Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.733
Filtrer
1.
Methods Mol Biol ; 2856: 293-308, 2025.
Article de Anglais | MEDLINE | ID: mdl-39283460

RÉSUMÉ

In order to analyze the three-dimensional genome architecture, it is important to simulate how the genome is structured through the cell cycle progression. In this chapter, we present the usage of our computation codes for simulating how the human genome is formed as the cell transforms from anaphase to interphase. We do not use the global Hi-C data as an input into the genome simulation but represent all chromosomes as linear polymers annotated by the neighboring region contact index (NCI), which classifies the A/B type of each local chromatin region. The simulated mitotic chromosomes heterogeneously expand upon entry to the G1 phase, which induces phase separation of A and B chromatin regions, establishing chromosome territories, compartments, and lamina and nucleolus associations in the interphase nucleus. When the appropriate one-dimensional chromosomal annotation is possible, using the protocol of this chapter, one can quantitatively simulate the three-dimensional genome structure and dynamics of human cells of interest.


Sujet(s)
Anaphase , Chromatine , Génome humain , Interphase , Humains , Anaphase/génétique , Interphase/génétique , Chromatine/génétique , Chromatine/métabolisme , Simulation numérique , Chromosomes humains/génétique , Mitose/génétique
2.
Science ; 386(6717): eadg7325, 2024 10 04.
Article de Anglais | MEDLINE | ID: mdl-39361745

RÉSUMÉ

Early embryogenesis is driven by transcription factors (TFs) that first activate the zygotic genome and then specify the lineages constituting the blastocyst. Although the TFs specifying the blastocyst's lineages are well characterized, those playing earlier roles remain poorly defined. Using mouse models of the TF Nr5a2, we show that Nr5a2-/- embryos arrest at the early morula stage and exhibit altered lineage specification, frequent mitotic failure, and substantial chromosome segregation defects. Although NR5A2 plays a minor but measurable role during zygotic genome activation, it predominantly acts as a master regulator at the eight-cell stage, controlling expression of lineage-specifying TFs and genes involved in mitosis, telomere maintenance, and DNA repair. We conclude that NR5A2 coordinates proliferation, genome stability, and lineage specification to ensure correct morula development.


Sujet(s)
Développement embryonnaire , Régulation de l'expression des gènes au cours du développement , Mitose , Morula , Récepteurs cytoplasmiques et nucléaires , Zygote , Animaux , Femelle , Souris , Lignage cellulaire/génétique , Ségrégation des chromosomes , Réparation de l'ADN , Développement embryonnaire/génétique , Génome , Instabilité du génome , Mitose/génétique , Morula/métabolisme , Zygote/métabolisme , Récepteurs cytoplasmiques et nucléaires/génétique , Récepteurs cytoplasmiques et nucléaires/métabolisme , Souris de lignée C57BL
3.
PeerJ ; 12: e18075, 2024.
Article de Anglais | MEDLINE | ID: mdl-39314848

RÉSUMÉ

Background: Breast cancer has become the most common malignant tumor in women worldwide. Mitotic catastrophe (MC) is a way of cell death that plays an important role in the development of tumors. However, the exact relationship between MC-related genes (MCRGs) and the development of breast cancer is still unclear, and further research is needed to elucidate this complexity. Methods: Transcriptome data and clinical data of breast cancer were downloaded from the Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. We identified differential expression of MCRGs by comparing tumor tissue with normal tissue. Subsequently, we used COX regression analysis and LASSO regression analysis to construct the prognosis risk model of MCRGs. Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used to evaluate the predictive ability of prognostic model. Moreover, the clinical relevance, gene set enrichment analysis (GSEA), immune landscape, tumor mutation burden (TMB), and immunotherapy and drug sensitivity analysis between high-risk and low-risk groups were systematically investigated. Finally, we validated the expression levels of genes involved in constructing the prognostic model through real-time quantitative polymerase chain reaction (RT-qPCR) at the cellular and tissue levels. Results: We identified 12 prognostic associated MCRGs, four of which were selected to construct prognostic model. The Kaplan-Meier analysis suggested that patients in the high-risk group had a shorter overall survival (OS). The Cox regression analysis and ROC analysis indicated that risk model had independent and excellent ability in predicting prognosis of breast cancer patients. Mechanistically, a remarkable difference was observed in clinical relevance, GSEA, immune landscape, TMB, immunotherapy response, and drug sensitivity analysis. RT-qPCR results showed that genes involved in constructing the prognostic model showed significant abnormal expressions and the expression change trends were consistent with the bioinformatics results. Conclusions: We established a prognosis risk model based on four MCRGs that had the ability to predict clinical prognosis and immune landscape, proposing potential therapeutic targets for breast cancer.


Sujet(s)
Tumeurs du sein , Humains , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Tumeurs du sein/mortalité , Femelle , Pronostic , Mitose/génétique , Marqueurs biologiques tumoraux/génétique , Régulation de l'expression des gènes tumoraux , Estimation de Kaplan-Meier , Transcriptome , Courbe ROC , Analyse de profil d'expression de gènes , Bases de données génétiques , Modèles des risques proportionnels
4.
Development ; 151(17)2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39250531

RÉSUMÉ

miR-31 is a highly conserved microRNA that plays crucial roles in cell proliferation, migration and differentiation. We discovered that miR-31 and some of its validated targets are enriched on the mitotic spindle of the dividing sea urchin embryo and mammalian cells. Using the sea urchin embryo, we found that miR-31 inhibition led to developmental delay correlated with increased cytoskeletal and chromosomal defects. We identified miR-31 to directly suppress several actin remodeling transcripts, including ß-actin, Gelsolin, Rab35 and Fascin. De novo translation of Fascin occurs at the mitotic spindle of sea urchin embryos and mammalian cells. Importantly, miR-31 inhibition leads to a significant a increase of newly translated Fascin at the spindle of dividing sea urchin embryos. Forced ectopic localization of Fascin transcripts to the cell membrane and translation led to significant developmental and chromosomal segregation defects, highlighting the importance of the regulation of local translation by miR-31 at the mitotic spindle to ensure proper cell division. Furthermore, miR-31-mediated post-transcriptional regulation at the mitotic spindle may be an evolutionarily conserved regulatory paradigm of mitosis.


Sujet(s)
microARN , Biosynthèse des protéines , Appareil du fuseau , Animaux , microARN/métabolisme , microARN/génétique , Appareil du fuseau/métabolisme , Régulation de l'expression des gènes au cours du développement , Humains , Protéines des microfilaments/métabolisme , Protéines des microfilaments/génétique , Mitose/génétique , Protéines de transport/métabolisme , Protéines de transport/génétique , Développement embryonnaire/génétique , Embryon non mammalien/métabolisme , Ségrégation des chromosomes/génétique , Actines/métabolisme , Actines/génétique , Echinoidea/embryologie , Echinoidea/génétique , Echinoidea/métabolisme
5.
Genetics ; 228(2)2024 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-39225982

RÉSUMÉ

Germline cells produce gametes, which are specialized cells essential for sexual reproduction. Germline cells first amplify through several rounds of mitosis before switching to the meiotic program, which requires specific sets of proteins for DNA recombination, chromosome pairing, and segregation. Surprisingly, we previously found that some proteins of the synaptonemal complex, a prophase I meiotic structure, are already expressed and required in the mitotic region of Drosophila females. Here, to assess if additional meiotic genes were expressed earlier than expected, we isolated mitotic and meiotic cell populations to compare their RNA content. Our transcriptomic analysis reveals that all known meiosis I genes are already expressed in the mitotic region; however, only some of them are translated. As a case study, we focused on mei-W68, the Drosophila homolog of Spo11, to assess its expression at both the mRNA and protein levels and used different mutant alleles to assay for a premeiotic function. We could not detect any functional role for Mei-W68 during homologous chromosome pairing in dividing germ cells. Our study paves the way for further functional analysis of meiotic genes expressed in the mitotic region.


Sujet(s)
Protéines de Drosophila , Méiose , Mitose , Animaux , Femelle , Mitose/génétique , Méiose/génétique , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Transcriptome , Drosophila melanogaster/génétique , Appariement des chromosomes/génétique , Analyse de profil d'expression de gènes/méthodes , Endodeoxyribonucleases/génétique , Endodeoxyribonucleases/métabolisme
6.
EMBO Rep ; 25(9): 4062-4077, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39179892

RÉSUMÉ

Acute protein knockdown is a powerful approach to dissecting protein function in dynamic cellular processes. We previously reported an improved auxin-inducible degron system, AID2, but recently noted that its ability to induce degradation of some essential replication factors, such as ORC1 and CDC6, was not enough to induce lethality. Here, we present combinational degron technologies to control two proteins or enhance target depletion. For this purpose, we initially compare PROTAC-based degrons, dTAG and BromoTag, with AID2 to reveal their key features and then demonstrate control of cohesin and condensin with AID2 and BromoTag, respectively. We develop a double-degron system with AID2 and BromoTag to enhance target depletion and accelerate depletion kinetics and demonstrate that both ORC1 and CDC6 are pivotal for MCM loading. Finally, we show that co-depletion of ORC1 and CDC6 by the double-degron system completely suppresses DNA replication, and the cells enter mitosis with single-chromatid chromosomes, indicating that DNA replication is uncoupled from cell cycle control. Our combinational degron technologies will expand the application scope for functional analyses.


Sujet(s)
Adenosine triphosphatases , Protéines du cycle cellulaire , Réplication de l'ADN , Protéines de liaison à l'ADN , Complexes multiprotéiques , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Humains , Adenosine triphosphatases/métabolisme , Adenosine triphosphatases/génétique , Complexes multiprotéiques/métabolisme , Complexe ORC/métabolisme , Complexe ORC/génétique , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Techniques de knock-down de gènes , Cohesins , Mitose/effets des médicaments et des substances chimiques , Mitose/génétique , Protéolyse , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Protéines de maintenance des minichromosomes/métabolisme , Protéines de maintenance des minichromosomes/génétique , Degrons
7.
Nat Genet ; 56(9): 1938-1952, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39210046

RÉSUMÉ

Few transcription factors have been examined for their direct roles in physically connecting enhancers and promoters. Here acute degradation of Yin Yang 1 (YY1) in erythroid cells revealed its requirement for the maintenance of numerous enhancer-promoter loops, but not compartments or domains. Despite its reported ability to interact with cohesin, the formation of YY1-dependent enhancer-promoter loops does not involve stalling of cohesin-mediated loop extrusion. Integrating mitosis-to-G1-phase dynamics, we observed partial retention of YY1 on mitotic chromatin, predominantly at gene promoters, followed by rapid rebinding during mitotic exit, coinciding with enhancer-promoter loop establishment. YY1 degradation during the mitosis-to-G1-phase interval revealed a set of enhancer-promoter loops that require YY1 for establishment during G1-phase entry but not for maintenance in interphase, suggesting that cell cycle stage influences YY1's architectural function. Thus, as revealed here for YY1, chromatin architectural functions of transcription factors can vary in their interplay with CTCF and cohesin as well as by cell cycle stage.


Sujet(s)
Protéines chromosomiques nonhistones , Cohesins , Régions promotrices (génétique) , Transcription génétique , Facteur de transcription YY1 , Animaux , Humains , Souris , Facteur de liaison à la séquence CCCTC/métabolisme , Facteur de liaison à la séquence CCCTC/génétique , Cycle cellulaire , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Chromatine/métabolisme , Chromatine/génétique , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Éléments activateurs (génétique) , Cellules érythroïdes/métabolisme , Cellules érythroïdes/cytologie , Phase G1/génétique , Régulation de l'expression des gènes , Mitose/génétique , Facteur de transcription YY1/métabolisme , Facteur de transcription YY1/génétique
8.
Nucleic Acids Res ; 52(17): 10370-10384, 2024 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-39189458

RÉSUMÉ

Impaired control of the G1/S checkpoint allows initiation of DNA replication under non-permissive conditions. Unscheduled S-phase entry is associated with DNA replication stress, demanding for other checkpoints or cellular pathways to maintain proliferation. Here, we uncovered a requirement for ADARp150 to sustain proliferation of G1/S-checkpoint-defective cells under growth-restricting conditions. Besides its well-established mRNA editing function in inversely oriented short interspersed nuclear elements (SINEs), we found ADARp150 to exert a critical function in mitosis. ADARp150 depletion resulted in tetraploidization, impeding cell proliferation in mitogen-deprived conditions. Mechanistically we show that ADAR1 depletion induced aberrant expression of Cyclin B3, which was causative for mitotic failure and whole-genome duplication. Finally, we find that also in vivo ADAR1-depletion-provoked tetraploidization hampers tumor outgrowth.


Sujet(s)
Adenosine deaminase , Protéines de liaison à l'ARN , Humains , Adenosine deaminase/génétique , Adenosine deaminase/métabolisme , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Prolifération cellulaire/génétique , Mitose/génétique , Animaux , Réplication de l'ADN/génétique , Tétraploïdie , Génome humain , Points de contrôle de la phase G1 du cycle cellulaire/génétique , Souris , Édition des ARN , Lignée cellulaire tumorale
9.
Cells ; 13(16)2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39195284

RÉSUMÉ

The AurkA serine/threonine kinase is a key regulator of cell division controlling mitotic entry, centrosome maturation, and chromosome segregation. The microtubule-associated protein TPX2 controls spindle assembly and is the main AurkA regulator, contributing to AurkA activation, localisation, and stabilisation. Since their identification, AurkA and TPX2 have been described as being overexpressed in cancer, with a significant correlation with highly proliferative and aneuploid tumours. Despite the frequent occurrence of AurkA/TPX2 co-overexpression in cancer, the investigation of their involvement in tumorigenesis and cancer therapy resistance mostly arises from studies focusing only on one at the time. Here, we review the existing literature and discuss the mitotic phenotypes described under conditions of AurkA, TPX2, or AurkA/TPX2 overexpression, to build a picture that may help clarify their oncogenic potential through the induction of chromosome instability. We highlight the relevance of the AurkA/TPX2 complex as an oncogenic unit, based on which we discuss recent strategies under development that aim at disrupting the complex as a promising therapeutic perspective.


Sujet(s)
Aurora kinase A , Protéines associées aux microtubules , Tumeurs , Humains , Aurora kinase A/métabolisme , Aurora kinase A/génétique , Tumeurs/génétique , Tumeurs/anatomopathologie , Tumeurs/métabolisme , Protéines associées aux microtubules/métabolisme , Protéines associées aux microtubules/génétique , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Animaux , Mitose/génétique , Aberrations des chromosomes , Instabilité des chromosomes/génétique , Régulation de l'expression des gènes tumoraux
10.
Nat Cell Biol ; 26(9): 1496-1503, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39117795

RÉSUMÉ

The eukaryotic cell division machinery must rapidly and reproducibly duplicate and partition the cell's chromosomes in a carefully coordinated process. However, chromosome numbers vary dramatically between genomes, even on short evolutionary timescales. We sought to understand how the mitotic machinery senses and responds to karyotypic changes by using a series of budding yeast strains in which the native chromosomes have been successively fused. Using a combination of cell biological profiling, genetic engineering and experimental evolution, we show that chromosome fusions are well tolerated up until a critical point. Cells with fewer than five centromeres lack the necessary number of kinetochore-microtubule attachments needed to counter outward forces in the metaphase spindle, triggering the spindle assembly checkpoint and prolonging metaphase. Our findings demonstrate that spindle architecture is a constraining factor for karyotype evolution.


Sujet(s)
Kinétochores , Saccharomyces cerevisiae , Appareil du fuseau , Appareil du fuseau/métabolisme , Appareil du fuseau/génétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Kinétochores/métabolisme , Caryotype , Chromosomes de champignon/génétique , Mitose/génétique , Évolution moléculaire , Microtubules/métabolisme , Centromère/génétique , Centromère/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme
11.
Nucleic Acids Res ; 52(15): 8913-8929, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-38953168

RÉSUMÉ

Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the human and pig parasitic nematode Ascaris to characterize the DSBs. Using END-seq, we demonstrate that DSBs are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3'-overhangs before the addition of neotelomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends may be due to the sequestration of the eliminated DNA into micronuclei, preventing neotelomere formation at their ends. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for PDE. Overall, our data indicate that telomere healing of DSBs is specific to the break sites responsible for nematode PDE.


Sujet(s)
Cassures double-brin de l'ADN , Télomère , Animaux , Télomère/métabolisme , Télomère/génétique , Réparation de l'ADN , Ascaris/génétique , Humains , ADN des helminthes/génétique , Suidae , Mitose/génétique
12.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119793, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39038612

RÉSUMÉ

Here, we report that Caveolin-2 (Cav-2) is a cell cycle regulator in the mitotic clonal expansion (MCE) for adipogenesis. For the G2/M phase transition and re-entry into the G1 phase, dephosphorylated Cav-2 by protein tyrosine phosphatase 1B (PTP1B) controlled epigenetic activation of Ccnb1, Cdk1, and p21 in a lamin A/C-dependent manner, thereby ensuring the survival of preadipocytes. Cav-2, associated with lamin A/C, recruited the repressed promoters of Ccnb1 and Cdk1 for activation, and disengaged the active promoter of p21 from lamin A/C for inactivation through histone H3 modifications at the nuclear periphery. Cav-2 deficiency abrogated the histone H3 modifications and impeded the transactivation of Ccnb1, Cdk1, and p21, leading to a delay in mitotic entry, retardation of re-entry into G1 phase, and the apoptotic cell death of preadipocytes. Re-expression of Cav-2 restored the G2/M phase transition and G1 phase re-entry, preadipocyte survival, and adipogenesis in Cav-2-deficient preadipocytes. Our study uncovers a novel mechanism by which cell cycle transition and apoptotic cell death are controlled for adipocyte hyperplasia.


Sujet(s)
Adipocytes , Adipogenèse , Protéine-kinase CDC2 , Cavéoline-2 , Inhibiteur p21 de kinase cycline-dépendante , Mitose , Adipogenèse/génétique , Animaux , Mitose/génétique , Adipocytes/métabolisme , Adipocytes/cytologie , Souris , Protéine-kinase CDC2/métabolisme , Protéine-kinase CDC2/génétique , Inhibiteur p21 de kinase cycline-dépendante/génétique , Inhibiteur p21 de kinase cycline-dépendante/métabolisme , Cavéoline-2/génétique , Cavéoline-2/métabolisme , Survie cellulaire/génétique , Cycline B1/métabolisme , Cycline B1/génétique , Cellules 3T3-L1 , Apoptose/génétique
13.
Front Immunol ; 15: 1409448, 2024.
Article de Anglais | MEDLINE | ID: mdl-39015573

RÉSUMÉ

Background and aims: The mitotic catastrophe (MC) pathway plays an important role in hepatocellular carcinoma (HCC) progression and tumor microenvironment (TME) regulation. However, the mechanisms linking MC heterogeneity to immune evasion and treatment response remain unclear. Methods: Based on 94 previously published highly correlated genes for MC, HCC patients' data from the Cancer Genome Atlas (TCGA) and changes in immune signatures and prognostic stratification were studied. Time and spatial-specific differences for MCGs were assessed by single-cell RNA sequencing and spatial transcriptome (ST) analysis. Multiple external databases (GEO, ICGC) were employed to construct an MC-related riskscore model. Results: Identification of two MC-related subtypes in HCC patients from TCGA, with clear differences in immune signatures and prognostic risk stratification. Spatial mapping further associates low MC tumor regions with significant immune escape-related signaling. Nomogram combining MC riskscore and traditional indicators was validated great effect for early prediction of HCC patient outcomes. Conclusion: MC heterogeneity enables immune escape and therapy resistance in HCC. The MC gene signature serves as a reliable prognostic indicator for liver cancer. By revealing clear immune and spatial heterogeneity of HCC, our integrated approach provides contextual therapeutic strategies for optimal clinical decision-making.


Sujet(s)
Carcinome hépatocellulaire , Immunothérapie , Tumeurs du foie , Mitose , Microenvironnement tumoral , Humains , Carcinome hépatocellulaire/thérapie , Carcinome hépatocellulaire/immunologie , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/diagnostic , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/mortalité , Tumeurs du foie/thérapie , Tumeurs du foie/immunologie , Tumeurs du foie/génétique , Tumeurs du foie/anatomopathologie , Tumeurs du foie/mortalité , Tumeurs du foie/diagnostic , Pronostic , Microenvironnement tumoral/immunologie , Microenvironnement tumoral/génétique , Immunothérapie/méthodes , Mitose/génétique , Régulation de l'expression des gènes tumoraux , Marqueurs biologiques tumoraux/génétique , Transcriptome , Analyse de profil d'expression de gènes , Nomogrammes
14.
Eur J Cell Biol ; 103(3): 151444, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39024988

RÉSUMÉ

Piwi proteins and Piwi interacting RNAs, piRNAs, presented in germline cells play a role in transposon silencing during germline development. In contrast, the role of somatic Piwi proteins and piRNAs still remains obscure. Here, we characterize the expression pattern and distribution of piRNAs in human renal cells in terms of their potential role in kidney development. Further, we show that all PIWI genes are expressed at the RNA level, however, only PIWIL1 gene is detected at the protein level by western blotting in healthy and cancerous renal cells. So far, the expression of human Piwil1 protein has only been shown in testes and cancer cells, but not in healthy somatic cell lines. Since we observe only Piwil1 protein, the regulation of other PIWI genes is probably more intricated, and depends on environmental conditions. Next, we demonstrate that downregulation of Piwil1 protein results in a decrease in the rate of cell proliferation, while no change in the level of apoptotic cells is observed. Confocal microscopy analysis reveals that Piwil1 protein is located in both cellular compartments, cytoplasm and nucleus in renal cells. Interestingly, in nucleus region Piwil1 is observed close to the spindle during all phases of mitosis in all tested cell lines. It strongly indicates that Piwil1 protein plays an essential role in proliferation of somatic cells. Moreover, involvement of Piwil1 in cell division could, at least partly, explain invasion and metastasis of many types of cancer cells with upregulation of PIWIL1 gene expression. It also makes Piwil1 protein as a potential target in the anticancer therapy.


Sujet(s)
Protéines Argonaute , Rein , Mitose , ARN interagissant avec Piwi , Humains , Protéines Argonaute/métabolisme , Protéines Argonaute/génétique , Prolifération cellulaire , Rein/cytologie , Rein/croissance et développement , Rein/métabolisme , Mitose/génétique , ARN interagissant avec Piwi/génétique , ARN interagissant avec Piwi/métabolisme
15.
Proc Natl Acad Sci U S A ; 121(29): e2404551121, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38990945

RÉSUMÉ

Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.


Sujet(s)
Mouvement cellulaire , Amplification de gène , Protéines proto-oncogènes c-myc , Contrainte mécanique , Humains , Mouvement cellulaire/génétique , Protéines proto-oncogènes c-myc/métabolisme , Protéines proto-oncogènes c-myc/génétique , Animaux , Lignée cellulaire tumorale , Souris , Mitose/génétique , Instabilité des chromosomes , Régulation de l'expression des gènes tumoraux , Tumeurs/génétique , Tumeurs/anatomopathologie , Tumeurs/métabolisme
16.
Signal Transduct Target Ther ; 9(1): 181, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38992067

RÉSUMÉ

Mitotic catastrophe (MC), which occurs under dysregulated mitosis, represents a fascinating tactic to specifically eradicate tumor cells. Whether pyroptosis can be a death form of MC remains unknown. Proteasome-mediated protein degradation is crucial for M-phase. Bortezomib (BTZ), which inhibits the 20S catalytic particle of proteasome, is approved to treat multiple myeloma and mantle cell lymphoma, but not solid tumors due to primary resistance. To date, whether and how proteasome inhibitor affected the fates of cells in M-phase remains unexplored. Here, we show that BTZ treatment, or silencing of PSMC5, a subunit of 19S regulatory particle of proteasome, causes G2- and M-phase arrest, multi-polar spindle formation, and consequent caspase-3/GSDME-mediated pyroptosis in M-phase (designated as mitotic pyroptosis). Further investigations reveal that inhibitor of WEE1/PKMYT1 (PD0166285), but not inhibitor of ATR, CHK1 or CHK2, abrogates the BTZ-induced G2-phase arrest, thus exacerbates the BTZ-induced mitotic arrest and pyroptosis. Combined BTZ and PD0166285 treatment (named BP-Combo) selectively kills various types of solid tumor cells, and significantly lessens the IC50 of both BTZ and PD0166285 compared to BTZ or PD0166285 monotreatment. Studies using various mouse models show that BP-Combo has much stronger inhibition on tumor growth and metastasis than BTZ or PD0166285 monotreatment, and no obvious toxicity is observed in BP-Combo-treated mice. These findings disclose the effect of proteasome inhibitors in inducing pyroptosis in M-phase, characterize pyroptosis as a new death form of mitotic catastrophe, and identify dual inhibition of proteasome and WEE family kinases as a promising anti-cancer strategy to selectively kill solid tumor cells.


Sujet(s)
Bortézomib , Protéines du cycle cellulaire , Mitose , Proteasome endopeptidase complex , Protein-tyrosine kinases , Pyroptose , Pyroptose/effets des médicaments et des substances chimiques , Humains , Souris , Animaux , Protein-tyrosine kinases/génétique , Protein-tyrosine kinases/antagonistes et inhibiteurs , Protein-tyrosine kinases/métabolisme , Mitose/effets des médicaments et des substances chimiques , Mitose/génétique , Proteasome endopeptidase complex/métabolisme , Proteasome endopeptidase complex/génétique , Bortézomib/pharmacologie , Lignée cellulaire tumorale , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/antagonistes et inhibiteurs , Protéines du cycle cellulaire/métabolisme , Inhibiteurs du protéasome/pharmacologie , Pyrimidines/pharmacologie , Pyrazoles/pharmacologie , Tumeurs/traitement médicamenteux , Tumeurs/génétique , Tumeurs/anatomopathologie , Tests d'activité antitumorale sur modèle de xénogreffe , Gasdermines , Pyrimidinones
17.
Life Sci Alliance ; 7(10)2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39074902

RÉSUMÉ

After whole-genome duplication (WGD), tetraploid cells can undergo multipolar mitosis or pseudo-bipolar mitosis with clustered centrosomes. Kinesins play a crucial role in regulating spindle formation. However, the contribution of kinesin expression levels to the heterogeneity in centrosome clustering observed across different cell lines after WGD remains unclear. We identified two subsets of cell lines: "BP" cells efficiently cluster extra centrosomes for pseudo-bipolar mitosis, and "MP" cells primarily undergo multipolar mitosis after WGD. Diploid MP cells contained higher levels of KIF11 and KIF15 compared with BP cells and showed reduced sensitivity to centrosome clustering induced by KIF11 inhibitors. Moreover, partial inhibition of KIF11 or depletion of KIF15 converted MP cells from multipolar to bipolar mitosis after WGD. Multipolar spindle formation involved microtubules but was independent of kinetochore-microtubule attachment. Silencing KIFC1, but not KIFC3, promoted multipolar mitosis in BP cells, indicating the involvement of specific kinesin-14 family members in counteracting the forces from KIF11/KIF15 after WGD. These findings highlight the collective role of KIF11, KIF15, and KIFC1 in determining the polarity of the mitotic spindle after WGD.


Sujet(s)
Centrosome , Kinésine , Mitose , Appareil du fuseau , Kinésine/métabolisme , Kinésine/génétique , Centrosome/métabolisme , Humains , Mitose/génétique , Appareil du fuseau/métabolisme , Duplication de gène , Microtubules/métabolisme , Lignée cellulaire , Kinétochores/métabolisme , Génome humain
18.
Nat Commun ; 15(1): 5611, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38965240

RÉSUMÉ

Mitotic errors generate micronuclei entrapping mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates diverse genomic rearrangements associated with human diseases. How specific repair pathways recognize and process these lesions remains poorly understood. Here we use CRISPR/Cas9 to systematically inactivate distinct DSB repair pathways and interrogate the rearrangement landscape of fragmented chromosomes. Deletion of canonical non-homologous end joining (NHEJ) components substantially reduces complex rearrangements and shifts the rearrangement landscape toward simple alterations without the characteristic patterns of chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within sub-nuclear micronuclei bodies (MN bodies) and undergo ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments are rarely engaged by alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics, persistent 53BP1-labeled MN bodies, and cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements from mitotic errors.


Sujet(s)
Systèmes CRISPR-Cas , Chromothripsis , Cassures double-brin de l'ADN , Réparation de l'ADN par jonction d'extrémités , Mitose , Mitose/génétique , Humains , Réarrangement des gènes , Protéine-1 liant le suppresseur de tumeur p53/métabolisme , Protéine-1 liant le suppresseur de tumeur p53/génétique , Micronoyaux à chromosomes défectueux
19.
Blood Cancer Discov ; 5(5): 353-370, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-38856693

RÉSUMÉ

Splicing factor SF3B1 mutations are frequent somatic lesions in myeloid neoplasms that transform hematopoietic stem cells (HSCs) by inducing mis-splicing of target genes. However, the molecular and functional consequences of SF3B1 mutations in human HSCs and progenitors (HSPCs) remain unclear. Here, we identify the mis-splicing program in human HSPCs as a targetable vulnerability by precise gene editing of SF3B1 K700E mutations in primary CD34+ cells. Mutant SF3B1 induced pervasive mis-splicing and reduced expression of genes regulating mitosis and genome maintenance leading to altered differentiation, delayed G2/M progression, and profound sensitivity to CHK1 inhibition (CHK1i). Mis-splicing or reduced expression of mitotic regulators BUBR1 and CDC27 delayed G2/M transit and promoted CHK1i sensitivity. Clinical CHK1i prexasertib selectively targeted SF3B1-mutant immunophenotypic HSCs and abrogated engraftment in vivo. These findings identify mis-splicing of mitotic regulators in SF3B1-mutant HSPCs as a targetable vulnerability engaged by pharmacological CHK1 inhibition. Significance: In this study, we engineer precise SF3B1 mutations in human HSPCs and identify CHK1 inhibition as a selective vulnerability promoted by mis-splicing of mitotic regulators. These findings uncover the mis-splicing program induced by mutant SF3B1 in human HSPCs and show that it can be therapeutically targeted by clinical CHK1 inhibitors.


Sujet(s)
Checkpoint kinase 1 , Cellules souches hématopoïétiques , Mitose , Mutation , Facteurs d'épissage des ARN , Humains , Checkpoint kinase 1/génétique , Checkpoint kinase 1/métabolisme , Checkpoint kinase 1/antagonistes et inhibiteurs , Facteurs d'épissage des ARN/génétique , Facteurs d'épissage des ARN/métabolisme , Cellules souches hématopoïétiques/effets des médicaments et des substances chimiques , Cellules souches hématopoïétiques/métabolisme , Mitose/effets des médicaments et des substances chimiques , Mitose/génétique , Phosphoprotéines/génétique , Phosphoprotéines/métabolisme , Souris , Animaux , Inhibiteurs de protéines kinases/pharmacologie
20.
Nucleic Acids Res ; 52(16): 9886-9903, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-38943343

RÉSUMÉ

Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.


Sujet(s)
Mitose , Poly A , Protéine-1 de liaison au poly(A) , Polyadénylation , Stabilité de l'ARN , ARN messager , Transcriptome , Humains , Mitose/génétique , Protéine-1 de liaison au poly(A)/métabolisme , Protéine-1 de liaison au poly(A)/génétique , ARN messager/métabolisme , ARN messager/génétique , Phosphorylation , Poly A/métabolisme , Stabilité de l'ARN/génétique , Noyau de la cellule/métabolisme , Noyau de la cellule/génétique , Cellules HeLa
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE