Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.758
Filtrer
1.
J Ethnopharmacol ; 336: 118721, 2025 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-39173723

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: The incidence and mortality of cerebrovascular diseases are increasing year by year. Cerebral ischemia-reperfusion injury (CIRI) is common in patients with ischemic stroke. Naoxintong (NXT) is composed of a variety of Chinese medicines and has the ability to treat CIRI. AIM OF THE STUDY: The aim of this study is to investigate whether NXT regulates mitophagy in CIRI based on network pharmacology analysis and experimental validation. MATERIALS AND METHODS: Oxygen and glucose deprivation/re-oxygenation (OGD/R, 2/22 h) model of PC12 cells and transient middle cerebral artery occlusion (tMCAO, 2/22 h) model of rats were established. Pharmacodynamic indicators include neurological deficit score, 2,3,5-triphenyte-trazoliumchloride (TTC) staining, hematoxylin-eosin (HE) staining and cell viability. Network pharmacology was used to predict pharmacological mechanisms. Pharmacological mechanism indexes include transmission electron microscopy (TEM), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), immunohistochemistry (IHC), western blot (WB) and immunofluorescence (IF). Kevetrin (an agonists of p53) and pifithrin-α (an inhibitor of p53) used to detect the key role of p53 in mitophagy of NXT. RESULTS: NXT (1% serum containing NXT and 110 mg/kg) improved the damage of OGD/R PC12 cells and tMCAO rats, and this protective effect was related to the anti-oxidation and ability to promote mitophagy of NXT. NXT and pifithrin-α increased the expression of promoting-mitophagy targets (PINK1, PRKN and LC3B) and inhibited the expression of inhibiting-mitophagy targets (p52) via restraining p53, and finally accelerated mitophagy caused by CIRI. CONCLUSION: This study demonstrates that NXT promotes mitophagy in CIRI through restraining p53 and promoting PINK1/PRKN in vivo and in vitro.


Sujet(s)
Médicaments issus de plantes chinoises , Mitophagie , Pharmacologie des réseaux , Protein kinases , Lésion d'ischémie-reperfusion , Protéine p53 suppresseur de tumeur , Animaux , Mâle , Rats , Encéphalopathie ischémique/traitement médicamenteux , Médicaments issus de plantes chinoises/pharmacologie , Infarctus du territoire de l'artère cérébrale moyenne/traitement médicamenteux , Infarctus du territoire de l'artère cérébrale moyenne/anatomopathologie , Mitophagie/effets des médicaments et des substances chimiques , Neuroprotecteurs/pharmacologie , Cellules PC12 , Protein kinases/métabolisme , Rat Sprague-Dawley , Lésion d'ischémie-reperfusion/traitement médicamenteux , Lésion d'ischémie-reperfusion/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Protéine p53 suppresseur de tumeur/métabolisme , Ubiquitin-protein ligases
2.
Biomaterials ; 313: 122764, 2025 Feb.
Article de Anglais | MEDLINE | ID: mdl-39190941

RÉSUMÉ

Currently, mitochondrial dysfunction caused by oxidative stress is a growing concern in degenerative diseases, notably intervertebral disc degeneration (IVDD). Dysregulation of the balance of mitochondrial quality control (MQC) has been considered the key contributor, while it's still challenging to effectively harmonize different MQC components in a simple and biologically safe way. Hydrogen gas (H2) is a promising mitochondrial therapeutic molecule due to its bio-reductivity and diffusibility across cellular membranes, yet its relationship with MQC regulation remains unknown. Herein, we propose a mitochondrial 'Birth-Death' coordinator achieved by an intelligent hydrogen nanogenerator (Fe@HP-OD), which can sustainably release H2 in response to the unique microenvironment in degenerated IVDs. Both in vitro and in vivo results prove alleviation of cellular oxidative stress and restoration of nucleus pulposus cells function, thereby facilitating successful IVD regeneration. Significantly, this study for the first time proposes the mitochondrial 'Birth-Death' coordination mechanism: 1) attenuation of overactivated mitochondrial 'Death' process (UPRmt and unselective mitophagy); and 2) activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway for mitochondrial 'Birth-Death' balance (mitochondrial biogenesis and controlled mitophagy). These pioneering findings can fill in the gaps in molecular mechanisms for H2 regulation on MQC homeostasis, and pave the way for future strategies towards restoring equilibrium of MQC system against degenerative diseases.


Sujet(s)
Hydrogène , Dégénérescence de disque intervertébral , Mitochondries , Stress oxydatif , Hydrogène/composition chimique , Animaux , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Régénération/effets des médicaments et des substances chimiques , Disque intervertébral/effets des médicaments et des substances chimiques , Humains , Mitophagie/effets des médicaments et des substances chimiques , Rat Sprague-Dawley , Mâle , Nucleus pulposus/métabolisme , Rats
3.
BMC Cardiovasc Disord ; 24(1): 531, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39354361

RÉSUMÉ

BACKGROUND: Myocardial ischemia-reperfusion injury (MI/RI) is an unavoidable risk event for acute myocardial infarction, with ferroptosis showing close involvement. We investigated the mechanism of MI/RI inducing myocardial injury by inhibiting the ferroptosis-related SLC7A11/glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathway and activating mitophagy. METHODS: A rat MI/RI model was established, with myocardial infarction area and injury assessed by TTC and H&E staining. Rat cardiomyocytes H9C2 were cultured in vitro, followed by hypoxia/reoxygenation (H/R) modeling and the ferroptosis inhibitor lipoxstatin-1 (Lip-1) treatment, or 3-Methyladenine or rapamycin treatment and overexpression plasmid (oe-SLC7A11) transfection during modeling. Cell viability and death were evaluated by CCK-8 and LDH assays. Mitochondrial morphology was observed by transmission electron microscopy. Mitochondrial membrane potential was detected by fluorescence dye JC-1. Levels of inflammatory factors, reactive oxygen species (ROS), Fe2+, malondialdehyde, lipid peroxidation, GPX4 enzyme activity, glutathione reductase, GSH and glutathione disulfide, and SLC7A11, GPX4, LC3II/I and p62 proteins were determined by ELISA kit, related indicator detection kits and Western blot. RESULTS: The ferroptosis-related SLC7A11/GSH/GPX4 pathway was repressed in MI/RI rat myocardial tissues, inducing myocardial injury. H/R affected GSH synthesis and inhibited GPX4 enzyme activity by down-regulating SLC7A11, thus promoting ferroptosis in cardiomyocytes, which was averted by Lip-1. SLC7A11 overexpression improved H/R-induced cardiomyocyte ferroptosis via the GSH/GPX4 pathway. H/R activated mitophagy in cardiomyocytes. Mitophagy inhibition reversed H/R-induced cellular ferroptosis. Mitophagy activation partially averted SLC7A11 overexpression-improved H/R-induced cardiomyocyte ferroptosis. H/R suppressed the ferroptosis-related SLC7A11/GSH/GPX4 pathway by inducing mitophagy, leading to cardiomyocyte injury. CONCLUSIONS: Increased ROS under H/R conditions triggered cardiomyocyte injury by inducing mitophagy to suppress the ferroptosis-related SLC7A11/GSH/GPX4 signaling pathway activation.


Sujet(s)
Système y+ de transport d'acides aminés , Modèles animaux de maladie humaine , Ferroptose , Glutathion , Mitophagie , Lésion de reperfusion myocardique , Myocytes cardiaques , Phospholipid hydroperoxide glutathione peroxidase , Rat Sprague-Dawley , Transduction du signal , Ferroptose/effets des médicaments et des substances chimiques , Animaux , Lésion de reperfusion myocardique/métabolisme , Lésion de reperfusion myocardique/anatomopathologie , Lésion de reperfusion myocardique/génétique , Lésion de reperfusion myocardique/prévention et contrôle , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/génétique , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Myocytes cardiaques/effets des médicaments et des substances chimiques , Rats , Glutathion/métabolisme , Mâle , Système y+ de transport d'acides aminés/métabolisme , Système y+ de transport d'acides aminés/génétique , Lignée cellulaire , Mitophagie/effets des médicaments et des substances chimiques , Infarctus du myocarde/anatomopathologie , Infarctus du myocarde/métabolisme , Infarctus du myocarde/génétique , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Mitochondries du myocarde/effets des médicaments et des substances chimiques , Stress oxydatif , Espèces réactives de l'oxygène/métabolisme
4.
Int J Biol Sci ; 20(11): 4382-4406, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247814

RÉSUMÉ

Mitophagy selectively eliminates damaged or dysfunctional mitochondria, playing a crucial role in maintaining mitochondrial quality control. However, it remains unclear whether mitophagy can be fully activated and how it evolves after SCI. Our RNA-seq analysis of animal samples from sham and 1, 3, 5, and 7 days post-SCI indicated that mitophagy was indeed inhibited during the acute and subacute early stages. In vitro experiments showed that this inhibition was closely related to excessive production of reactive oxygen species (ROS) and the downregulation of BNIP3. Excessive ROS led to the blockage of mitophagy flux, accompanied by further mitochondrial dysfunction and increased neuronal apoptosis. Fortunately, ligustilide (LIG) was found to have the ability to reverse the oxidative stress-induced downregulation of BNIP3 and enhance mitophagy through BNIP3-LC3 interaction, alleviating mitochondrial dysfunction and ultimately reducing neuronal apoptosis. Further animal experiments demonstrated that LIG alleviated oxidative stress and mitophagy inhibition, rescued neuronal apoptosis, and promoted tissue repair, ultimately leading to improved motor function. In summary, this study elucidated the state of mitophagy inhibition following SCI and its potential mechanisms, and confirmed the effects of LIG-enhanced mitophagy through BNIP3-LC3, providing new therapeutic targets and strategies for repairing SCI.


Sujet(s)
4-Butyrolactone , Apoptose , Protéines membranaires , Mitophagie , Neurones , Stress oxydatif , Rat Sprague-Dawley , Traumatismes de la moelle épinière , Animaux , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Neurones/métabolisme , Traumatismes de la moelle épinière/métabolisme , 4-Butyrolactone/analogues et dérivés , 4-Butyrolactone/pharmacologie , Rats , Espèces réactives de l'oxygène/métabolisme , Mâle , Mitochondries/métabolisme , Protéines mitochondriales/métabolisme , Protéines associées aux microtubules
5.
Int J Biol Sci ; 20(11): 4258-4276, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247828

RÉSUMÉ

Oxidative stress is a major pathogenic factor in many intestinal diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). The Nrf2 signaling pathway and mitophagy can reduce reactive oxygen species (ROS) and alleviate oxidative stress, but their relationship is unclear. Hydroxytyrosol (HT), a polyphenolic compound abundant in olive oil, has strong antioxidant activity and may help treat these diseases. We used pigs as a model to investigate HT's effect on intestinal oxidative damage and its mechanisms. Diquat (DQ) induced oxidative stress and impaired intestinal barrier function, which HT mitigated. Mechanistic studies in IPEC-J2 cells showed that HT protected against oxidative damage by activating the PI3K/Akt-Nrf2 signaling pathway and promoting mitophagy. Our study highlighted the synergistic relationship between Nrf2 and mitophagy in mediating HT's antioxidant effects. Inhibition studies confirmed that disrupting either pathway compromised HT's protective effects. Maintaining redox balance through Nrf2 and mitophagy is important for eliminating excess ROS. Nrf2 increases antioxidant enzymes to clear existing ROS, while mitophagy removes damaged mitochondria and reduces ROS generation. This study demonstrates that these pathways collaboratively modulate the antioxidant effects of HT, with neither being dispensable. Targeting Nrf2 and mitophagy could be a promising strategy for treating oxidative stress-related intestinal diseases, with HT as a potential treatment.


Sujet(s)
Mitophagie , Facteur-2 apparenté à NF-E2 , Stress oxydatif , Alcool phénéthylique , Phosphatidylinositol 3-kinases , Protéines proto-oncogènes c-akt , Espèces réactives de l'oxygène , Transduction du signal , Alcool phénéthylique/analogues et dérivés , Alcool phénéthylique/pharmacologie , Facteur-2 apparenté à NF-E2/métabolisme , Animaux , Stress oxydatif/effets des médicaments et des substances chimiques , Mitophagie/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Espèces réactives de l'oxygène/métabolisme , Suidae , Antioxydants/pharmacologie , Intestins/effets des médicaments et des substances chimiques , Lignée cellulaire
6.
FASEB J ; 38(17): e70011, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39250278

RÉSUMÉ

In clinical settings, addressing large bone defects remains a significant challenge for orthopedic surgeons. The use of genetically modified bone marrow mesenchymal stem cells (BMSCs) has emerged as a highly promising approach for these treatments. Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a multifunctional secreted glycoprotein, the role of which remains unclear in human hBMSCs. This study used various experimental methods to elucidate the potential mechanism by which SCUBE3 influences osteogenic differentiation of hBMSCs in vitro. Additionally, the therapeutic efficacy of SCUBE3, in conjunction with porous GeLMA microspheres, was evaluated in vivo using a mouse bone defect model. Our findings indicate that SCUBE3 levels increase significantly during early osteogenic differentiation of hBMSCs, and that reducing SCUBE3 levels can hinder this differentiation. Overexpressing SCUBE3 elevated osteogenesis gene and protein levels and enhanced calcium deposition. Furthermore, treatment with recombinant human SCUBE3 (rhSCUBE3) protein boosted BMP2 and TGF-ß expression, activated mitophagy in hBMSCs, ameliorated oxidative stress, and restored osteogenic function through SMAD phosphorylation. In vivo, GELMA/OE treatment effectively accelerated bone healing in mice. In conclusion, SCUBE3 fosters osteogenic differentiation and mitophagy in hBMSCs by activating the BMP2/TGF-ß signaling pathway. When combined with engineered hydrogel cell therapy, it could offer valuable guidance for the clinical management of extensive bone defects.


Sujet(s)
Protéine morphogénétique osseuse de type 2 , Différenciation cellulaire , Cellules souches mésenchymateuses , Mitophagie , Ostéogenèse , Transduction du signal , Facteur de croissance transformant bêta , Humains , Cellules souches mésenchymateuses/métabolisme , Cellules souches mésenchymateuses/cytologie , Ostéogenèse/physiologie , Animaux , Mitophagie/physiologie , Souris , Protéine morphogénétique osseuse de type 2/métabolisme , Protéine morphogénétique osseuse de type 2/génétique , Facteur de croissance transformant bêta/métabolisme , Protéines de liaison au calcium/métabolisme , Protéines de liaison au calcium/génétique , Cellules cultivées , Mâle
7.
Mol Biol Rep ; 51(1): 969, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39249564

RÉSUMÉ

BACKGROUND: Mitochondria are known to be involved in mediating the calorigenic effects of thyroid hormones. With an abundance of these hormones, alterations in energy metabolism and cellular respiration take place, leading to the development of cardiac hypertrophy. Vitamin D has recently gained attention due to its involvement in the regulation of mitochondrial function, demonstrating promising potential in preserving the integrity and functionality of the mitochondrial network. The present study aimed to investigate the therapeutic potential of Vitamin D on cardiac hypertrophy induced by hyperthyroidism, with a focus on the contributions of mitophagy and apoptosis as possible underlying molecular mechanisms. METHODS AND RESULTS: The rats were divided into three groups: control; hyperthyroid; hyperthyroid + Vitamin D. Hyperthyroidism was induced by Levothyroxine administration for four weeks. Serum thyroid hormones levels, myocardial damage markers, cardiac hypertrophy indices, and histological examination were assessed. The assessment of Malondialdehyde (MDA) levels and the expression of the related genes were conducted using heart tissue samples. Vitamin D pretreatment exhibited a significant improvement in the hyperthyroidism-induced decline in markers indicative of myocardial damage, oxidative stress, and indices of cardiac hypertrophy. Vitamin D pretreatment also improved the downregulation observed in myocardial expression levels of genes involved in the regulation of mitophagy and apoptosis, including PTEN putative kinase 1 (PINK1), Mitofusin-2 (MFN2), Dynamin-related Protein 1 (DRP1), and B cell lymphoma-2 (Bcl-2), induced by hyperthyroidism. CONCLUSIONS: These results suggest that supplementation with Vitamin D could be advantageous in preventing the progression of cardiac hypertrophy and myocardial damage.


Sujet(s)
Apoptose , Cardiomégalie , Cardiotoniques , Modèles animaux de maladie humaine , Hyperthyroïdie , Mitophagie , Thyroxine , Vitamine D , Animaux , Hyperthyroïdie/complications , Hyperthyroïdie/métabolisme , Hyperthyroïdie/traitement médicamenteux , Mitophagie/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Rats , Thyroxine/pharmacologie , Cardiomégalie/traitement médicamenteux , Cardiomégalie/métabolisme , Vitamine D/pharmacologie , Mâle , Cardiotoniques/pharmacologie , Stress oxydatif/effets des médicaments et des substances chimiques , Rat Wistar , Myocarde/métabolisme , Myocarde/anatomopathologie , Protein kinases/métabolisme , Protein kinases/génétique , Malonaldéhyde/métabolisme , Hormones thyroïdiennes/métabolisme
8.
Sci Rep ; 14(1): 20713, 2024 09 05.
Article de Anglais | MEDLINE | ID: mdl-39237684

RÉSUMÉ

Lidamycin (LDM) has been confirmed to have a strong anti-pancreatic cancer effect and can affect the mitochondrial function of pancreatic cancer cells. Mitofusin-2 (Mfn2) is located in the outer membrane of mitochondria, and Mfn2 is currently believed to play a role in cancer inhibition in pancreatic cancer. In order to explore whether the anti-pancreatic cancer effect of LDM is related to Mfn2-mediated mitophagy, Bioinformatics and in vitro cell experiments are used for experimental research. The experimental results demonstrated that Mfn2 is correlated with mitochondrial autophagy in pancreatic cancer. Lidamycin can increase the expression of Mfn2 in pancreatic cancer and affect the process of EMT, affect the level of reactive oxygen species and mitochondrial membrane potential, and increase the expression of mitochondrial autophagy marker proteins BNIP3L and Beclin1. These results demonstrate that Mfn2 affects mitophagy in pancreatic cancer cells by regulating the expression of Mfn2.


Sujet(s)
dGTPases , Protéines membranaires , Protéines mitochondriales , Mitophagie , Tumeurs du pancréas , Humains , Tumeurs du pancréas/métabolisme , Tumeurs du pancréas/anatomopathologie , Tumeurs du pancréas/traitement médicamenteux , Tumeurs du pancréas/génétique , Mitophagie/effets des médicaments et des substances chimiques , dGTPases/métabolisme , dGTPases/génétique , Lignée cellulaire tumorale , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Aminosides/pharmacologie , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Bécline-1/métabolisme , Bécline-1/génétique , Protéines proto-oncogènes/métabolisme , Protéines suppresseurs de tumeurs
9.
Mol Med ; 30(1): 136, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39227768

RÉSUMÉ

Acute pancreatitis (AP) is a multifaceted inflammatory disorder stemming from the aberrant activation of trypsin within the pancreas. Despite the contribution of various factors to the pathogenesis of AP, such as trypsin activation, dysregulated increases in cytosolic Ca2+ levels, inflammatory cascade activation, and mitochondrial dysfunction, the precise molecular mechanisms underlying the disease are still not fully understood. Mitophagy, a cellular process that preserves mitochondrial homeostasis under stress, has emerged as a pivotal player in the context of AP. Research suggests that augmenting mitophagy can mitigate pancreatic injury by clearing away malfunctioning mitochondria. Elucidating the role of mitophagy in AP may pave the way for novel therapeutic strategies. This review article aims to synthesize the current research findings on mitophagy in AP and underscore its significance in the clinical management of the disorder.


Sujet(s)
Mitochondries , Mitophagie , Pancréatite , Humains , Pancréatite/métabolisme , Pancréatite/anatomopathologie , Animaux , Mitochondries/métabolisme , Maladie aigüe
10.
Lipids Health Dis ; 23(1): 279, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39227809

RÉSUMÉ

BACKGROUND: NOD-like receptor protein 3 (NLRP3) inflammasome activation is indispensable for atherogenesis. Mitophagy has emerged as a potential strategy to counteract NLRP3 inflammasome activation triggered by impaired mitochondria. Our previous research has indicated that dihydromyricetin, a natural flavonoid, can mitigate NLRP3-mediated endothelial inflammation, suggesting its potential to treat atherosclerosis. However, the precise underlying mechanisms remain elusive. This study sought to investigate whether dihydromyricetin modulates endothelial mitophagy and inhibits NLRP3 inflammasome activation to alleviate atherogenesis, along with the specific mechanisms involved. METHODS: Apolipoprotein E-deficient mice on a high-fat diet were administered daily oral gavages of dihydromyricetin for 14 weeks. Blood samples were procured to determine the serum lipid profiles and quantify proinflammatory cytokine concentrations. Aortas were harvested to evaluate atherosclerotic plaque formation and NLRP3 inflammasome activation. Concurrently, in human umbilical vein endothelial cells, Western blotting, flow cytometry, and quantitative real-time PCR were employed to elucidate the mechanistic role of mitophagy in the modulation of NLRP3 inflammasome activation by dihydromyricetin. RESULTS: Dihydromyricetin administration significantly attenuated NLRP3 inflammasome activation and vascular inflammation in mice on a high-fat diet, thereby exerting a pronounced inhibitory effect on atherogenesis. Both in vivo and in vitro, dihydromyricetin treatment markedly enhanced mitophagy. This enhancement in mitophagy ameliorated the mitochondrial damage instigated by saturated fatty acids, thereby inhibiting the activation and nuclear translocation of NF-κB. Consequently, concomitant reductions in the transcript levels of NLRP3 and interleukin-1ß (IL-1ß), alongside decreased activation of NLRP3 inflammasome and IL-1ß secretion, were discerned. Notably, the inhibitory effects of dihydromyricetin on the activation of NF-κB and subsequently the NLRP3 inflammasome were determined to be, at least in part, contingent upon its capacity to promote mitophagy. CONCLUSION: This study suggested that dihydromyricetin may function as a modulator to promote mitophagy, which in turn mitigates NF-κB activity and subsequent NLRP3 inflammasome activation, thereby conferring protection against atherosclerosis.


Sujet(s)
Athérosclérose , Alimentation riche en graisse , Flavonols , Cellules endothéliales de la veine ombilicale humaine , Inflammasomes , Mitophagie , Protéine-3 de la famille des NLR contenant un domaine pyrine , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Mitophagie/effets des médicaments et des substances chimiques , Animaux , Flavonols/pharmacologie , Athérosclérose/traitement médicamenteux , Athérosclérose/prévention et contrôle , Athérosclérose/anatomopathologie , Athérosclérose/métabolisme , Inflammasomes/métabolisme , Inflammasomes/effets des médicaments et des substances chimiques , Souris , Humains , Cellules endothéliales de la veine ombilicale humaine/effets des médicaments et des substances chimiques , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Alimentation riche en graisse/effets indésirables , Mâle , Souris de lignée C57BL , Interleukine-1 bêta/métabolisme , Interleukine-1 bêta/génétique , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme
11.
Crit Care ; 28(1): 292, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39227925

RÉSUMÉ

Sepsis is a severe medical condition characterized by a systemic inflammatory response, often culminating in multiple organ dysfunction and high mortality rates. In recent years, there has been a growing recognition of the pivotal role played by mitochondrial damage in driving the progression of sepsis. Various factors contribute to mitochondrial impairment during sepsis, encompassing mechanisms such as reactive nitrogen/oxygen species generation, mitophagy inhibition, mitochondrial dynamics change, and mitochondrial membrane permeabilization. Damaged mitochondria actively participate in shaping the inflammatory milieu by triggering key signaling pathways, including those mediated by Toll-like receptors, NOD-like receptors, and cyclic GMP-AMP synthase. Consequently, there has been a surge of interest in developing therapeutic strategies targeting mitochondria to mitigate septic pathogenesis. This review aims to delve into the intricate mechanisms underpinning mitochondrial dysfunction during sepsis and its significant impact on immune dysregulation. Moreover, we spotlight promising mitochondria-targeted interventions that have demonstrated therapeutic efficacy in preclinical sepsis models.


Sujet(s)
Mitochondries , Sepsie , Humains , Sepsie/physiopathologie , Sepsie/traitement médicamenteux , Sepsie/thérapie , Mitochondries/métabolisme , Animaux , Mitophagie/physiologie , Espèces réactives de l'oxygène/métabolisme , Transduction du signal/physiologie
12.
Cells ; 13(17)2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39273005

RÉSUMÉ

Mitochondrial malfunction, excessive production of reactive oxygen species (ROS), deficient autophagy/mitophagy, and chronic inflammation are hallmarks of age-related macular degeneration (AMD). Metformin has been shown to activate mitophagy, alleviate inflammation, and lower the odds of developing AMD. Here, we explored the ability of metformin to activate mitophagy and alleviate inflammation in retinal pigment epithelium (RPE) cells. Human ARPE-19 cells were pre-treated with metformin for 1 h prior to exposure to antimycin A (10 µM), which induced mitochondrial damage. Cell viability, ROS production, and inflammatory cytokine production were measured, while autophagy/mitophagy proteins were studied using Western blotting and immunocytochemistry. Metformin pre-treatment reduced the levels of proinflammatory cytokines IL-6 and IL-8 to 42% and 65% compared to ARPE-19 cells exposed to antimycin A alone. Metformin reduced the accumulation of the autophagy substrate SQSTM1/p62 (43.9%) and the levels of LC3 I and II (51.6% and 48.6%, respectively) after antimycin A exposure. Metformin also increased the colocalization of LC3 with TOM20 1.5-fold, suggesting active mitophagy. Antimycin A exposure increased the production of mitochondrial ROS (226%), which was reduced by the metformin pre-treatment (84.5%). Collectively, metformin showed anti-inflammatory and antioxidative potential with mitophagy induction in human RPE cells suffering from mitochondrial damage.


Sujet(s)
Inflammation , Metformine , Mitochondries , Mitophagie , Espèces réactives de l'oxygène , Épithélium pigmentaire de la rétine , Metformine/pharmacologie , Humains , Épithélium pigmentaire de la rétine/effets des médicaments et des substances chimiques , Épithélium pigmentaire de la rétine/métabolisme , Épithélium pigmentaire de la rétine/anatomopathologie , Mitophagie/effets des médicaments et des substances chimiques , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Inflammation/anatomopathologie , Inflammation/traitement médicamenteux , Espèces réactives de l'oxygène/métabolisme , Lignée cellulaire , Antimycine A/pharmacologie , Autophagie/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Dégénérescence maculaire/anatomopathologie , Dégénérescence maculaire/traitement médicamenteux , Dégénérescence maculaire/métabolisme
13.
Int J Mol Sci ; 25(17)2024 Sep 08.
Article de Anglais | MEDLINE | ID: mdl-39273665

RÉSUMÉ

Due to limited drug efficacy and drug resistance, it is urgent to explore effective anti-liver cancer drugs. Repurposing drugs is an efficient strategy, with advantages including reduced costs, shortened development cycles, and assured safety. In this study, we adopted a synergistic approach combining computational and experimental methods and identified the antibacterial drug thiostrepton (TST) as a candidate for an anti-liver cancer drug. Although the anti-tumor capabilities of TST have been reported, its role and underlying mechanisms in hepatocellular carcinoma (HCC) remain unclear. TST was found here to inhibit the proliferation of HCC cells effectively, arresting the cell cycle and inducing cell apoptosis, as well as suppressing the cell migration. Further, our findings revealed that TST induced mitochondrial impairment, which was demonstrated by destroyed mitochondrial structures, reduced mitochondria, and decreased mitochondrial membrane potential (MMP). TST caused the production of reactive oxygen species (ROS), and the mitochondrial impairment and proliferation inhibition of HCC cells were completely restored by the ROS scavenger N-acetyl-L-cysteine (NAC). Moreover, we discovered that TST induced mitophagy, and autophagy inhibition effectively promoted the anti-cancer effects of TST on HCC cells. In conclusion, our study suggests TST as a promising candidate for the treatment of liver cancers, and these findings provide theoretical support for the further development and potential application of TST in clinical liver cancer therapy.


Sujet(s)
Apoptose , Carcinome hépatocellulaire , Prolifération cellulaire , Tumeurs du foie , Potentiel de membrane mitochondriale , Espèces réactives de l'oxygène , Thiostrepton , Humains , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/métabolisme , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/anatomopathologie , Tumeurs du foie/métabolisme , Thiostrepton/pharmacologie , Thiostrepton/usage thérapeutique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Apoptose/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Mouvement cellulaire/effets des médicaments et des substances chimiques , Mitophagie/effets des médicaments et des substances chimiques , Autophagie/effets des médicaments et des substances chimiques
14.
Mol Biol Rep ; 51(1): 949, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39222165

RÉSUMÉ

BACKGROUND: Cervical cancer ranks as the fourth most prevalent cancer among women globally, presenting a significant therapeutic challenge due to its resistance to cisplatin. Ephrin type-A receptor 2 (EPHA2) is prominently overexpressed in cervical cancer and plays a vital role in cisplatin resistance, although the underlying mechanisms remain incompletely elucidated. Mitochondrial dynamics, autophagy, and mitophagy are critical in mediating cisplatin resistance. Sesamol, a phytochemical compound, has exhibited promising anticancer properties. This study aims to investigate the regulatory role of EPHA2 in these pathways underlying cisplatin resistance and to investigate the potential of sesamol in overcoming this resistance and inhibiting cervical cancer progression. METHODS AND RESULT: In this study, we knocked down EPHA2 in the SiHa cell line and evaluated the resulting changes in molecular markers associated with mitochondrial dynamics, mitophagy, and autophagy. Our results indicated that EPHA2 knockdown (EPHA2-KD) led to enhanced mitochondrial fusion and reduced mitochondrial fission, mitophagy, and autophagy. Furthermore, we investigated the effect of EPHA2-KD and sesamol treatment on sensitising cervical cancer to cisplatin treatment. Our data revealed that EPHA2-KD and sesamol treatment significantly increases cellular sensitivity to cisplatin-induced cytotoxicity. Additionally, we demonstrated that sesamol effectively targets EPHA2, as evidenced by decreased EPHA2 expression levels following sesamol treatment. CONCLUSION: In summary, targeting EPHA2 through knockdown or sesamol treatment enhances cisplatin sensitivity in cervical cancer by modulating mitochondrial dynamics, autophagy and mitophagy, suggesting promising therapeutic strategies to overcome chemoresistance.


Sujet(s)
Autophagie , Benzodioxoles , Cisplatine , Dynamique mitochondriale , Mitophagie , Phénols , Récepteur EphA2 , Tumeurs du col de l'utérus , Humains , Tumeurs du col de l'utérus/traitement médicamenteux , Tumeurs du col de l'utérus/métabolisme , Tumeurs du col de l'utérus/génétique , Tumeurs du col de l'utérus/anatomopathologie , Femelle , Mitophagie/effets des médicaments et des substances chimiques , Mitophagie/génétique , Cisplatine/pharmacologie , Phénols/pharmacologie , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Autophagie/effets des médicaments et des substances chimiques , Récepteur EphA2/métabolisme , Récepteur EphA2/génétique , Benzodioxoles/pharmacologie , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/génétique , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Antinéoplasiques/pharmacologie
15.
PeerJ ; 12: e18062, 2024.
Article de Anglais | MEDLINE | ID: mdl-39282121

RÉSUMÉ

Acute lung injury (ALI) is one of the most deadly and prevalent diseases in the intensive care unit. Ferroptosis and mitophagy are pathological mechanisms of ALI. Ferroptosis aggravates ALI, whereas mitophagy regulates ALI. Ferroptosis and mitophagy are both closely related to reactive oxygen species (ROS). Mitophagy can regulate ferroptosis, but the specific relationship between ferroptosis and mitophagy is still unclear. This study summarizes previous research findings on ferroptosis and mitophagy, revealing their involvement in ALI. Examining the functions of mTOR and NLPR3 helps clarify the connection between ferroptosis and mitophagy in ALI, with the goal of establishing a theoretical foundation for potential therapeutic approaches in the future management of ALI.


Sujet(s)
Lésion pulmonaire aigüe , Ferroptose , Mitophagie , Espèces réactives de l'oxygène , Lésion pulmonaire aigüe/métabolisme , Lésion pulmonaire aigüe/anatomopathologie , Ferroptose/physiologie , Humains , Espèces réactives de l'oxygène/métabolisme , Animaux , Sérine-thréonine kinases TOR/métabolisme
16.
Adv Exp Med Biol ; 1461: 229-243, 2024.
Article de Anglais | MEDLINE | ID: mdl-39289285

RÉSUMÉ

There are at least two types of adipose tissues in the body, defined as brown adipose tissues (BATs) and white adipose tissues (WATs). These tissues comprise brown and white adipocytes, respectively. The adipocytes are commonly endowed with mitochondria, but they have diverse characteristics and roles. Brown adipocytes have abundant mitochondria that contribute to the ß-oxidation of fatty acids to produce chemical energy and the production of heat via uncoupling of the mitochondrial membrane potential from ATP synthesis. Alternatively, white adipocytes have fewer mitochondria that contribute to the generation of free fatty acids via lipogenesis by providing key intermediates. Besides the described types of adipocytes, brown-like adipocytes, termed beige adipocytes, are developed in WAT depots during cold exposure. Beige adipocytes also contribute to thermogenesis. Notably, beige adipocytes may transform into white-like adipocytes after the withdrawal of cold exposure. This process is marked by the elimination of mitochondria through the activation of mitochondria autophagy (mitophagy). This review aims to describe the mitophagy that occurs during the beige-to-white transition and discuss recent insights into the molecular mechanisms of this transformation. Additionally, we describe the mitophagy monitoring strategy in adipose tissues using three independent reporter systems and discuss the availabilities and limitations of the method.


Sujet(s)
Mitochondries , Mitophagie , Thermogenèse , Mitophagie/physiologie , Animaux , Humains , Mitochondries/métabolisme , Tissu adipeux blanc/métabolisme , Tissu adipeux brun/métabolisme , Tissu adipeux brun/cytologie , Adipocytes beiges/métabolisme , Adipocytes beiges/cytologie , Température , Tissu adipeux/métabolisme , Adipocytes blancs/métabolisme , Adipocytes blancs/cytologie
18.
Theranostics ; 14(13): 5303-5315, 2024.
Article de Anglais | MEDLINE | ID: mdl-39267792

RÉSUMÉ

Rationale: Parkin (an E3 ubiquitin protein ligase) is an important regulator of mitophagy. However, the role of Parkin in viral myocarditis (VMC) remains unclear. Methods: Coxsackievirus B3 (CVB3) infection was induced in mice to create VMC. Cardiac function and inflammatory response were evaluated by echocardiography, histological assessment, and molecular analyses. AAV9 (adeno-associated virus 9), transmission electron microscopy (TEM) and western blotting were used to investigate the mechanisms by which Parkin regulates mitophagy and cardiac inflammation. Results: Our data indicated that Parkin- and BNIP3 (BCL2 interacting protein 3 like)-mediated mitophagy was activated in VMC mice and neonatal rat cardiac myocytes (NRCMs) infected with CVB3, which blocked autophagic flux by inhibiting autophagosome-lysosome fusion. Parkin silencing aggravated mortality and accelerated the development of cardiac dysfunction in CVB3-treated mice. While silencing of Parkin did not significantly increase inflammatory response through activating NF-κB pathway and production of inflammatory cytokines post-VMC, the mitophagy activity were reduced, which stimulated the accumulation of damaged mitochondria. Moreover, Parkin silencing exacerbated VMC-induced apoptosis. We consistently found that Parkin knockdown disrupted mitophagy activity and inflammatory response in NRCMs. Conclusion: This study elucidated the important role of Parkin in maintaining cardiac function and inflammatory response by regulating mitophagy activity and the NF-κB pathway during acute VMC. Although the functional impact of mitophagy remains unclear, our findings suggest that Parkin silencing may accelerate VMC development.


Sujet(s)
Infections à virus coxsackie , Mitophagie , Myocardite , Myocytes cardiaques , Ubiquitin-protein ligases , Animaux , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Myocardite/virologie , Myocardite/métabolisme , Souris , Myocytes cardiaques/métabolisme , Myocytes cardiaques/virologie , Infections à virus coxsackie/métabolisme , Infections à virus coxsackie/virologie , Mâle , Rats , Entérovirus humain B/physiologie , Apoptose , Modèles animaux de maladie humaine , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Facteur de transcription NF-kappa B/métabolisme , Souris de lignée BALB C
19.
J Am Heart Assoc ; 13(19): e036555, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39291488

RÉSUMÉ

Engaging in regular exercise and physical activity contributes to delaying the onset of cardiovascular diseases (CVDs). However, the physiological mechanisms underlying the benefits of regular exercise or physical activity in CVDs remain unclear. The disruption of mitochondrial homeostasis is implicated in the pathological process of CVDs. Exercise training effectively delays the onset and progression of CVDs by significantly ameliorating the disruption of mitochondrial homeostasis. This includes improving mitochondrial biogenesis, increasing mitochondrial fusion, decreasing mitochondrial fission, promoting mitophagy, and mitigating mitochondrial morphology and function. This review provides a comprehensive overview of the benefits of physical exercise in the context of CVDs, establishing a connection between the disruption of mitochondrial homeostasis and the onset of these conditions. Through a detailed examination of the underlying molecular mechanisms within mitochondria, the study illuminates how exercise can provide innovative perspectives for future therapies for CVDs.


Sujet(s)
Maladies cardiovasculaires , Exercice physique , Homéostasie , Humains , Homéostasie/physiologie , Maladies cardiovasculaires/physiopathologie , Maladies cardiovasculaires/métabolisme , Maladies cardiovasculaires/thérapie , Exercice physique/physiologie , Mitochondries/métabolisme , Animaux , Mitophagie , Dynamique mitochondriale , Mitochondries du myocarde/métabolisme , Mitochondries du myocarde/anatomopathologie , Traitement par les exercices physiques/méthodes , Biogenèse des organelles
20.
Int J Mol Sci ; 25(18)2024 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-39337408

RÉSUMÉ

Endothelial dysfunction is common in Systemic Lupus Erythematosus (SLE), even in the absence of cardiovascular disease. Evidence suggests that impaired mitophagy contributes to SLE. Mitochondrial dysfunction is also associated with impaired endothelial function. Spermidine, a natural polyamine, stimulates mitophagy by the PINK1-parkin pathway and counters age-associated endothelial dysfunction. However, the effect of spermidine on mitophagy and vascular function in SLE has not been explored. To address this gap, 9-week-old female lupus-prone (MRL/lpr) and healthy control (MRL/MpJ) mice were randomly assigned to spermidine treatment (lpr_Spermidine and MpJ_Spermidine) for 8 weeks or as control (lpr_Control and MpJ_Control). lpr_Control mice exhibited impaired endothelial function (e.g., decreased relaxation to acetylcholine), increased markers of inflammation, and lower protein content of parkin, a mitophagy marker, in the thoracic aorta. Spermidine treatment prevented endothelial dysfunction in MRL-lpr mice. Furthermore, aortas from lpr_Spermidine mice had lower levels of inflammatory markers and higher levels of parkin. Lupus phenotypes were not affected by spermidine. Collectively, these results demonstrate the beneficial effects of spermidine treatment on endothelial function, inflammation, and mitophagy in SLE mice. These results support future studies of the beneficial effects of spermidine on endothelial dysfunction and cardiovascular disease risk in SLE.


Sujet(s)
Endothélium vasculaire , Lupus érythémateux disséminé , Souris de lignée MRL lpr , Mitophagie , Spermidine , Animaux , Spermidine/pharmacologie , Lupus érythémateux disséminé/traitement médicamenteux , Lupus érythémateux disséminé/métabolisme , Souris , Femelle , Endothélium vasculaire/effets des médicaments et des substances chimiques , Endothélium vasculaire/métabolisme , Mitophagie/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Ubiquitin-protein ligases/métabolisme , Inflammation/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE