Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 11.552
Filtrer
1.
Bioorg Chem ; 151: 107718, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39142195

RÉSUMÉ

S-omeprazole and R-rabeprazole are important proton pump inhibitors (PPIs) used for treating peptic disorders. They can be biosynthesized from the corresponding sulfide catalyzed by Baeyer-Villiger monooxygenases (BVMOs). During the development of BVMOs for target sulfoxide preparation, stereoselectivity and overoxidation degree are important factors considered most. In the present study, LnPAMO-Mu15 designed previously and TtPAMO from Thermothelomyces thermophilus showed high (S)- and (R)-configuration stereoselectivity respectively towards thioethers. TtPAMO was found to be capable of oxidating omeprazole sulfide (OPS) and rabeprazole sulfide (RPS) into R-omeprazole and R-rabeprazole respectively. However, the overoxidation issue existed and limited the application of TtPAMO in the biosynthesis of sulfoxides. The structural mechanisms for adverse stereoselectivity between LnPAMO-Mu15 and TtPAMO towards OPS and the overoxidation of OPS by TtPAMO were revealed, based on which, TtPAMO was rationally designed focused on the flexibility of loops near catalytic sites. The variant TtPAMO-S482Y was screened out with lowest overoxidation degree towards OPS and RPS due to the decreased flexibility of catalytic center than TtPAMO. The success in this study not only proved the rationality of the overoxidation mechanism proposed in this study but also provided hints for the development of BVMOs towards thioether substrate for corresponding sulfoxide preparation.


Sujet(s)
Domaine catalytique , Oxydoréduction , Sulfures , Sulfures/composition chimique , Sulfures/métabolisme , Structure moléculaire , Mixed function oxygenases/métabolisme , Mixed function oxygenases/composition chimique , Conception de médicament , Relation structure-activité , Relation dose-effet des médicaments
2.
Methods Enzymol ; 702: 247-280, 2024.
Article de Anglais | MEDLINE | ID: mdl-39155115

RÉSUMÉ

Siderophores are essential molecules released by some bacteria and fungi in iron-limiting environments to sequester ferric iron, satisfying metabolic needs. Flavin-dependent N-hydroxylating monooxygenases (NMOs) catalyze the hydroxylation of nitrogen atoms to generate important siderophore functional groups such as hydroxamates. It has been demonstrated that the function of NMOs is essential for virulence, implicating these enzymes as potential drug targets. This chapter aims to serve as a resource for the characterization of NMO's enzymatic activities using several biochemical techniques. We describe assays that allow for the determination of steady-state kinetic parameters, detection of hydroxylated amine products, measurement of the rate-limiting step(s), and the application toward drug discovery efforts. While not exhaustive, this chapter will provide a foundation for the characterization of enzymes involved in siderophore biosynthesis, allowing for gaps in knowledge within the field to be addressed.


Sujet(s)
Mixed function oxygenases , Sidérophores , Sidérophores/métabolisme , Sidérophores/biosynthèse , Mixed function oxygenases/métabolisme , Cinétique , Hydroxylation , Dosages enzymatiques/méthodes , Flavines/métabolisme , Protéines bactériennes/métabolisme
3.
Microb Cell Fact ; 23(1): 227, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39135032

RÉSUMÉ

BACKGROUND: The large-scale biocatalytic application of oxidoreductases requires systems for a cost-effective and efficient regeneration of redox cofactors. These represent the major bottleneck for industrial bioproduction and an important cost factor. In this work, co-expression of the genes of invertase and a Baeyer-Villiger monooxygenase from Burkholderia xenovorans to E. coli W ΔcscR and E. coli BL21 (DE3) enabled efficient biotransformation of cyclohexanone to the polymer precursor, ε-caprolactone using sucrose as electron source for regeneration of redox cofactors, at rates comparable to glucose. E. coli W ΔcscR has a native csc regulon enabling sucrose utilization and is deregulated via deletion of the repressor gene (cscR), thus enabling sucrose uptake even at concentrations below 6 mM (2 g L-1). On the other hand, E. coli BL21 (DE3), which is widely used as an expression host does not contain a csc regulon. RESULTS: Herein, we show a proof of concept where the co-expression of invertase for both E. coli hosts was sufficient for efficient sucrose utilization to sustain cofactor regeneration in the Baeyer-Villiger oxidation of cyclohexanone. Using E. coli W ΔcscR, a specific activity of 37 U gDCW-1 was obtained, demonstrating the suitability of the strain for recombinant gene co-expression and subsequent whole-cell biotransformation. In addition, the same co-expression cassette was transferred and investigated with E. coli BL21 (DE3), which showed a specific activity of 17 U gDCW- 1. Finally, biotransformation using photosynthetically-derived sucrose from Synechocystis S02 with E. coli W ΔcscR expressing BVMO showed complete conversion of cyclohexanone after 3 h, especially with the strain expressing the invertase gene in the periplasm. CONCLUSIONS: Results show that sucrose can be an alternative electron source to drive whole-cell biotransformations in recombinant E. coli strains opening novel strategies for sustainable chemical production.


Sujet(s)
Escherichia coli , Saccharose , beta-Fructofuranosidase , Escherichia coli/génétique , Escherichia coli/métabolisme , beta-Fructofuranosidase/métabolisme , beta-Fructofuranosidase/génétique , Saccharose/métabolisme , Mixed function oxygenases/métabolisme , Mixed function oxygenases/génétique , Cyclohexanones/métabolisme , Oxydoréduction , Protéines recombinantes/métabolisme , Protéines recombinantes/génétique , Électrons , Biotransformation , Caproates , Lactones
4.
Nat Commun ; 15(1): 6824, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39122694

RÉSUMÉ

MICAL proteins represent a unique family of actin regulators crucial for synapse development, membrane trafficking, and cytokinesis. Unlike classical actin regulators, MICALs catalyze the oxidation of specific residues within actin filaments to induce robust filament disassembly. The potent activity of MICALs requires tight control to prevent extensive damage to actin cytoskeleton. However, the molecular mechanism governing MICALs' activity regulation remains elusive. Here, we report the cryo-EM structure of MICAL1 in the autoinhibited state, unveiling a head-to-tail interaction that allosterically blocks enzymatic activity. The structure also reveals the assembly of C-terminal domains via a tripartite interdomain interaction, stabilizing the inhibitory conformation of the RBD. Our structural, biochemical, and cellular analyses elucidate a multi-step mechanism to relieve MICAL1 autoinhibition in response to the dual-binding of two Rab effectors, revealing its intricate activity regulation mechanisms. Furthermore, our mutagenesis study of MICAL3 suggests the conserved autoinhibition and relief mechanisms among MICALs.


Sujet(s)
Actines , Cryomicroscopie électronique , Mixed function oxygenases , Humains , Actines/métabolisme , Mixed function oxygenases/métabolisme , Mixed function oxygenases/composition chimique , Protéines des microfilaments/métabolisme , Protéines des microfilaments/génétique , Protéines des microfilaments/composition chimique , Liaison aux protéines , Cytosquelette d'actine/métabolisme , Modèles moléculaires , Protéines G rab/métabolisme , Protéines G rab/génétique , Protéines du cytosquelette/métabolisme , Protéines du cytosquelette/composition chimique , Protéines du cytosquelette/génétique , Domaines protéiques ,
5.
Molecules ; 29(15)2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39124879

RÉSUMÉ

Flavin-containing monooxygenase from Methylophaga sp. (mFMO) was previously discovered to be a valuable biocatalyst used to convert small amines, such as trimethylamine, and various indoles. As FMOs are also known to act on sulfides, we explored mFMO and some mutants thereof for their ability to convert prochiral aromatic sulfides. We included a newly identified thermostable FMO obtained from the bacterium Nitrincola lacisaponensis (NiFMO). The FMOs were found to be active with most tested sulfides, forming chiral sulfoxides with moderate-to-high enantioselectivity. Each enzyme variant exhibited a different enantioselective behavior. This shows that small changes in the substrate binding pocket of mFMO influence selectivity, representing a tunable biocatalyst for enantioselective sulfoxidations.


Sujet(s)
Oxygénases , Oxygénases/métabolisme , Oxygénases/composition chimique , Spécificité du substrat , Biocatalyse , Oxydoréduction , Sulfures/métabolisme , Sulfures/composition chimique , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Sulfoxydes/composition chimique , Sulfoxydes/métabolisme , Catalyse , Flavines/métabolisme , Flavines/composition chimique , Stéréoisomérie , Mixed function oxygenases/métabolisme , Mixed function oxygenases/composition chimique , Mixed function oxygenases/génétique
6.
Talanta ; 279: 126675, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39116726

RÉSUMÉ

In this study, we developed a wearable nanozyme-enzyme electrochemical biosensor that enablies sweat lactate monitoring. The biosensor comprises a flexible electrode system prepared on a polyimide (PI) film and the Janus textile for unidirectional sweat transport. We obtained favorable electrochemical activities for hydrogen peroxide reduction by modifying the laser-scribed graphene (LSG) electrode with cerium dioxide (CeO2)-molybdenum disulphide (MoS2) nanozyme and gold nanoparticles (AuNPs). By further immobilisation of lactate oxidase (LOx), the proposed biosensor achieves chronoamperometric lactate detection in artificial sweat within a range of 0.1-50.0 mM, a high sensitivity of 25.58 µA mM-1cm-2 and a limit of detection (LoD) down to 0.135 mM, which fully meets the requirements of clinical diagnostics. We demonstrated accurate lactate measurements in spiked artificial sweat, which is consistent with standard ELISA results. To monitor the sweat produced by volunteers while exercising, we conducted on-body tests, showcasing the wearable biosensor's ability to provide clinical sweat lactate diagnosis for medical treatment and sports management.


Sujet(s)
Techniques de biocapteur , Techniques électrochimiques , Or , Graphite , Acide lactique , Mixed function oxygenases , Sueur , Dispositifs électroniques portables , Techniques de biocapteur/instrumentation , Sueur/composition chimique , Humains , Acide lactique/analyse , Techniques électrochimiques/instrumentation , Mixed function oxygenases/composition chimique , Mixed function oxygenases/métabolisme , Or/composition chimique , Graphite/composition chimique , Enzymes immobilisées/composition chimique , Molybdène/composition chimique , Nanoparticules métalliques/composition chimique , Électrodes , Disulfures/composition chimique , Limite de détection
7.
Int J Mol Sci ; 25(16)2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39201247

RÉSUMÉ

Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox). Through 2D high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS), varying levels of 5-methylcytosine (5-mC) were found, with MCF-7 displaying the highest levels. Furthermore, TET3 mRNA expression levels varied among the cell lines, with MCF-7 exhibiting the lowest expression. Notably, treatment with 4-HT induced significant changes in TET3 expression across all cell lines, with the most pronounced increase seen in MCF-7 and the least in MDA-MB-231. These findings underscore the influence of tamoxifen derivatives on DNA methylation patterns, particularly through modulating TET3 expression, which appears to be contingent on the presence of estrogen receptors. This study highlights the potential of targeting epigenetic modifications for personalized anti-cancer therapy, offering a novel avenue to improve treatment outcomes.


Sujet(s)
Tumeurs du sein , Dioxygenases , Régulation de l'expression des gènes tumoraux , Modulateurs sélectifs des récepteurs des oestrogènes , Tamoxifène , Humains , Tumeurs du sein/métabolisme , Tumeurs du sein/génétique , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/anatomopathologie , Tamoxifène/pharmacologie , Tamoxifène/analogues et dérivés , Femelle , Dioxygenases/génétique , Dioxygenases/métabolisme , Modulateurs sélectifs des récepteurs des oestrogènes/pharmacologie , Cellules MCF-7 , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Récepteurs des oestrogènes/métabolisme , Récepteurs des oestrogènes/génétique , Protéines proto-oncogènes/métabolisme , Protéines proto-oncogènes/génétique , Méthylation de l'ADN/effets des médicaments et des substances chimiques , 5-Méthyl-cytosine/analogues et dérivés , 5-Méthyl-cytosine/métabolisme , Mixed function oxygenases/génétique , Mixed function oxygenases/métabolisme , Spectrométrie de masse en tandem
8.
J Agric Food Chem ; 72(35): 19436-19446, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39180741

RÉSUMÉ

Dihydroquercetin is a vital flavonoid compound with a wide range of physiological activities. However, factors, such as metabolic regulation, limit the heterologous synthesis of dihydroquercetin in microorganisms. In this study, flavanone 3-hydroxylase (F3H) and flavanone 3'-hydroxylase (F3'H) were screened from different plants, and their co-expression in Saccharomyces cerevisiae was optimized. Promoter engineering and redox partner engineering were used to optimize the corresponding expression of genes involved in the dihydroquercetin synthesis pathway. Dihydroquercetin production was further improved through multicopy integration pathway genes and systems metabolic engineering. By increasing NADPH and α-ketoglutarate supply, the catalytic efficiency of F3'H and F3H was improved, thereby effectively increasing dihydroquercetin production (235.1 mg/L). Finally, 873.1 mg/L dihydroquercetin titer was obtained by fed-batch fermentation in a 5-L bioreactor, which is the highest dihydroquercetin production achieved through de novo microbial synthesis. These results established a pivotal groundwork for flavonoids synthesis.


Sujet(s)
Génie métabolique , Quercétine , Saccharomyces cerevisiae , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Quercétine/analogues et dérivés , Quercétine/métabolisme , Quercétine/biosynthèse , Fermentation , Mixed function oxygenases/génétique , Mixed function oxygenases/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Voies de biosynthèse
9.
J Am Chem Soc ; 146(35): 24271-24287, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39172701

RÉSUMÉ

Hyoscyamine 6ß-hydroxylase (H6H) is an iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase that produces the prolifically administered antinausea drug, scopolamine. After its namesake hydroxylation reaction, H6H then couples the newly installed C6 oxygen to C7 to produce the drug's epoxide functionality. Oxoiron(IV) (ferryl) intermediates initiate both reactions by cleaving C-H bonds, but it remains unclear how the enzyme switches the target site and promotes (C6)O-C7 coupling in preference to C7 hydroxylation in the second step. In one possible epoxidation mechanism, the C6 oxygen would─analogously to mechanisms proposed for the Fe/2OG halogenases and, in our more recent study, N-acetylnorloline synthase (LolO)─coordinate as alkoxide to the C7-H-cleaving ferryl intermediate to enable alkoxyl coupling to the ensuing C7 radical. Here, we provide structural and kinetic evidence that H6H does not employ substrate coordination or repositioning for the epoxidation step but instead exploits the distinct spatial dependencies of competitive C-H cleavage (C6 vs C7) and C-O-coupling (oxygen rebound vs cyclization) steps to promote the two-step sequence. Structural comparisons of ferryl-mimicking vanadyl complexes of wild-type H6H and a variant that preferentially 7-hydroxylates instead of epoxidizing 6ß-hydroxyhyoscyamine suggest that a modest (∼10°) shift in the Fe-O-H(C7) approach angle is sufficient to change the outcome. The 7-hydroxylation:epoxidation partition ratios of both proteins increase more than 5-fold in 2H2O, reflecting an epoxidation-specific requirement for cleavage of the alcohol O-H bond, which, unlike in the LolO oxacyclization, is not accomplished by iron coordination in advance of C-H cleavage.


Sujet(s)
Mixed function oxygenases , Hydroxylation , Mixed function oxygenases/métabolisme , Mixed function oxygenases/composition chimique , Spécificité du substrat , Biocatalyse , Composés époxy/composition chimique , Composés époxy/métabolisme
10.
Int J Mol Sci ; 25(16)2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39201381

RÉSUMÉ

Gibberellins (GAs), enzymes that play a significant role in plant growth and development, and their levels in plants could be regulated by gibberellin-oxidases (GAoxs). As important fruit trees and ornamental plants, the study of the mechanism of plant architecture formation of the Prunus genus is crucial. Here, 85 GAox genes were identified from P. mume, P. armeniaca, P. salicina, and P. persica, and they were classified into six subgroups. Conserved motif and gene structure analysis showed that GAoxs were conserved in the four Prunus species. Collinearity analysis revealed two fragment replication events of PmGAoxs in the P. mume genome. Promoter cis-elements analysis revealed 24 PmGAoxs contained hormone-responsive elements and development regulatory elements. The expression profile indicated that PmGAoxs have tissue expression specificity, and GA levels during the dormancy stage of flower buds were controlled by certain PmGAoxs. After being treated with IAA or GA3, the transcription level of PmGA2ox8 in stems was significantly increased and showed a differential expression level between upright and weeping stems. GUS activity driven by PmGA2ox8 promoter was detected in roots, stems, leaves, and flower organs of Arabidopsis. PmGA2ox8 overexpression in Arabidopsis leads to dwarfing phenotype, increased number of rosette leaves but decreased leaf area, and delayed flowering. Our results showed that GAoxs were conserved in Prunus species, and PmGA2ox8 played an essential role in regulating plant height.


Sujet(s)
Régulation de l'expression des gènes végétaux , Gibbérellines , Phylogenèse , Protéines végétales , Prunus , Prunus/génétique , Prunus/croissance et développement , Prunus/enzymologie , Prunus/métabolisme , Gibbérellines/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Régions promotrices (génétique) , Arabidopsis/génétique , Arabidopsis/croissance et développement , Famille multigénique , Mixed function oxygenases/génétique , Mixed function oxygenases/métabolisme , Génome végétal
11.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39201558

RÉSUMÉ

Polyacrylamide (PAM) is a high-molecular-weight polymer with extensive applications. However, the inefficient natural degradation of PAM results in environmental accumulation of the polymer. Biodegradation is an environmentally friendly approach in the field of PAM treatment. The first phase of PAM biodegradation is the deamination of PAM, forming the product poly(acrylic acid) (PAA). The second phase of PAM biodegradation involves the cleavage of PAA into small molecules, which is a crucial step in the degradation pathway of PAM. However, the enzyme that catalyzes the degradation of PAA and the molecular mechanism remain unclear. Here, a novel monooxygenase PCX02514 is identified as the key enzyme for PAA degradation. Through biochemical experiments, the monooxygenase PCX02514 oxidizes PAA with the participation of NADPH, causing the cleavage of carbon chains and a decrease in the molecular weight of PAA. In addition, the crystal structure of the monooxygenase PCX02514 is solved at a resolution of 1.97 Å. The active pocket is in a long cavity that extends from the C-terminus of the TIM barrel to the protein surface and exhibits positive electrostatic potential, thereby causing the migration of oxygen-negative ions into the active pocket and facilitating the reaction between the substrates and monooxygenase PCX02514. Moreover, Arg10-Arg125-Ser186-Arg187-His253 are proposed as potential active sites in monooxygenase PCX02514. Our research characterizes the molecular mechanism of this monooxygenase, providing a theoretical basis and valuable tools for PAM bioremediation.


Sujet(s)
Résines acryliques , Dépollution biologique de l'environnement , Mixed function oxygenases , Résines acryliques/composition chimique , Mixed function oxygenases/métabolisme , Mixed function oxygenases/composition chimique , Domaine catalytique , Modèles moléculaires , Cristallographie aux rayons X , Conformation des protéines
12.
Carbohydr Polym ; 343: 122465, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39174080

RÉSUMÉ

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidatively cleave recalcitrant polysaccharides such as cellulose. Several studies have reported LPMO action in synergy with other carbohydrate-active enzymes (CAZymes) for the degradation of lignocellulosic biomass but direct LPMO action at the plant tissue level remains challenging to investigate. Here, we have developed a MALDI-MS imaging workflow to detect oxidised oligosaccharides released by a cellulose-active LPMO at cellular level on maize tissues. Using this workflow, we imaged LPMO action and gained insight into the spatial variation and relative abundance of oxidised and non-oxidised oligosaccharides. We reveal a targeted action of the LPMO related to the composition and organisation of plant cell walls.


Sujet(s)
Mixed function oxygenases , Spectrométrie de masse MALDI , Zea mays , Zea mays/composition chimique , Mixed function oxygenases/métabolisme , Mixed function oxygenases/composition chimique , Spectrométrie de masse MALDI/méthodes , Cellulose/composition chimique , Cellulose/métabolisme , Paroi cellulaire/composition chimique , Paroi cellulaire/métabolisme , Oligosaccharides/composition chimique , Oligosaccharides/métabolisme , Lignine/composition chimique , Lignine/métabolisme , Oxydoréduction , Polyosides/composition chimique , Polyosides/métabolisme , Protéines végétales/composition chimique , Protéines végétales/métabolisme
13.
Appl Microbiol Biotechnol ; 108(1): 444, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39167166

RÉSUMÉ

The current study is the first to describe the temporal and differential transcriptional expression of two lytic polysaccharide monooxygenase (LPMO) genes of Rasamsonia emersonii in response to various carbon sources. The mass spectrometry based secretome analysis of carbohydrate active enzymes (CAZymes) expression in response to different carbon sources showed varying levels of LPMOs (AA9), AA3, AA7, catalase, and superoxide dismutase enzymes pointing toward the redox-interplay between the LPMOs and auxiliary enzymes. Moreover, it was observed that cello-oligosaccharides have a negative impact on the expression of LPMOs, which has not been highlighted in previous reports. The LPMO1 (30 kDa) and LPMO2 (47 kDa), cloned and expressed in Pichia pastoris, were catalytically active with (kcat/Km) of 6.6×10-2 mg-1 ml min-1 and 1.8×10-2 mg-1 ml min-1 against Avicel, respectively. The mass spectrometry of hydrolysis products of Avicel/carboxy methyl cellulose (CMC) showed presence of C1/C4 oxidized oligosaccharides indicating them to be Type 3 LPMOs. The 3D structural analysis of LPMO1 and LPMO2 revealed distinct arrangements of conserved catalytic residues at their active site. The developed enzyme cocktails consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant LPMO1/LPMO2 resulted in significantly enhanced saccharification of steam/acid pretreated unwashed rice straw slurry from PRAJ industries (Pune, India). The current work indicates that LPMO1 and LPMO2 are catalytically efficient and have a high degree of thermostability, emphasizing their usefulness in improving benchmark enzyme cocktail performance. KEY POINTS: • Mass spectrometry depicts subtle interactions between LPMOs and auxiliary enzymes. • Cello-oligosaccharides strongly downregulated the LPMO1 expression. • Developed LPMO cocktails showed superior hydrolysis in comparison to CellicCTec3.


Sujet(s)
Mixed function oxygenases , Mixed function oxygenases/génétique , Mixed function oxygenases/métabolisme , Mixed function oxygenases/composition chimique , Polyosides/métabolisme , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Protéines fongiques/composition chimique , Hydrolyse , Cellulose/métabolisme , Régulation de l'expression des gènes fongiques , Oligosaccharides/métabolisme , Clonage moléculaire
14.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39125743

RÉSUMÉ

The unique amino acid hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is exclusively formed on the translational regulator eukaryotic initiation factor 5A (eIF5A) via a process coined hypusination. Hypusination is mediated by two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH), and hypusinated eIF5A (eIF5AHyp) promotes translation elongation by alleviating ribosome pauses at amino acid motifs that cause structural constraints, and it also facilitates translation initiation and termination. Accordingly, eIF5AHyp has diverse biological functions that rely on translational control of its targets. Homozygous deletion of Eif5a, Dhps, or Dohh in mice leads to embryonic lethality, and heterozygous germline variants in EIF5A and biallelic variants in DHPS and DOHH are associated with rare inherited neurodevelopmental disorders, underscoring the importance of the hypusine circuit for embryonic and neuronal development. Given the pleiotropic effects of eIF5AHyp, a detailed understanding of the cell context-specific intrinsic roles of eIF5AHyp and of the chronic versus acute effects of eIF5AHyp inhibition is necessary to develop future strategies for eIF5AHyp-targeted therapy to treat various human health problems. Here, we review the most recent studies documenting the intrinsic roles of eIF5AHyp in different tissues/cell types under normal or pathophysiological conditions and discuss these unique aspects of eIF5AHyp-dependent translational control.


Sujet(s)
, Lysine , Facteurs initiation chaîne peptidique , Protéines de liaison à l'ARN , Facteurs initiation chaîne peptidique/métabolisme , Facteurs initiation chaîne peptidique/génétique , Humains , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Animaux , Lysine/métabolisme , Lysine/analogues et dérivés , Oxidoreductases acting on CH-NH group donors/génétique , Oxidoreductases acting on CH-NH group donors/métabolisme , Mixed function oxygenases/génétique , Mixed function oxygenases/métabolisme , Biosynthèse des protéines , Souris
15.
Int J Biol Macromol ; 276(Pt 2): 133929, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39025178

RÉSUMÉ

Among the enzymes derived from fungus that act on polysaccharides, lytic polysaccharide monooxygenase (LPMOs) has emerged as a new member with complex reaction mechanisms and high efficiency in dealing with recalcitrant crystalline polysaccharides. This study reported the characteristics, structure, and biochemical properties of a novel LPMO from Talaromyces sedimenticola (namely MaLPMO9K) obtained from the Mariana Trench. MaLPMO9K was a multi-domain protein combined with main body and a carbohydrate-binding module. It was heterologously expressed in E. coli for analyzing peroxidase activity in reactions with the substrate 2,6-DMP, where H2O2 serves as a co-substrate. Optimal peroxidase activity for MaLPMO9K was observed at pH 8 and 25 °C, achieving the best Vmax value of 265.2 U·g-1. In addition, MaLPMO9K also demonstrated the ability to treat cellulose derivatives, and cellobiose substrates without the presence of reducing agents.


Sujet(s)
Cellulose , Mixed function oxygenases , Oxydoréduction , Mixed function oxygenases/métabolisme , Mixed function oxygenases/composition chimique , Cellulose/métabolisme , Cellulose/composition chimique , Talaromyces/enzymologie , Spécificité du substrat , Concentration en ions d'hydrogène , Réducteurs/composition chimique , Polyosides/métabolisme , Polyosides/composition chimique , Peroxyde d'hydrogène/métabolisme , Cinétique , Protéines fongiques/métabolisme , Protéines fongiques/composition chimique , Organismes aquatiques
16.
Org Biomol Chem ; 22(30): 6149-6155, 2024 07 31.
Article de Anglais | MEDLINE | ID: mdl-39012342

RÉSUMÉ

The unspecific peroxygenase (UPO) from Agrocybe aegerita (rAaeUPO-PaDa-I-H) is an effective and practical biocatalyst for the oxidative expansion of furfuryl alcohols/amines on a preparative scale, using the Achmatowicz and aza-Achmatowicz reaction. The high activity and stability of the enzyme, which can be produced on a large scale as an air-stable lyophilised powder, renders it a versatile and scalable biocatalyst for the preparation of synthetically valuable 6-hydroxypyranones and dihydropiperidinones. In several cases, the biotransformation out-performed the analogous chemo-catalysed process, and operates under milder and greener reaction conditions.


Sujet(s)
Agrocybe , Mixed function oxygenases , Agrocybe/enzymologie , Amines/composition chimique , Amines/métabolisme , Biocatalyse , Mixed function oxygenases/métabolisme , Mixed function oxygenases/composition chimique , Structure moléculaire
17.
Mikrochim Acta ; 191(8): 455, 2024 07 09.
Article de Anglais | MEDLINE | ID: mdl-38980437

RÉSUMÉ

A novel optical lactate biosensor is presented that utilizes a colorimetric interaction between H2O2 liberated by a binary enzymatic reaction and bis(neocuproine)copper(II) complex ([Cu(Nc)2]2+) known as CUPRAC (cupric reducing antioxidant capacity) reagent. In the first step, lactate oxidase (LOx) and pyruvate oxidase (POx) were separately immobilized on silanized magnetite nanoparticles (SiO2@Fe3O4 NPs), and thus, 2 mol of H2O2 was released per 1 mol of the substrate due to a sequential enzymatic reaction of the mixture of LOx-SiO2@Fe3O4 and POx-SiO2@Fe3O4 NPs with lactate and pyruvate, respectively. In the second step, the absorbance at 450 nm of the yellow-orange [Cu(Nc)2]+ complex formed through the color reaction of enzymatically produced H2O2 with [Cu(Nc)2]2+ was recorded. The results indicate that the developed colorimetric binary enzymatic biosensor exhibits a broad linear range of response between 0.5 and 50.0 µM for lactate under optimal conditions with a detection limit of 0.17 µM. The fabricated biosensor did not respond to other saccharides, while the positive interferences of certain reducing compounds such as dopamine, ascorbic acid, and uric acid were minimized through their oxidative removal with a pre-oxidant (NaBiO3) before enzymatic and colorimetric reactions. The fabricated optical biosensor was applied to various samples such as artificial blood, artificial/real sweat, and cow milk. The high recovery values (close to 100%) achieved for lactate-spiked samples indicate an acceptable accuracy of this colorimetric biosensor in the determination of lactate in real samples. Due to the increase in H2O2 production with the bienzymatic lactate sensor, the proposed method displays double-fold sensitivity relative to monoenzymatic biosensors and involves a neat color reaction with cupric-neocuproine having a clear stoichiometry as opposed to the rather indefinite stoichiometry of analogous redox dye methods.


Sujet(s)
Techniques de biocapteur , Colorimétrie , Cuivre , Enzymes immobilisées , Peroxyde d'hydrogène , Acide lactique , Nanoparticules de magnétite , Mixed function oxygenases , Pyruvate oxidase , Techniques de biocapteur/méthodes , Colorimétrie/méthodes , Enzymes immobilisées/composition chimique , Enzymes immobilisées/métabolisme , Mixed function oxygenases/composition chimique , Mixed function oxygenases/métabolisme , Cuivre/composition chimique , Nanoparticules de magnétite/composition chimique , Pyruvate oxidase/composition chimique , Pyruvate oxidase/métabolisme , Acide lactique/analyse , Acide lactique/composition chimique , Peroxyde d'hydrogène/composition chimique , Limite de détection , Animaux , Silice/composition chimique , Phénanthrolines
18.
Cell Rep ; 43(8): 114548, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39052482

RÉSUMÉ

Human cortical neurons (hCNs) exhibit high dendritic complexity and synaptic density, and the maturation process is greatly protracted. However, the molecular mechanism governing these specific features remains unclear. Here, we report that the hominoid-specific gene TBC1D3 promotes dendritic arborization and protracts the pace of synaptogenesis. Ablation of TBC1D3 in induced hCNs causes reduction of dendritic growth and precocious synaptic maturation. Forced expression of TBC1D3 in the mouse cortex protracts synaptic maturation while increasing dendritic growth. Mechanistically, TBC1D3 functions via interaction with MICAL1, a monooxygenase that mediates oxidation of actin filament. At the early stage of differentiation, the TBC1D3/MICAL1 interaction in the cytosol promotes dendritic growth via F-actin oxidation and enhanced actin dynamics. At late stages, TBC1D3 escorts MICAL1 into the nucleus and downregulates the expression of genes related with synaptic maturation through interaction with the chromatin remodeling factor ATRX. Thus, this study delineates the molecular mechanisms underlying human neuron development.


Sujet(s)
Protéines des microfilaments , Transduction du signal , Synapses , Humains , Animaux , Synapses/métabolisme , Souris , Protéines des microfilaments/métabolisme , Protéines des microfilaments/génétique , Protéines d'activation de la GTPase/métabolisme , Protéines d'activation de la GTPase/génétique , Actines/métabolisme , Neurones/métabolisme , Dendrites/métabolisme , Helicase/métabolisme , Neurogenèse , Mixed function oxygenases/métabolisme , Mixed function oxygenases/génétique , Différenciation cellulaire ,
19.
Cell Mol Life Sci ; 81(1): 284, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38967794

RÉSUMÉ

Hepatocellular carcinoma (HCC) is a malignancy that occurs worldwide and is generally associated with poor prognosis. The development of resistance to targeted therapies such as sorafenib is a major challenge in clinical cancer treatment. In the present study, Ten-eleven translocation protein 1 (TET1) was found to be highly expressed in sorafenib-resistant HCC cells and knockdown of TET1 can substantially improve the therapeutic effect of sorafenib on HCC, indicating the potential important roles of TET1 in sorafenib resistance in HCC. Mechanistic studies determined that TET1 and Yes-associated protein 1 (YAP1) synergistically regulate the promoter methylation and gene expression of DNA repair-related genes in sorafenib-resistant HCC cells. RNA sequencing indicated the activation of DNA damage repair signaling was extensively suppressed by the TET1 inhibitor Bobcat339. We also identified TET1 as a direct transcriptional target of YAP1 by promoter analysis and chromatin-immunoprecipitation assays in sorafenib-resistant HCC cells. Furthermore, we showed that Bobcat339 can overcome sorafenib resistance and synergized with sorafenib to induce tumor eradication in HCC cells and mouse models. Finally, immunostaining showed a positive correlation between TET1 and YAP1 in clinical samples. Our findings have identified a previously unrecognized molecular pathway underlying HCC sorafenib resistance, thus revealing a promising strategy for cancer therapy.


Sujet(s)
Carcinome hépatocellulaire , Réparation de l'ADN , Résistance aux médicaments antinéoplasiques , Régulation de l'expression des gènes tumoraux , Tumeurs du foie , Transduction du signal , Sorafénib , Animaux , Humains , Souris , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/métabolisme , Carcinome hépatocellulaire/anatomopathologie , Lignée cellulaire tumorale , Méthylation de l'ADN/effets des médicaments et des substances chimiques , Réparation de l'ADN/effets des médicaments et des substances chimiques , Réparation de l'ADN/génétique , Résistance aux médicaments antinéoplasiques/génétique , Épigenèse génétique/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Voie de signalisation Hippo , Tumeurs du foie/génétique , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/métabolisme , Tumeurs du foie/anatomopathologie , Souris de lignée BALB C , Souris nude , Mixed function oxygenases/génétique , Mixed function oxygenases/métabolisme , Protéines proto-oncogènes/métabolisme , Protéines proto-oncogènes/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Sorafénib/pharmacologie , Sorafénib/usage thérapeutique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Tests d'activité antitumorale sur modèle de xénogreffe , Protéines de signalisation YAP/métabolisme
20.
PLoS One ; 19(7): e0306611, 2024.
Article de Anglais | MEDLINE | ID: mdl-38995904

RÉSUMÉ

In insects, biogenic amines function as neurotransmitters, neuromodulators, and neurohormones, influencing various behaviors, including those related to reproduction such as response to sex pheromones, oogenesis, oviposition, courtship, and mating. Octopamine (OA), an analog of the vertebrate norepinephrine, is synthesized from the biogenic amine tyramine by the enzyme tyramine ß-hydroxylase (TßH). Here, we investigate the mechanisms and target genes underlying the role of OA in successful reproduction in females of Rhodnius prolixus, a vector of Chagas disease, by downregulating TßH mRNA expression (thereby reducing OA content) using RNA interference (RNAi), and in vivo and ex vivo application of OA. Injection of females with dsTßH impairs successful reproduction at least in part, by decreasing the transcript expression of enzymes involved in juvenile hormone biosynthesis, the primary hormone for oogenesis in R. prolixus, thereby interfering with oogenesis, ovulation and oviposition. This study offers valuable insights into the involvement of OA for successful reproduction in R. prolixus females. Understanding the reproductive biology of R. prolixus is crucial in a medical context for controlling the spread of the disease.


Sujet(s)
Octopamine , Ovogenèse , Oviposition , Reproduction , Rhodnius , Animaux , Rhodnius/génétique , Rhodnius/physiologie , Rhodnius/métabolisme , Octopamine/métabolisme , Femelle , Interférence par ARN , Mixed function oxygenases/métabolisme , Mixed function oxygenases/génétique , Hormones juvéniles/métabolisme , Ovulation , Protéines d'insecte/métabolisme , Protéines d'insecte/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE