération cellulaire , Lysophospholipides , Neuroblastome , Transduction du signal , Humains , Lysophospholipides/métabolisme , Lysophospholipides/pharmacologie , Kinase du lymphome anaplasique/métabolisme , Kinase du lymphome anaplasique/génétique , Kinase du lymphome anaplasique/antagonistes et inhibiteurs , Neuroblastome/métabolisme , Neuroblastome/anatomopathologie , Prolifération cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Transduction du signal/effets des médicaments et des substances chimiques , Phosphorylation/effets des médicaments et des substances chimiques , Pipéridines/pharmacologie , Carbazoles/pharmacologie , Protéine O3 à motif en tête de fourche/métabolisme , Protéine O3 à motif en tête de fourche/génétique , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 3/génétique , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques
4.
Dis Model Mech ; 17(6)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38826084

RÉSUMÉ

Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.


Sujet(s)
Axones , Cortex cérébral , MAP Kinase Kinase 1 , Neurones , Animaux , Axones/métabolisme , Axones/anatomopathologie , MAP Kinase Kinase 1/métabolisme , MAP Kinase Kinase 1/génétique , Cortex cérébral/anatomopathologie , Neurones/métabolisme , Neurones/anatomopathologie , Apprentissage , Acide glutamique/métabolisme , Activation enzymatique , Souris , Système de signalisation des MAP kinases , Protéines du cytosquelette/métabolisme , Protéines du cytosquelette/génétique , Mutation/génétique , Mitogen-Activated Protein Kinase 3/métabolisme , Protéines de tissu nerveux/métabolisme , Activité motrice , Mitogen-Activated Protein Kinase 1/métabolisme
5.
Cell Biochem Funct ; 42(4): e4066, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38822669

RÉSUMÉ

Collagen crosslinking, mediated by lysyl oxidase, is an adaptive mechanism of the cardiac repair process initiated by cardiac fibroblasts postmyocardial injury. However, excessive crosslinking leads to cardiac wall stiffening, which impairs the contractile properties of the left ventricle and leads to heart failure. In this study, we investigated the role of periostin, a matricellular protein, in the regulation of lysyl oxidase in cardiac fibroblasts in response to angiotensin II and TGFß1. Our results indicated that periostin silencing abolished the angiotensin II and TGFß1-mediated upregulation of lysyl oxidase. Furthermore, the attenuation of periostin expression resulted in a notable reduction in the activity of lysyl oxidase. Downstream of periostin, ERK1/2 MAPK signaling was found to be activated, which in turn transcriptionally upregulates the serum response factor to facilitate the enhanced expression of lysyl oxidase. The periostin-lysyl oxidase association was also positively correlated in an in vivo rat model of myocardial infarction. The expression of periostin and lysyl oxidase was upregulated in the collagen-rich fibrotic scar tissue of the left ventricle. Remarkably, echocardiography data showed a reduction in the left ventricular wall movement, ejection fraction, and fractional shortening, indicative of enhanced stiffening of the cardiac wall. These findings shed light on the mechanistic role of periostin in the collagen crosslinking initiated by activated cardiac fibroblasts. Our findings signify periostin as a possible therapeutic target to reduce excessive collagen crosslinking that contributes to the structural remodeling associated with heart failure.


Sujet(s)
Molécules d'adhérence cellulaire , Fibroblastes , Lysyloxidase , Rat Sprague-Dawley , Animaux , Lysyloxidase/métabolisme , Fibroblastes/métabolisme , Rats , Molécules d'adhérence cellulaire/métabolisme , Mâle , Système de signalisation des MAP kinases , Myocarde/métabolisme , Myocarde/cytologie , Angiotensine-II/pharmacologie , Angiotensine-II/métabolisme , Mitogen-Activated Protein Kinase 3/métabolisme , Facteur de croissance transformant bêta-1/métabolisme , Mitogen-Activated Protein Kinase 1/métabolisme , Infarctus du myocarde/métabolisme , Infarctus du myocarde/anatomopathologie , Cellules cultivées , Modèles animaux de maladie humaine ,
6.
Physiol Rep ; 12(11): e16108, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38872461

RÉSUMÉ

ERK3/MAPK6 activates MAP kinase-activated protein kinase (MK)-5 in selected cell types. Male MK5 haplodeficient mice show reduced hypertrophy and attenuated increase in Col1a1 mRNA in response to increased cardiac afterload. In addition, MK5 deficiency impairs cardiac fibroblast function. This study determined the effect of reduced ERK3 on cardiac hypertrophy following transverse aortic constriction (TAC) and fibroblast biology in male mice. Three weeks post-surgery, ERK3, but not ERK4 or p38α, co-immunoprecipitated with MK5 from both sham and TAC heart lysates. The increase in left ventricular mass and myocyte diameter was lower in TAC-ERK3+/- than TAC-ERK3+/+ hearts, whereas ERK3 haploinsufficiency did not alter systolic or diastolic function. Furthermore, the TAC-induced increase in Col1a1 mRNA abundance was diminished in ERK3+/- hearts. ERK3 immunoreactivity was detected in atrial and ventricular fibroblasts but not myocytes. In both quiescent fibroblasts and "activated" myofibroblasts isolated from adult mouse heart, siRNA-mediated knockdown of ERK3 reduced the TGF-ß-induced increase in Col1a1 mRNA. In addition, intracellular type 1 collagen immunoreactivity was reduced following ERK3 depletion in quiescent fibroblasts but not myofibroblasts. Finally, knocking down ERK3 impaired motility in both atrial and ventricular myofibroblasts. These results suggest that ERK3 plays an important role in multiple aspects of cardiac fibroblast biology.


Sujet(s)
Fibroblastes , Animaux , Mâle , Souris , Fibroblastes/métabolisme , Collagène de type I/métabolisme , Collagène de type I/génétique , Chaine alpha-1 du collagène de type I/métabolisme , Myocarde/métabolisme , Myocarde/cytologie , Mitogen-Activated Protein Kinase 6/métabolisme , Mitogen-Activated Protein Kinase 6/génétique , Souris de lignée C57BL , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Protéines et peptides de signalisation intracellulaire/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 3/génétique , Cellules cultivées , Cardiomégalie/métabolisme , Cardiomégalie/anatomopathologie , Cardiomégalie/génétique , Myocytes cardiaques/métabolisme
7.
Cardiovasc Diabetol ; 23(1): 202, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38867293

RÉSUMÉ

The specific pathophysiological pathways through which diabetes exacerbates myocardial ischemia/reperfusion (I/R) injury remain unclear; however, dysregulation of immune and inflammatory cells, potentially driven by abnormalities in their number and function due to diabetes, may play a significant role. In the present investigation, we simulated myocardial I/R injury by inducing ischemia through ligation of the left anterior descending coronary artery in mice for 40 min, followed by reperfusion for 24 h. Previous studies have indicated that protein kinase Cß (PKCß) is upregulated under hyperglycemic conditions and is implicated in the development of various diabetic complications. The Y4 RNA fragment is identified as the predominant small RNA component present in the extracellular vesicles of cardio sphere-derived cells (CDCs), exhibiting notable anti-inflammatory properties in the contexts of myocardial infarction and cardiac hypertrophy. Our investigation revealed that the administration of Y4 RNA into the ventricular cavity of db/db mice following myocardial I/R injury markedly enhanced cardiac function. Furthermore, Y4 RNA was observed to facilitate M2 macrophage polarization and interleukin-10 secretion through the suppression of PKCß activation. The mechanism by which Y4 RNA affects PKCß by regulating macrophage activation within the inflammatory environment involves the inhibition of ERK1/2 phosphorylation In our study, the role of PKCß in regulating macrophage polarization during myocardial I/R injury was investigated through the use of PKCß knockout mice. Our findings indicate that PKCß plays a crucial role in modulating the inflammatory response associated with macrophage activation in db/db mice experiencing myocardial I/R, with a notable exacerbation of this response observed upon significant upregulation of PKCß expression. In vitro studies further elucidated the protective mechanism by which Y4 RNA modulates the PKCß/ERK1/2 signaling pathway to induce M2 macrophage activation. Overall, our findings suggest that Y4 RNA plays an anti-inflammatory role in diabetic I/R injury, suggesting a novel therapeutic approach for managing myocardial I/R injury in diabetic individuals.


Sujet(s)
Modèles animaux de maladie humaine , Macrophages , Souris de lignée C57BL , Lésion de reperfusion myocardique , Protein kinase C beta , Transduction du signal , Animaux , Protein kinase C beta/métabolisme , Lésion de reperfusion myocardique/anatomopathologie , Lésion de reperfusion myocardique/enzymologie , Lésion de reperfusion myocardique/métabolisme , Lésion de reperfusion myocardique/prévention et contrôle , Lésion de reperfusion myocardique/génétique , Macrophages/métabolisme , Macrophages/enzymologie , Mâle , Interleukine-10/métabolisme , Interleukine-10/génétique , Souris , Cardiomyopathies diabétiques/enzymologie , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/étiologie , Cardiomyopathies diabétiques/génétique , Cardiomyopathies diabétiques/physiopathologie , Cellules cultivées , Phénotype , Myocytes cardiaques/enzymologie , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/métabolisme , Mitogen-Activated Protein Kinase 3/métabolisme , Activation des macrophages , Mitogen-Activated Protein Kinase 1/métabolisme , Fonction ventriculaire gauche , Phosphorylation
8.
Toxicol Appl Pharmacol ; 489: 117012, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38906511

RÉSUMÉ

Keloid formation has been linked to abnormal fibroblast function, such as excessive proliferation and extracellular matrix (ECM) production. Serum deprivation protein response (SDPR) is a crucial regulator of cellular function under diverse pathological conditions, yet its role in keloid formation remains unknown. The current work investigated the function of SDPR in regulating the proliferation, motility, and ECM production of keloid fibroblasts (KFs), as well as to decipher the mechanisms involved. Analysis of RNA sequencing data from the GEO database demonstrated significant down-regulation of SDPR in KF compared to normal fibroblasts (NFs). This down-regulation was also observed in clinical keloid specimens and isolated KFs. Overexpression of SDPR suppressed the proliferation, motility, and ECM production of KFs, while depletion of SDPR exacerbated the enhancing impact of TGF-ß1 on the proliferation, motility, and ECM production of NFs. Mechanistic studies revealed that SDPR overexpression repressed TGF-ß/Smad signal cascade activation in KFs along with decreased levels of phosphorylated Samd2/3, while SDPR depletion exacerbated TGF-ß/Smad activation in TGF-ß1-stimulated NFs. SDPR overexpression also repressed ERK1/2 activation in KFs, while SDPR depletion exacerbated ERK1/2 activation in TGF-ß1-stimulated NFs. Inhibition of ERK1/2 abolished SDPR-depletion-induced TGF-ß1/Smad activation, cell proliferation, motility, and ECM production in NFs. In conclusion, SDPR represses the proliferation, motility, and ECM production in KFs by blocking the TGF-ß1/Smad pathway in an ERK1/2-dependent manner. The findings highlight the role of SDPR in regulating abnormal behaviors of fibroblasts associated with keloid formation and suggest it as a potential target for anti-keloid therapy development.


Sujet(s)
Mouvement cellulaire , Prolifération cellulaire , Matrice extracellulaire , Fibroblastes , Chéloïde , Système de signalisation des MAP kinases , Protéines Smad , Facteur de croissance transformant bêta-1 , Humains , Chéloïde/anatomopathologie , Chéloïde/métabolisme , Chéloïde/génétique , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques , Mouvement cellulaire/effets des médicaments et des substances chimiques , Facteur de croissance transformant bêta-1/métabolisme , Matrice extracellulaire/métabolisme , Matrice extracellulaire/effets des médicaments et des substances chimiques , Protéines Smad/métabolisme , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Système de signalisation des MAP kinases/physiologie , Transduction du signal , Cellules cultivées , Mitogen-Activated Protein Kinase 1/métabolisme , Mâle , Femelle , Mitogen-Activated Protein Kinase 3/métabolisme , Adulte
9.
Dokl Biochem Biophys ; 516(1): 66-72, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38700817

RÉSUMÉ

The present study was aimed to explore the effect of triazole on growth and viability of liver cancer cells. Cell growth was examined using the MTT test and expression of several proteins was assessed by western blotting assay. The Matrigel-coated Transwell assay was employed to examine the infiltration of cells. The data from MTT assay showed that MHCC97H and H4TG liver cancer cell viability was inhibited by triazole in a concentration-dependent manner. After treatment with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole, the rate of H4TG cell viability was decreased to 96, 73, 58, 39, 29, and 28%, respectively. Treatment of MHCC97H cells with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole resulted in a reduction in cell viability to 94, 70, 53, 35, 22, and 21%, respectively. Triazole treatment also led to a significant reduction in MHCC97H cell invasiveness compared to the control cells. In MHCC97H cells treated with triazole, there was a noticeable decrease in the levels of p-ERK1/2, and p-Akt protein expression. Treatment of MHCC97H cells with triazole resulted in a prominent increase in p-p38 level. In summary, triazole inhibits growth and viability of liver cancer cells through targeting the activation of p-ERK1/2 and Akt proteins. Therefore, triazole may be investigated further as a therapeutic agent for the treatment of liver cancer.


Sujet(s)
Survie cellulaire , Tumeurs du foie , Protéines proto-oncogènes c-akt , Triazoles , Régulation positive , p38 Mitogen-Activated Protein Kinases , Humains , Triazoles/pharmacologie , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/métabolisme , Tumeurs du foie/anatomopathologie , Survie cellulaire/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Phosphorylation/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , p38 Mitogen-Activated Protein Kinases/métabolisme , Régulation positive/effets des médicaments et des substances chimiques , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 1/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie
10.
PLoS One ; 19(5): e0292628, 2024.
Article de Anglais | MEDLINE | ID: mdl-38748746

RÉSUMÉ

Hepatic ischemia-reperfusion injury causes liver damage during surgery. In hepatic ischemia-reperfusion injury, the blood coagulation cascade is activated, causing microcirculatory incompetence and cellular injury. Coagulation factor Xa (FXa)- protease-activated receptor (PAR)-2 signaling activates inflammatory reactions and the cytoprotective effect of FXa inhibitor in several organs. However, no studies have elucidated the significance of FXa inhibition on hepatic ischemia-reperfusion injury. The present study elucidated the treatment effect of an FXa inhibitor, edoxaban, on hepatic ischemia-reperfusion injury, focusing on FXa-PAR-2 signaling. A 60 min hepatic partial-warm ischemia-reperfusion injury mouse model and a hypoxia-reoxygenation model of hepatic sinusoidal endothelial cells were used. Ischemia-reperfusion injury mice and hepatic sinusoidal endothelial cells were treated and pretreated, respectively with or without edoxaban. They were incubated during hypoxia/reoxygenation in vitro. Cell signaling was evaluated using the PAR-2 knockdown model. In ischemia-reperfusion injury mice, edoxaban treatment significantly attenuated fibrin deposition in the sinusoids and liver histological damage and resulted in both anti-inflammatory and antiapoptotic effects. Hepatic ischemia-reperfusion injury upregulated PAR-2 generation and enhanced extracellular signal-regulated kinase 1/2 (ERK 1/2) activation; however, edoxaban treatment reduced PAR-2 generation and suppressed ERK 1/2 activation in vivo. In the hypoxia/reoxygenation model of sinusoidal endothelial cells, hypoxia/reoxygenation stress increased FXa generation and induced cytotoxic effects. Edoxaban protected sinusoidal endothelial cells from hypoxia/reoxygenation stress and reduced ERK 1/2 activation. PAR-2 knockdown in the sinusoidal endothelial cells ameliorated hypoxia/reoxygenation stress-induced cytotoxicity and suppressed ERK 1/2 phosphorylation. Thus, edoxaban ameliorated hepatic ischemia-reperfusion injury in mice by protecting against micro-thrombosis in sinusoids and suppressing FXa-PAR-2-induced inflammation in the sinusoidal endothelial cells.


Sujet(s)
Inhibiteurs du facteur Xa , Foie , Système de signalisation des MAP kinases , Pyridines , Récepteur de type PAR-2 , Lésion d'ischémie-reperfusion , Thiazoles , Animaux , Lésion d'ischémie-reperfusion/traitement médicamenteux , Lésion d'ischémie-reperfusion/métabolisme , Lésion d'ischémie-reperfusion/anatomopathologie , Inhibiteurs du facteur Xa/pharmacologie , Récepteur de type PAR-2/métabolisme , Pyridines/pharmacologie , Thiazoles/pharmacologie , Thiazoles/usage thérapeutique , Souris , Foie/effets des médicaments et des substances chimiques , Foie/métabolisme , Foie/anatomopathologie , Foie/vascularisation , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Mâle , Cellules endothéliales/effets des médicaments et des substances chimiques , Cellules endothéliales/métabolisme , Souris de lignée C57BL , Modèles animaux de maladie humaine , Mitogen-Activated Protein Kinase 3/métabolisme
11.
Int J Mol Sci ; 25(10)2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38791516

RÉSUMÉ

Relapse to alcohol abuse, often caused by cue-induced alcohol craving, is a major challenge in alcohol addiction treatment. Therefore, disrupting the cue-alcohol memories can suppress relapse. Upon retrieval, memories transiently destabilize before they reconsolidate in a process that requires protein synthesis. Evidence suggests that the mammalian target of rapamycin complex 1 (mTORC1), governing the translation of a subset of dendritic proteins, is crucial for memory reconsolidation. Here, we explored the involvement of two regulatory pathways of mTORC1, phosphoinositide 3-kinase (PI3K)-AKT and extracellular regulated kinase 1/2 (ERK1/2), in the reconsolidation process in a rat (Wistar) model of alcohol self-administration. We found that retrieval of alcohol memories using an odor-taste cue increased ERK1/2 activation in the amygdala, while the PI3K-AKT pathway remained unaffected. Importantly, ERK1/2 inhibition after alcohol memory retrieval impaired alcohol-memory reconsolidation and led to long-lasting relapse suppression. Attenuation of relapse was also induced by post-retrieval administration of lacosamide, an inhibitor of collapsin response mediator protein-2 (CRMP2)-a translational product of mTORC1. Together, our findings indicate the crucial role of ERK1/2 and CRMP2 in the reconsolidation of alcohol memories, with their inhibition as potential treatment targets for relapse prevention.


Sujet(s)
Protéines et peptides de signalisation intercellulaire , Protéines de tissu nerveux , Animaux , Rats , Mâle , Protéines et peptides de signalisation intercellulaire/métabolisme , Protéines de tissu nerveux/métabolisme , Rat Wistar , Mémoire/effets des médicaments et des substances chimiques , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Éthanol , Alcoolisme/métabolisme , Alcoolisme/traitement médicamenteux , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Récidive , Amygdale (système limbique)/métabolisme , Amygdale (système limbique)/effets des médicaments et des substances chimiques , Consolidation de la mémoire/effets des médicaments et des substances chimiques , Mitogen-Activated Protein Kinase 3/métabolisme , Autoadministration , Mitogen-Activated Protein Kinase 1/métabolisme , Phosphatidylinositol 3-kinases/métabolisme
12.
Sci Rep ; 14(1): 12389, 2024 05 29.
Article de Anglais | MEDLINE | ID: mdl-38811625

RÉSUMÉ

Extracellular vesicles have emerged as important mediators of cell-to-cell communication in the pathophysiology of fibrotic diseases. One such disease is Peyronie's disease (PD), a fibrotic disorder of the penis caused by uncontrolled transformation of resident fibroblasts to alpha-smooth muscle actin positive myofibroblasts. These cells produce large amounts of extracellular matrix, leading to formation of a plaque in the penile tunica albuginea (TA), causing pain, penile curvature, and erectile dysfunction. We have used primary fibroblasts derived from the TA of PD patients to explore the role of transforming growth factor beta 1 (TGF-ß1), a key signalling factor in this process. TGF-ß1 treatment elicited a range of responses from the myofibroblasts: (i) they secreted extracellular vesicles (EVs) that were more numerous and differed in size and shape from those secreted by fibroblasts, (ii) these EVs prevented TGF-ß1-induced transformation of fibroblasts in a manner that was dependent on vesicle uptake and (iii) they prevented phosphorylation of Erk1/2, a critical component in modulating fibrogenic phenotypic responses, but did not affect TGF-ß1-induced Smad-signalling. We posit that this effect could be linked to enrichment of TSG-6 in myofibroblast-derived EVs. The ability of myofibroblast-derived vesicles to prevent further myofibroblast transformation may establish them as part of an anti-fibrotic negative feedback loop, with potential to be exploited for future therapeutic approaches.


Sujet(s)
Vésicules extracellulaires , Fibroblastes , Myofibroblastes , Facteur de croissance transformant bêta-1 , Vésicules extracellulaires/métabolisme , Facteur de croissance transformant bêta-1/métabolisme , Humains , Myofibroblastes/métabolisme , Phosphorylation , Mâle , Fibroblastes/métabolisme , Molécules d'adhérence cellulaire/métabolisme , Système de signalisation des MAP kinases , Induration plastique des corps caverneux du pénis/métabolisme , Induration plastique des corps caverneux du pénis/anatomopathologie , Mitogen-Activated Protein Kinase 3/métabolisme , Cellules cultivées , Mitogen-Activated Protein Kinase 1/métabolisme , Transduction du signal
13.
Cell Death Differ ; 31(6): 804-819, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38698060

RÉSUMÉ

The BRAF gene is mutated in a plethora of human cancers. The majority of such molecular lesions result in the expression of a constitutively active BRAF variant (BRAFV600E) which continuously bolsters cell proliferation. Although we recently addressed the early effects triggered by BRAFV600E-activation, the specific contribution of ERK1 and ERK2 in BRAFV600E-driven responses in vivo has never been explored. Here we describe the first murine model suitable for genetically dissecting the ERK1/ERK2 impact in multiple phenotypes induced by ubiquitous BRAFV600E-expression. We unveil that ERK1 is dispensable for BRAFV600E-dependent lifespan shortening and for BRAFV600E-driven tumor growth. We show that BRAFV600E-expression provokes an ERK1-independent lymphocyte depletion which does not rely on p21CIP1-induced cell cycle arrest and is unresponsive to ERK-chemical inhibition. Moreover, we also reveal that ERK1 is dispensable for BRAFV600E-triggered cytotoxicity in lungs and that ERK-chemical inhibition abrogates some of these detrimental effects, such as DNA damage, in Club cells but not in pulmonary lymphocytes. Our data suggest that ERK1/ERK2 contribution to BRAFV600E-driven phenotypes is dynamic and varies dependently on cell type, the biological function, and the level of ERK-pathway activation. Our findings also provide useful insights into the comprehension of BRAFV600E-driven malignancies pathophysiology as well as the consequences in vivo of novel ERK pathway-targeted anti-cancer therapies.


Sujet(s)
Mitogen-Activated Protein Kinase 1 , Mitogen-Activated Protein Kinase 3 , Phénotype , Protéines proto-oncogènes B-raf , Animaux , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/génétique , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 1/métabolisme , Souris , Humains , Souris de lignée C57BL , Système de signalisation des MAP kinases , Prolifération cellulaire , Modèles animaux de maladie humaine , Lymphocytes/métabolisme
14.
Int J Biol Sci ; 20(7): 2403-2421, 2024.
Article de Anglais | MEDLINE | ID: mdl-38725848

RÉSUMÉ

Ciliogenesis-associated kinase 1 (CILK1) plays a key role in the ciliogenesis and ciliopathies. It remains totally unclear whether CILK1 is involved in tumor progression and therapy resistance. Here, we report that the aberrant high-expression of CILK1 in breast cancer is required for tumor cell proliferation and chemoresistance. Two compounds, CILK1-C30 and CILK1-C28, were identified with selective inhibitory effects towards the Tyr-159/Thr-157 dual-phosphorylation of CILK1, pharmacological inhibition of CILK1 significantly suppressed tumor cell proliferation and overcame chemoresistance in multiple experimental models. Large-scale screen of CILK1 substrates confirmed that the kinase directly phosphorylates ERK1, which is responsible for CILK1-mediated oncogenic function. CILK1 is also indicated to be responsible for the chemoresistance of small-cell lung cancer cells. Our data highlight the importance of CILK1 in cancer, implicating that targeting CILK1/ERK1 might offer therapeutic benefit to cancer patients.


Sujet(s)
Tumeurs du sein , Résistance aux médicaments antinéoplasiques , Animaux , Femelle , Humains , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Lignée cellulaire tumorale , Prolifération cellulaire , Résistance aux médicaments antinéoplasiques/génétique , MAP Kinase Kinase Kinases , Mitogen-Activated Protein Kinase 3/métabolisme , Phosphorylation , Protéines proto-oncogènes
15.
BMC Cardiovasc Disord ; 24(1): 287, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38816768

RÉSUMÉ

BACKGROUND: The activation of G protein-coupled receptors (GPCR) signaling by external stimuli has been implicated in inducing cardiac stress and stress responses. GPR22 is an orphan GPCR expressed in brains and hearts, while its expression level is associated with cardiovascular damage in diabetes. Previous studies have suggested a protective role of GPR22 in mechanical cardiac stress, as loss of its expression increases susceptibility to heart failure post-ventricular pressure overload. However, the involvement and underlying signaling of GPR22 in cardiac stress response to ischemic stress remains unexplored. METHODS: In this study, we used cultured cells and a transgenic mouse model with cardiomyocyte-specific GPR22 overexpression to investigate the impact of ischemic stress on GPR22 expression and to elucidate its role in myocardial ischemic injury. Acute myocardial infarction (AMI) was induced by left coronary artery ligation in eight-week-old male GPR22 transgenic mice, followed by histopathological and biochemical examination four weeks post-AMI induction. RESULTS: GPR22 expression in H9C2 and RL-14 cells, two cardiomyocyte cell lines, was decreased by cobalt chloride (CoCl2) treatment. Similarly, reduced expression of myocardial GPR22 was observed in mice with AMI. Histopathological examinations revealed a protective effect of GPR22 overexpression in attenuating myocardial infarction in mice with AMI. Furthermore, myocardial levels of Bcl-2 and activation of PI3K-Akt signaling were downregulated by ischemic stress and upregulated by GPR22 overexpression. Conversely, the expression levels of caspase-3 and phosphorylated ERK1/2 in the infarcted myocardium were downregulated with GPR22 overexpression. CONCLUSION: Myocardial ischemic stress downregulates cardiac expression of GPR22, whereas overexpression of GPR22 in cardiomyocytes upregulates Akt signaling, downregulates ERK activation, and mitigates ischemia-induced myocardial injury.


Sujet(s)
Modèles animaux de maladie humaine , Souris transgéniques , Infarctus du myocarde , Myocytes cardiaques , Protéines proto-oncogènes c-akt , Récepteurs couplés aux protéines G , Transduction du signal , Animaux , Infarctus du myocarde/métabolisme , Infarctus du myocarde/anatomopathologie , Infarctus du myocarde/génétique , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/génétique , Mâle , Protéines proto-oncogènes c-akt/métabolisme , Apoptose , Lignée cellulaire , Souris de lignée C57BL , Rats , Régulation positive , Phosphorylation , Souris , Protéines proto-oncogènes c-bcl-2/métabolisme , Protéines proto-oncogènes c-bcl-2/génétique , Caspase-3/métabolisme , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 1
16.
J Vis Exp ; (207)2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38801274

RÉSUMÉ

We aimed to delve into the mechanisms underpinning Jiawei Shengjiang San's (JWSJS) action in treating diabetic nephropathy and deploying network pharmacology. Employing network pharmacology and molecular docking techniques, we predicted the active components and targets of JWSJS and constructed a meticulous "drug-component-target" network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were utilized to discern the therapeutic pathways and targets of JWSJS. Autodock Vina 1.2.0 was deployed for molecular docking verification, and a 100-ns molecular dynamics simulation was conducted to affirm the docking results, followed by in vivo animal verification. The findings revealed that JWSJS shared 227 intersecting targets with diabetic nephropathy, constructing a protein-protein interaction network topology. KEGG enrichment analysis denoted that JWSJS mitigates diabetic nephropathy by modulating lipids and atherosclerosis, the PI3K-Akt signaling pathway, apoptosis, and the HIF-1 signaling pathway, with mitogen-activated protein kinase 1 (MAPK1), MAPK3, epidermal growth factor receptor (EGFR), and serine/threonine-protein kinase 1 (AKT1) identified as collective targets of multiple pathways. Molecular docking asserted that the core components of JWSJS (quercetin, palmitoleic acid, and luteolin) could stabilize conformation with three pivotal targets (MAPK1, MAPK3, and EGFR) through hydrogen bonding. In vivo examinations indicated notable augmentation in body weight and reductions in glycated serum protein (GSP), low-density lipoprotein cholesterol (LDL-C), uridine triphosphate (UTP), and fasting blood glucose (FBG) levels due to JWSJS. Electron microscopy coupled with hematoxylin and eosin (HE) and Periodic acid-Schiff (PAS) staining highlighted the potential of each treatment group in alleviating kidney damage to diverse extents, exhibiting varied declines in p-EGFR, p-MAPK3/1, and BAX, and increments in BCL-2 expression in the kidney tissues of the treated rats. Conclusively, these insights suggest that the protective efficacy of JWSJS on diabetic nephropathy might be associated with suppressing the activation of the EGFR/MAPK3/1 signaling pathway and alleviating renal cell apoptosis.


Sujet(s)
Diabète expérimental , Néphropathies diabétiques , Médicaments issus de plantes chinoises , Récepteurs ErbB , Simulation de docking moléculaire , Transduction du signal , Néphropathies diabétiques/métabolisme , Néphropathies diabétiques/traitement médicamenteux , Animaux , Rats , Récepteurs ErbB/métabolisme , Médicaments issus de plantes chinoises/pharmacologie , Médicaments issus de plantes chinoises/composition chimique , Diabète expérimental/métabolisme , Diabète expérimental/traitement médicamenteux , Transduction du signal/effets des médicaments et des substances chimiques , Mitogen-Activated Protein Kinase 3/métabolisme , Mâle , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Rat Sprague-Dawley , Mitogen-Activated Protein Kinase 1/métabolisme , Pharmacologie des réseaux/méthodes , Modèles animaux de maladie humaine
17.
Viruses ; 16(4)2024 04 17.
Article de Anglais | MEDLINE | ID: mdl-38675964

RÉSUMÉ

Rotavirus (RV) is the main pathogen that causes severe diarrhea in infants and children under 5 years of age. No specific antiviral therapies or licensed anti-rotavirus drugs are available. It is crucial to develop effective and low-toxicity anti-rotavirus small-molecule drugs that act on novel host targets. In this study, a new anti-rotavirus compound was selected by ELISA, and cell activity was detected from 453 small-molecule compounds. The anti-RV effects and underlying mechanisms of the screened compounds were explored. In vitro experimental results showed that the small-molecule compound ML241 has a good effect on inhibiting rotavirus proliferation and has low cytotoxicity during the virus adsorption, cell entry, and replication stages. In addition to its in vitro effects, ML241 also exerted anti-RV effects in a suckling mouse model. Transcriptome sequencing was performed after adding ML241 to cells infected with RV. The results showed that ML241 inhibited the phosphorylation of ERK1/2 in the MAPK signaling pathway, thereby inhibiting IκBα, activating the NF-κB signaling pathway, and playing an anti-RV role. These results provide an experimental basis for specific anti-RV small-molecule compounds or compound combinations, which is beneficial for the development of anti-RV drugs.


Sujet(s)
Antiviraux , Infections à rotavirus , Rotavirus , Réplication virale , Rotavirus/effets des médicaments et des substances chimiques , Rotavirus/physiologie , Animaux , Souris , Infections à rotavirus/traitement médicamenteux , Infections à rotavirus/virologie , Réplication virale/effets des médicaments et des substances chimiques , Humains , Antiviraux/pharmacologie , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 3/génétique , Mitogen-Activated Protein Kinase 1/métabolisme , Mitogen-Activated Protein Kinase 1/antagonistes et inhibiteurs , Facteur de transcription NF-kappa B/métabolisme , Phosphorylation , Souris de lignée BALB C , Lignée cellulaire , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques
18.
J Cancer Res Ther ; 20(2): 570-577, 2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38687926

RÉSUMÉ

OBJECTIVE: This study aimed to investigate BVD-523 (ulixertinib), an adenosine triphosphate (ATP)-dependent extracellular signal-regulated kinases 1/2 inhibitor, for its antitumor potential in thyroid cancer. MATERIALS AND METHODS: Ten thyroid cancer cell lines known to carry mitogen-activated protein kinase (MAPK)-activated mutations, including v-Raf murine sarcoma viral oncogene homolog B (BRAF) and rat sarcoma virus (RAS) mutations, were examined. Cells were exposed to a 10-fold concentration gradient ranging from 0 to 3000 nM for 5 days. The half-inhibitory concentration was determined using the Cell Counting Kit-8 assay. Following BVD-523 treatment, cell cycle analysis was conducted using flow cytometry. In addition, the impact of BVD-523 on extracellular signal-regulated kinase (ERK)- dependent ribosomal S6 kinase (RSK) activation and the expression of cell cycle markers were assessed through western blot analysis. RESULTS: BVD-523 significantly inhibited thyroid cancer cell proliferation and induced G1/S cell cycle arrest dose-dependently. Notably, cell lines carrying MAPK mutations, especially those with the BRAF V600E mutation, exhibited heightened sensitivity to BVD-523's antitumor effects. Furthermore, BVD-523 suppressed cyclin D1 and phosphorylated retinoblastoma protein expression, and it robustly increased p27 levels in an RSK-independent manner. CONCLUSION: This study reveals the potent antitumor activity of BVD-523 against thyroid cancer cells bearing MAPK-activating mutations, offering promise for treating aggressive forms of thyroid cancer.


Sujet(s)
Aminopyridines , Prolifération cellulaire , Pyrroles , Tumeurs de la thyroïde , Humains , Tumeurs de la thyroïde/traitement médicamenteux , Tumeurs de la thyroïde/anatomopathologie , Tumeurs de la thyroïde/génétique , Tumeurs de la thyroïde/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Inhibiteurs de protéines kinases/pharmacologie , Ptéridines/pharmacologie , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 3/génétique , Antinéoplasiques/pharmacologie , Mitogen-Activated Protein Kinase 1/métabolisme , Mitogen-Activated Protein Kinase 1/génétique , Mitogen-Activated Protein Kinase 1/antagonistes et inhibiteurs , Mutation , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques
19.
Redox Biol ; 72: 103149, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38581859

RÉSUMÉ

Macrophage cholesterol homeostasis is crucial for health and disease and has been linked to the lipid-peroxidizing enzyme arachidonate 15-lipoxygenase type B (ALOX15B), albeit molecular mechanisms remain obscure. We performed global transcriptome and immunofluorescence analysis in ALOX15B-silenced primary human macrophages and observed a reduction of nuclear sterol regulatory element-binding protein (SREBP) 2, the master transcription factor of cellular cholesterol biosynthesis. Consequently, SREBP2-target gene expression was reduced as were the sterol biosynthetic intermediates desmosterol and lathosterol as well as 25- and 27-hydroxycholesterol. Mechanistically, suppression of ALOX15B reduced lipid peroxidation in primary human macrophages and thereby attenuated activation of mitogen-activated protein kinase ERK1/2, which lowered SREBP2 abundance and activity. Low nuclear SREBP2 rendered both, ALOX15B-silenced and ERK1/2-inhibited macrophages refractory to SREBP2 activation upon blocking the NPC intracellular cholesterol transporter 1. These studies suggest a regulatory mechanism controlling macrophage cholesterol homeostasis based on ALOX15B-mediated lipid peroxidation and concomitant ERK1/2 activation.


Sujet(s)
Arachidonate 15-lipoxygenase , Cholestérol , Homéostasie , Peroxydation lipidique , Macrophages , Protéine-2 de liaison à l'élément de régulation des stérols , Protéine-2 de liaison à l'élément de régulation des stérols/métabolisme , Protéine-2 de liaison à l'élément de régulation des stérols/génétique , Humains , Cholestérol/métabolisme , Macrophages/métabolisme , Arachidonate 15-lipoxygenase/métabolisme , Arachidonate 15-lipoxygenase/génétique , Système de signalisation des MAP kinases , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 3/génétique , Mitogen-Activated Protein Kinase 1/métabolisme , Mitogen-Activated Protein Kinase 1/génétique , Régulation de l'expression des gènes
20.
Bioorg Chem ; 147: 107391, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38677010

RÉSUMÉ

Apoptosis signal regulated kinase 1 (ASK1, MAP3K5) is a member of the mitogen activated protein kinase (MAPK) signaling pathway, involved in cell survival, differentiation, stress response, and apoptosis. ASK1 kinase inhibition has become a promising strategy for the treatment of Non-alcoholic steatohepatitis (NASH) disease. A series of novel ASK1 inhibitors with indazole scaffolds were designed and synthesized, and their ASK1 kinase activities were evaluated. The System Structure Activity Relationship (SAR) study discovered a promising compound 33c, which has a strong inhibitory effect on ASK1. Noteworthy observations included a discernible reduction in lipid droplets within LO2 cells stained with Oil Red O, coupled with a decrease in LDL, CHO, and TG content within the NASH model cell group. Mechanistic inquiries revealed that compound 33c could inhibit the protein expression levels of the upregulated ASK1-p38/JNK signaling pathway in TNF-α treated HGC-27 cells and regulate apoptotic proteins. In summary, these findings suggest that compound 33c may be valuable for further research as a potential candidate compound against NASH.


Sujet(s)
Conception de médicament , Indazoles , MAP Kinase Kinase Kinase 5 , Simulation de docking moléculaire , Inhibiteurs de protéines kinases , Humains , Apoptose/effets des médicaments et des substances chimiques , Relation dose-effet des médicaments , Indazoles/pharmacologie , Indazoles/synthèse chimique , Indazoles/composition chimique , MAP Kinase Kinase Kinase 5/antagonistes et inhibiteurs , MAP Kinase Kinase Kinase 5/métabolisme , Structure moléculaire , Stéatose hépatique non alcoolique/traitement médicamenteux , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/synthèse chimique , Inhibiteurs de protéines kinases/composition chimique , Relation structure-activité , Mitogen-Activated Protein Kinase 3/antagonistes et inhibiteurs , Mitogen-Activated Protein Kinase 3/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE