Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.003
Filtrer
1.
Proc Natl Acad Sci U S A ; 121(34): e2322938121, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39141351

RÉSUMÉ

The removal of mis-incorporated nucleotides by proofreading activity ensures DNA replication fidelity. Whereas the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, it has been shown that proofreading in a majority of bacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase, despite the presence of a DnaQ homolog that is structurally and functionally distinct from E. coli DnaQ. However, the biological functions of this type of noncanonical DnaQ remain unclear. Here, we provide independent evidence that noncanonical DnaQ functions as an additional proofreader for mycobacteria. Using the mutation accumulation assay in combination with whole-genome sequencing, we showed that depletion of DnaQ in Mycolicibacterium smegmatis leads to an increased mutation rate, resulting in AT-biased mutagenesis and increased insertions/deletions in the homopolymer tract. Our results showed that mycobacterial DnaQ binds to the ß clamp and functions synergistically with the PHP domain proofreader to correct replication errors. Furthermore, the loss of dnaQ results in replication fork dysfunction, leading to attenuated growth and increased mutagenesis on subinhibitory fluoroquinolones potentially due to increased vulnerability to fork collapse. By analyzing the sequence polymorphism of dnaQ in clinical isolates of Mycobacterium tuberculosis (Mtb), we demonstrated that a naturally evolved DnaQ variant prevalent in Mtb lineage 4.3 may enable hypermutability and is associated with drug resistance. These results establish a coproofreading model and suggest a division of labor between DnaQ and PHP domain proofreader. This study also provides real-world evidence that a mutator-driven evolutionary pathway may exist during the adaptation of Mtb.


Sujet(s)
Réplication de l'ADN , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , ADN bactérien/génétique , ADN bactérien/métabolisme , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/métabolisme , Mutation
2.
Front Cell Infect Microbiol ; 14: 1427829, 2024.
Article de Anglais | MEDLINE | ID: mdl-39113823

RÉSUMÉ

Introduction: The two-component signal transduction systems play an essential role in the adaptation of bacteria to changing environmental conditions. One of them is the MnoSR system involved in the regulation of methylotrophic metabolism in M. smegmatis. Methods: Mycobacterium smegmatis mutant strains ΔmnoS, ΔmnoR and ΔmnoS/R lacking functional mnoS, mnoR and both genes were generated using a homologous recombination approach. MnoR recombinant protein was purified by affinity column chromatography. The present study employs molecular biology techniques: cloning strategies, global RNA sequencing, qRT-PCR, EMSA, Microscale thermophoresis, and bioinformatics analysis. Results and discussion: The ∆mnoS, ∆mnoR, and ∆mnoS/R mutant strains were generated and cultured in the presence of defined carbon sources. Growth curve analysis confirmed that inactivation of the MnoSR impairs the ability of M. smegmatis cells to use alcohols such as 1,3-propanediol and ethanol but improves the bacterial growth on ethylene glycol, xylitol, and glycerol. The total RNA sequencing method was employed to understand the importance of MnoSR in the global responses of mycobacteria to limited carbon access and in carbon-rich conditions. The loss of MnoSR significantly affected carbon utilization in the case of mycobacteria cultured on glucose or 1,3-propanediol as sole carbon sources as it influenced the expression of multiple metabolic pathways. The numerous transcriptional changes could not be linked to the presence of evident MnoR DNA-binding sites within the promotor regions for the genes outside of the mno operon. This was confirmed by EMSA and microscale thermophoresis with mutated MnoR binding consensus region. Our comprehensive analysis highlights the system's vital role in metabolic adaptability, providing insights into its potential impact on the environmental survival of mycobacteria.


Sujet(s)
Protéines bactériennes , Carbone , Régulation de l'expression des gènes bactériens , Glucose , Mycobacterium smegmatis , Propylène glycols , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/métabolisme , Glucose/métabolisme , Propylène glycols/métabolisme , Propylène glycols/pharmacologie , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Carbone/métabolisme , Régions promotrices (génétique)
3.
Nat Commun ; 15(1): 6673, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39107302

RÉSUMÉ

Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.


Sujet(s)
Guanosine triphosphate , IMP dehydrogenase , IMP dehydrogenase/métabolisme , IMP dehydrogenase/composition chimique , IMP dehydrogenase/antagonistes et inhibiteurs , Régulation allostérique , Guanosine triphosphate/métabolisme , Cryomicroscopie électronique , Domaine catalytique , Modèles moléculaires , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Guanosine pentaphosphate/métabolisme , IMP/métabolisme , IMP/composition chimique , Liaison aux protéines , Adénosine triphosphate/métabolisme , Mycobacterium smegmatis/enzymologie , Mycobacterium smegmatis/métabolisme
4.
Redox Biol ; 75: 103285, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39128229

RÉSUMÉ

The ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (•NO) and superoxide (O2•-) produced by phagocytes contributes to its success as a human pathogen. Recombination of •NO and O2•- generates peroxynitrite (ONOO-), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward •NO and O2•- is well established, how Mtb responds to ONOO- remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of Mtb during infection. We synthesized a series of compounds that generate both •NO and O2•-, which should combine to produce ONOO-. From this library, we identified CJ067 that permeates Mtb to reliably enhance intracellular ONOO- levels. CJ067-exposed Mtb strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, Mycobacterium smegmatis (Msm), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO-. RNA-sequencing with Mtb revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe-4S cluster repair pathway (suf operon). CJ067 impaired the activity of the 4Fe-4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of Mtb. Work with Mtb strains defective in SUF and IscS involved in Fe-S cluster biogenesis pathways showed that both systems cooperatively protect Mtb from intracellular ONOO- in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, Mtb is uniquely sensitive to intracellular ONOO- and targeting Fe-S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).


Sujet(s)
Métabolisme énergétique , Homéostasie , Ferrosulfoprotéines , Mycobacterium tuberculosis , Oxydoréduction , Acide peroxynitreux , Mycobacterium tuberculosis/métabolisme , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/effets des médicaments et des substances chimiques , Acide peroxynitreux/métabolisme , Ferrosulfoprotéines/métabolisme , Ferrosulfoprotéines/génétique , Humains , Monoxyde d'azote/métabolisme , Stress oxydatif , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/effets des médicaments et des substances chimiques , Superoxydes/métabolisme , Macrophages/métabolisme , Macrophages/microbiologie , Tuberculose/microbiologie , Tuberculose/métabolisme
5.
Commun Biol ; 7(1): 1035, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39179666

RÉSUMÉ

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a serious threat to global public health. Fluoroquinolones (FQs) are effective against M. tuberculosis; however, resistant strains have limited their efficacy. Mycobacterium fluoroquinolone resistance protein A (MfpA) confers intrinsic resistance to FQs; however, its regulatory mechanisms remain largely unknown. Using M. smegmatis as a model, we investigated whether MfpC is necessary for FQ susceptibility. MfpC mutants were sensitive to moxifloxacin, indicating that MfpC is involved in FQ susceptibility. By testing the mfpC inactivation phenotype in different mutants and using mycobacterial protein fragment complementation, we demonstrated that the function of MfpC depends on its interactions with MfpB. Guanine nucleotide exchange assays and site-directed mutagenesis confirmed that MfpC acts as a guanine nucleotide exchange factor to regulate MfpB. We propose that MfpB influences MfpA at the translational level. In summary, we reveal the role of MfpC in regulating the function of MfpA in FQ resistance.


Sujet(s)
Protéines bactériennes , Fluoroquinolones , Mycobacterium smegmatis , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/effets des médicaments et des substances chimiques , Fluoroquinolones/pharmacologie , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Résistance bactérienne aux médicaments/génétique , Facteurs d'échange de nucléotides guanyliques/métabolisme , Facteurs d'échange de nucléotides guanyliques/génétique , Tests de sensibilité microbienne , Antibactériens/pharmacologie , Régulation de l'expression des gènes bactériens , Mutation
6.
Sci Rep ; 14(1): 19026, 2024 08 16.
Article de Anglais | MEDLINE | ID: mdl-39152186

RÉSUMÉ

Condensins play important roles in maintaining bacterial chromatin integrity. In mycobacteria, three types of condensins have been characterized: a homolog of SMC and two MksB-like proteins, the recently identified MksB and EptC. Previous studies suggest that EptC contributes to defending against foreign DNA, while SMC and MksB may play roles in chromosome organization. Here, we report for the first time that the condensins, SMC and MksB, are involved in various DNA transactions during the cell cycle of Mycobacterium smegmatis (currently named Mycolicibacterium smegmatis). SMC appears to be required during the last steps of the cell cycle, where it contributes to sister chromosome separation. Intriguingly, in contrast to other bacteria, mycobacterial MksB follows replication forks during chromosome replication and hence may be involved in organizing newly replicated DNA.


Sujet(s)
Adenosine triphosphatases , Protéines bactériennes , Réplication de l'ADN , Protéines de liaison à l'ADN , Complexes multiprotéiques , Mycobacterium smegmatis , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Adenosine triphosphatases/métabolisme , Complexes multiprotéiques/métabolisme , Chromosomes de bactérie/métabolisme , Chromosomes de bactérie/génétique , ADN bactérien/métabolisme , ADN bactérien/génétique , Cycle cellulaire , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique
7.
Mol Microbiol ; 122(2): 243-254, 2024 08.
Article de Anglais | MEDLINE | ID: mdl-38994875

RÉSUMÉ

Endolysins produced by bacteriophages hydrolyze host cell wall peptidoglycan to release newly assembled virions. D29 mycobacteriophage specifically infects mycobacteria including the pathogenic Mycobacterium tuberculosis. D29 encodes LysA endolysin, which hydrolyzes mycobacterial cell wall peptidoglycan. We previously showed that LysA harbors two catalytic domains (N-terminal domain [NTD] and lysozyme-like domain [LD]) and a C-terminal cell wall binding domain (CTD). While the importance of LD and CTD in mycobacteriophage biology has been examined in great detail, NTD has largely remained unexplored. Here, to address NTD's significance in D29 physiology, we generated NTD-deficient D29 (D29∆NTD) by deleting the NTD-coding region from D29 genome using CRISPY-BRED. We show that D29∆NTD is viable, but has a longer latent period, and a remarkably reduced burst size and plaque size. A large number of phages were found to be trapped in the host during the D29∆NTD-mediated cell lysis event. Such poor release of progeny phages during host cell lysis strongly suggests that NTD-deficient LysA produced by D29∆NTD, despite having catalytically-active LD, is unable to efficiently lyse host bacteria. We thus conclude that LysA NTD is essential for optimal release of progeny virions, thereby playing an extremely vital role in phage physiology and phage propagation in the environment.


Sujet(s)
Paroi cellulaire , Endopeptidases , Mycobactériophages , Mycobacterium tuberculosis , Peptidoglycane , Mycobactériophages/génétique , Mycobactériophages/métabolisme , Endopeptidases/métabolisme , Endopeptidases/génétique , Paroi cellulaire/métabolisme , Peptidoglycane/métabolisme , Mycobacterium tuberculosis/virologie , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/métabolisme , Protéines virales/métabolisme , Protéines virales/génétique , Domaines protéiques , Virion/métabolisme , Bactériolyse , Mycobacterium smegmatis/virologie , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/métabolisme
8.
mBio ; 15(8): e0124824, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39012146

RÉSUMÉ

Mycobacterium smegmatis Nei2 is a monomeric enzyme with AP ß-lyase activity on single-stranded DNA. Expression of Nei2, and its operonic neighbor Lhr (a tetrameric 3'-to-5' helicase), is induced in mycobacteria exposed to DNA damaging agents. Here, we find that nei2 deletion sensitizes M. smegmatis to killing by DNA inter-strand crosslinker trimethylpsoralen but not to crosslinkers mitomycin C and cisplatin. By contrast, deletion of lhr sensitizes to killing by all three crosslinking agents. We report a 1.45 Å crystal structure of recombinant Nei2, which is composed of N and C terminal lobes flanking a central groove suitable for DNA binding. The C lobe includes a tetracysteine zinc complex. Mutational analysis identifies the N-terminal proline residue (Pro2 of the ORF) and Lys51, but not Glu3, as essential for AP lyase activity. We find that Nei2 has 5-hydroxyuracil glycosylase activity on single-stranded DNA that is effaced by alanine mutations of Glu3 and Lys51 but not Pro2. Testing complementation of psoralen sensitivity by expression of wild-type and mutant nei2 alleles in ∆nei2 cells established that AP lyase activity is neither sufficient nor essential for crosslink repair. By contrast, complementation of psoralen sensitivity of ∆lhr cells by mutant lhr alleles depended on Lhr's ATPase/helicase activities and its tetrameric quaternary structure. The lhr-nei2 operon comprises a unique bacterial system to rectify inter-strand crosslinks.IMPORTANCEThe DNA inter-strand crosslinking agents mitomycin C, cisplatin, and psoralen-UVA are used clinically for the treatment of cancers and skin diseases; they have been invaluable in elucidating the pathways of inter-strand crosslink repair in eukaryal systems. Whereas DNA crosslinkers are known to trigger a DNA damage response in bacteria, the roster of bacterial crosslink repair factors is incomplete and likely to vary among taxa. This study implicates the DNA damage-inducible mycobacterial lhr-nei2 gene operon in protecting Mycobacterium smegmatis from killing by inter-strand crosslinkers. Whereas interdicting the activity of the Lhr helicase sensitizes mycobacteria to mitomycin C, cisplatin, and psoralen-UVA, the Nei2 glycosylase functions uniquely in evasion of damage caused by psoralen-UVA.


Sujet(s)
Réparation de l'ADN , Psoralène , Mycobacterium smegmatis , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/effets des médicaments et des substances chimiques , Mycobacterium smegmatis/enzymologie , Mycobacterium smegmatis/métabolisme , Psoralène/composition chimique , Psoralène/pharmacologie , Psoralène/métabolisme , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/composition chimique , Altération de l'ADN , Réactifs réticulants/composition chimique , Cristallographie aux rayons X , ADN bactérien/génétique , ADN bactérien/métabolisme , Mitomycine/pharmacologie , Mitomycine/métabolisme , Délétion de gène
9.
Microbiol Spectr ; 12(8): e0320723, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-38916330

RÉSUMÉ

Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism and physiology, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins, and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for future studies investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria. IMPORTANCE: The pathway for biosynthesis and utilization of riboflavin, precursor of the essential coenzymes, FMN and FAD, is of particular interest in the flavin-rich pathogen, Mycobacterium tuberculosis (Mtb), for two important reasons: (i) the pathway includes potential tuberculosis (TB) drug targets and (ii) intermediates from the riboflavin biosynthesis pathway provide ligands for mucosal-associated invariant T (MAIT) cells, which have been implicated in TB pathogenesis. However, the riboflavin pathway is poorly understood in mycobacteria, which lack canonical mechanisms to transport this vitamin and to regulate flavin coenzyme homeostasis. By conditionally disrupting each step of the pathway and assessing the impact on mycobacterial viability and on the levels of the pathway proteins as well as riboflavin, our work provides genetic validation of the riboflavin pathway as a target for TB drug discovery and offers a resource for further exploring the association between riboflavin biosynthesis, MAIT cell activation, and TB infection and disease.


Sujet(s)
Mycobacterium smegmatis , Mycobacterium tuberculosis , Riboflavine , Riboflavine/biosynthèse , Riboflavine/métabolisme , Mycobacterium tuberculosis/métabolisme , Mycobacterium tuberculosis/génétique , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Humains , Flavine adénine dinucléotide/métabolisme , Voies de biosynthèse/génétique , Techniques de knock-down de gènes , Cellules T invariantes associées aux muqueuses/métabolisme , Régulation de l'expression des gènes bactériens
10.
Nat Commun ; 15(1): 5276, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38902248

RÉSUMÉ

Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.


Sujet(s)
Cryomicroscopie électronique , Mycobacterium smegmatis , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/enzymologie , Transport d'électrons , Oxydoréduction , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique , Protons , Complexe III de la chaîne respiratoire/métabolisme , Complexe III de la chaîne respiratoire/composition chimique , Oxygène/métabolisme , Complexe IV de la chaîne respiratoire/métabolisme , Complexe IV de la chaîne respiratoire/composition chimique , Domaine catalytique , Modèles moléculaires
11.
Int J Biol Macromol ; 272(Pt 1): 132727, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38823743

RÉSUMÉ

Due to the uniqueness and essentiality of MEP pathway for the synthesis of crucial metabolites- isoprenoids, hopanoids, menaquinone etc. in mycobacterium, enzymes of this pathway are considered promising anti-tubercular drug targets. In the present study we seek to understand the consequences of downregulation of three of the essential genes- DXS, IspD, and IspF of MEP pathway using CRISPRi approach combined with transcriptomics in Mycobacterium smegmatis. Conditional knock down of either DXS or IspD or IspF gene showed strong bactericidal effect and a profound change in colony morphology. Impaired MEP pathway due to downregulation of these genes increased the susceptibility to frontline anti-tubercular drugs. Further, reduced EtBr accumulation in all the knock down strains in the presence and absence of efflux inhibitor indicated altered cell wall topology. Subsequently, transcriptional analysis validated by qRT-PCR of +154DXS, +128IspD, +104IspF strains showed that modifying the expression of these MEP pathway enzymes affects the regulation of mycobacterial core components. Among the DEGs, expression of small and large ribosomal binding proteins (rpsL, rpsJ, rplN, rplX, rplM, rplS, etc), essential protein translocases (secE, secY and infA, infC), transcriptional regulator (CarD and SigB) and metabolic enzymes (acpP, hydA, ald and fabD) were significantly depleted causing the bactericidal effect. However, mycobacteria survived under these damaging conditions by upregulating mostly the genes needed for the repair of DNA damage (DNA polymerase IV, dinB), synthesis of essential metabolites (serB, LeuA, atpD) and those strengthening the cell wall integrity (otsA, murA, D-alanyl-D-alanine dipeptidase etc.).


Sujet(s)
Protéines bactériennes , Régulation de l'expression des gènes bactériens , Mycobacterium smegmatis , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes bactériens/effets des médicaments et des substances chimiques , Antituberculeux/pharmacologie , Viabilité microbienne/effets des médicaments et des substances chimiques , Viabilité microbienne/génétique , Voies et réseaux métaboliques
12.
Microbiol Spectr ; 12(7): e0048724, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38860795

RÉSUMÉ

Iron scavenging is required for full virulence of mycobacterial pathogens. During infection, the host immune response restricts mycobacterial access to iron, which is essential for bacterial respiration and DNA synthesis. The Mycobacterium tuberculosis iron-dependent regulator (IdeR) responds to changes in iron accessibility by repressing iron-uptake genes when iron is available. In contrast, iron-uptake gene transcription is induced when iron is depleted. The ideR gene is essential in M. tuberculosis and is required for bacterial growth. To further study how iron regulates transcription, wee developed an iron responsive reporter system that relies on an IdeR-regulated promoter to drive Cre and loxP mediated recombination in Mycobacterium smegmatis. Recombination leads to the expression of an antibiotic resistance gene so that mutations that activate the IdeR-regulated promoter can be selected. A transposon library in the background of this reporter system was exposed to media containing iron and hemin, and this resulted in the selection of mutants in the antioxidant mycothiol synthesis pathway. We validated that inactivation of the mycothiol synthesis gene mshA results in increased recombination and increased IdeR-regulated promoter activity in the reporter system. Further, we show that vitamin C, which has been shown to oxidize iron through the Fenton reaction, can decrease promoter activity in the mshA mutant. We conclude that the intracellular redox state balanced by mycothiol can alter IdeR activity in the presence of iron.IMPORTANCEMycobacterium smegmatis is a tractable organism to study mycobacterial gene regulation. We used M. smegmatis to construct a novel recombination-based reporter system that allows for the selection of mutations that deregulate a promoter of interest. Transposon mutagenesis and insertion sequencing (TnSeq) in the recombination reporter strain identified genes that impact iron regulated promoter activity in mycobacteria. We found that the mycothiol synthesis gene mshA is required for IdeR mediated transcriptional regulation by maintaining intracellular redox balance. By affecting the oxidative state of the intracellular environment, mycothiol can modulate iron-dependent transcriptional activity. Taken more broadly, this novel reporter system can be used in combination with transposon mutagenesis to identify genes that are required by Mycobacterium tuberculosis to overcome temporary or local changes in iron availability during infection.


Sujet(s)
Protéines bactériennes , Régulation de l'expression des gènes bactériens , Gènes rapporteurs , Glycopeptides , Inositol , Fer , Mycobacterium smegmatis , Oxydoréduction , Fer/métabolisme , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Inositol/métabolisme , Glycopeptides/métabolisme , Glycopeptides/biosynthèse , Régions promotrices (génétique) , Cystéine/métabolisme , Mycobacterium tuberculosis/métabolisme , Mycobacterium tuberculosis/génétique , Éléments transposables d'ADN , Protéines de répression
13.
FEBS Lett ; 598(13): 1620-1632, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38697952

RÉSUMÉ

Mycobacterium tuberculosis (M. tb) has a complex cell wall, composed largely of mycolic acids, that are crucial to its structural maintenance. The M. tb desaturase A1 (DesA1) is an essential Ca2+-binding protein that catalyses a key step in mycolic acid biosynthesis. To investigate the structural and functional significance of Ca2+ binding, we introduced mutations at key residues in its Ca2+-binding ßγ-crystallin motif to generate DesA1F303A, E304Q, and F303A-E304Q. Complementation of a conditional ΔdesA1 strain of Mycobacterium smegmatis, with the Ca2+ non-binders F303A or F303A-E304Q, failed to rescue its growth phenotype; these complements also exhibited enhanced cell wall permeability. Our findings highlight the criticality of Ca2+ in DesA1 function, and its implicit role in the maintenance of mycobacterial cellular integrity.


Sujet(s)
Protéines bactériennes , Calcium , Paroi cellulaire , Mycobacterium tuberculosis , Mycobacterium tuberculosis/métabolisme , Mycobacterium tuberculosis/génétique , Calcium/métabolisme , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Paroi cellulaire/métabolisme , Paroi cellulaire/génétique , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/génétique , Mutation , Liaison aux protéines , Acides mycoliques/métabolisme
14.
Nat Commun ; 15(1): 4161, 2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38755122

RÉSUMÉ

Lipid biosynthesis in the pathogen Mycobacterium tuberculosis depends on biotin for posttranslational modification of key enzymes. However, the mycobacterial biotin synthetic pathway is not fully understood. Here, we show that rv1590, a gene of previously unknown function, is required by M. tuberculosis to synthesize biotin. Chemical-generic interaction experiments mapped the function of rv1590 to the conversion of dethiobiotin to biotin, which is catalyzed by biotin synthases (BioB). Biochemical studies confirmed that in contrast to BioB of Escherichia coli, BioB of M. tuberculosis requires Rv1590 (which we named "biotin synthase auxiliary protein" or BsaP), for activity. We found homologs of bsaP associated with bioB in many actinobacterial genomes, and confirmed that BioB of Mycobacterium smegmatis also requires BsaP. Structural comparisons of BsaP-associated biotin synthases with BsaP-independent biotin synthases suggest that the need for BsaP is determined by the [2Fe-2S] cluster that inserts sulfur into dethiobiotin. Our findings open new opportunities to seek BioB inhibitors to treat infections with M. tuberculosis and other pathogens.


Sujet(s)
Protéines bactériennes , Biotine , Mycobacterium tuberculosis , Biotine/métabolisme , Biotine/analogues et dérivés , Mycobacterium tuberculosis/enzymologie , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/métabolisme , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Sulfurtransferases/métabolisme , Sulfurtransferases/génétique , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/enzymologie , Escherichia coli/métabolisme , Escherichia coli/génétique
15.
DNA Repair (Amst) ; 139: 103693, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38776712

RÉSUMÉ

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg2+ requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E. coli MutT (EcoMutT) and mycobacterial MutT1 (MsmMutT1) belong to the Nudix hydrolase superfamily that utilize 8-oxo-(d)GTP (referring to both 8-oxo-GTP or 8-oxo-dGTP). However, predominant products of their activities are different. While EcoMutT produces 8-oxo-(d)GMP, MsmMutT1 gives rise to 8-oxo-(d)GDP. Here, we show that the altered cleavage specificities of the two proteins are largely a consequence of the variation at the equivalent of Gly37 (G37) in EcoMutT to Lys (K65) in the MsmMutT1. Remarkably, mutations of G37K (EcoMutT) and K65G (MsmMutT1) switch their cleavage specificities to produce 8-oxo-(d)GDP, and 8-oxo-(d)GMP, respectively. Further, a time course analysis using 8-oxo-GTP suggests that MsmMutT1(K65G) hydrolyses 8-oxo-(d)GTP to 8-oxo-(d)GMP in a two-step reaction via 8-oxo-(d)GDP intermediate. Expectedly, unlike EcoMutT (G37K) and MsmMutT1, EcoMutT and MsmMutT1 (K65G) rescue an E. coli ΔmutT strain, better by decreasing A to C mutations.


Sujet(s)
Nucléotide désoxyguanylique , Protéines Escherichia coli , Escherichia coli , Mycobacterium smegmatis , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/composition chimique , Mycobacterium smegmatis/enzymologie , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/génétique , Spécificité du substrat , Nucléotide désoxyguanylique/métabolisme , Escherichia coli/métabolisme , Escherichia coli/génétique , Escherichia coli/enzymologie , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Substitution d'acide aminé , Pyrophosphatases/métabolisme , Pyrophosphatases/génétique , Phosphoric monoester hydrolases/métabolisme , Phosphoric monoester hydrolases/génétique , Guanosine triphosphate/métabolisme , Guanosine triphosphate/analogues et dérivés
16.
Cell Mol Life Sci ; 81(1): 203, 2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38698289

RÉSUMÉ

Nitrogen metabolism of M. tuberculosis is critical for its survival in infected host cells. M. tuberculosis has evolved sophisticated strategies to switch between de novo synthesis and uptake of various amino acids from host cells for metabolic demands. Pyridoxal phosphate-dependent histidinol phosphate aminotransferase-HspAT enzyme is critically required for histidine biosynthesis. HspAT is involved in metabolic synthesis of histidine, phenylalanine, tyrosine, tryptophan, and novobiocin. We showed that M. tuberculosis Rv2231c is a conserved enzyme with HspAT activity. Rv2231c is a monomeric globular protein that contains α-helices and ß-sheets. It is a secretory and cell wall-localized protein that regulates critical pathogenic attributes. Rv2231c enhances the survival and virulence of recombinant M. smegmatis in infected RAW264.7 macrophage cells. Rv2231c is recognized by the TLR4 innate immune receptor and modulates the host immune response by suppressing the secretion of the antibacterial pro-inflammatory cytokines TNF, IL-12, and IL-6. It also inhibits the expression of co-stimulatory molecules CD80 and CD86 along with antigen presenting molecule MHC-I on macrophage and suppresses reactive nitrogen species formation, thereby promoting M2 macrophage polarization. Recombinant M. smegmatis expressing Rv2231c inhibited apoptosis in macrophages, promoting efficient bacterial survival and proliferation, thereby increasing virulence. Our results indicate that Rv2231c is a moonlighting protein that regulates multiple functions of M. tuberculosis pathophysiology to increase its virulence. These mechanistic insights can be used to better understand the pathogenesis of M. tuberculosis and to design strategies for tuberculosis mitigation.


Sujet(s)
Macrophages , Mycobacterium tuberculosis , Transaminases , Souris , Mycobacterium tuberculosis/pathogénicité , Mycobacterium tuberculosis/immunologie , Mycobacterium tuberculosis/enzymologie , Mycobacterium tuberculosis/métabolisme , Animaux , Cellules RAW 264.7 , Virulence , Macrophages/microbiologie , Macrophages/immunologie , Macrophages/métabolisme , Transaminases/métabolisme , Transaminases/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Mycobacterium smegmatis/pathogénicité , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/enzymologie , Cytokines/métabolisme , Récepteur de type Toll-4/métabolisme , Humains , Immunité innée , Interactions hôte-pathogène/immunologie , Tuberculose/immunologie , Tuberculose/microbiologie
17.
Nat Commun ; 15(1): 4065, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38744895

RÉSUMÉ

Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving selectively directing disease-causing proteins for degradation through proteolytic systems. Our ability to exploit targeted protein degradation (TPD) for antibiotic development remains nascent due to our limited understanding of which bacterial proteins are amenable to a TPD strategy. Here, we use a genetic system to model chemically-induced proximity and degradation to screen essential proteins in Mycobacterium smegmatis (Msm), a model for the human pathogen M. tuberculosis (Mtb). By integrating experimental screening of 72 protein candidates and machine learning, we find that drug-induced proximity to the bacterial ClpC1P1P2 proteolytic complex leads to the degradation of many endogenous proteins, especially those with disordered termini. Additionally, TPD of essential Msm proteins inhibits bacterial growth and potentiates the effects of existing antimicrobial compounds. Together, our results provide biological principles to select and evaluate attractive targets for future Mtb PROTAC development, as both standalone antibiotics and potentiators of existing antibiotic efficacy.


Sujet(s)
Antibactériens , Protéines bactériennes , Mycobacterium smegmatis , Mycobacterium tuberculosis , Protéolyse , Protéolyse/effets des médicaments et des substances chimiques , Mycobacterium smegmatis/effets des médicaments et des substances chimiques , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Antibactériens/pharmacologie , Mycobacterium tuberculosis/effets des médicaments et des substances chimiques , Mycobacterium tuberculosis/métabolisme , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/croissance et développement , Humains , Tests de sensibilité microbienne , Apprentissage machine
18.
mSphere ; 9(5): e0012224, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38591887

RÉSUMÉ

Antibiotic resistance in Mycobacterium tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that in Mycobacterium smegmatis, as in other bacterial species, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA. IMPORTANCE: Unlike many other pathogens, Mycobacterium tuberculosis has limited ability for horizontal gene transfer, a major mechanism for developing antibiotic resistance. Thus, the mechanisms that facilitate chromosomal mutagenesis are of particular importance in mycobacteria. Here, we show that Lsr2, a nucleoid-associated protein, has a novel role in DNA replication and mutagenesis in the model mycobacterium Mycobacterium smegmatis. We find that Lsr2 promotes the fast exchange rate of the replicative DNA polymerase, DnaE1, at the replication fork and is important for the effective loading of the DnaE2-ImuA'-ImuB translesion complex. Without lsr2, M. smegmatis replicates its chromosome more faithfully and acquires resistance to rifampin at a lower rate, but at the cost of impaired survival to DNA damaging agents. Together, our work establishes Lsr2 as a potential factor in the emergence of mycobacterial antibiotic resistance.


Sujet(s)
Protéines bactériennes , Réplication de l'ADN , DNA-directed DNA polymerase , Résistance bactérienne aux médicaments , Mycobacterium smegmatis , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/effets des médicaments et des substances chimiques , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/enzymologie , DNA-directed DNA polymerase/génétique , DNA-directed DNA polymerase/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Résistance bactérienne aux médicaments/génétique , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Antigènes bactériens
19.
Curr Opin Microbiol ; 79: 102478, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38653035

RÉSUMÉ

Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.


Sujet(s)
Paroi cellulaire , Galactanes , Acides mycoliques , Paroi cellulaire/métabolisme , Acides mycoliques/métabolisme , Galactanes/métabolisme , Peptidoglycane/métabolisme , Mycobacterium tuberculosis/métabolisme , Mycobacterium tuberculosis/génétique , Corynebacterium glutamicum/métabolisme , Corynebacterium glutamicum/croissance et développement , Corynebacterium glutamicum/génétique , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/croissance et développement , Mycobacterium smegmatis/génétique , Arabinose/métabolisme , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique
20.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 4): 82-91, 2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38656226

RÉSUMÉ

The rise in antimicrobial resistance is a global health crisis and necessitates the development of novel strategies to treat infections. For example, in 2022 tuberculosis (TB) was the second leading infectious killer after COVID-19, with multi-drug-resistant strains of TB having an ∼40% fatality rate. Targeting essential biosynthetic pathways in pathogens has proven to be successful for the development of novel antimicrobial treatments. Fatty-acid synthesis (FAS) in bacteria proceeds via the type II pathway, which is substantially different from the type I pathway utilized in animals. This makes bacterial fatty-acid biosynthesis (Fab) enzymes appealing as drug targets. FabG is an essential FASII enzyme, and some bacteria, such as Mycobacterium tuberculosis, the causative agent of TB, harbor multiple homologs. FabG4 is a conserved, high-molecular-weight FabG (HMwFabG) that was first identified in M. tuberculosis and is distinct from the canonical low-molecular-weight FabG. Here, structural and functional analyses of Mycolicibacterium smegmatis FabG4, the third HMwFabG studied to date, are reported. Crystal structures of NAD+ and apo MsFabG4, along with kinetic analyses, show that MsFabG4 preferentially binds and uses NADH when reducing CoA substrates. As M. smegmatis is often used as a model organism for M. tuberculosis, these studies may aid the development of drugs to treat TB and add to the growing body of research that distinguish HMwFabGs from the archetypal low-molecular-weight FabG.


Sujet(s)
Protéines bactériennes , Mycobacterium smegmatis , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/enzymologie , Mycobacterium smegmatis/génétique , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Cristallographie aux rayons X , Modèles moléculaires , Séquence d'acides aminés , Protéines recombinantes/génétique , Protéines recombinantes/composition chimique , Protéines recombinantes/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE