Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 8.908
Filtrer
1.
Front Immunol ; 15: 1392256, 2024.
Article de Anglais | MEDLINE | ID: mdl-38887283

RÉSUMÉ

Introduction: The assessment of tuberculosis (TB) treatment outcomes predominantly relies on sputum culture conversion status. To enhance treatment management, it is crucial to identify non-sputum-based biomarkers that can predict unfavorable outcomes. Cytokines are widely studied as diagnostic biomarkers for active TB. However, their potential as indicators for unfavorable treatment outcomes remains uncertain. Methodology: This study was conducted within a well-characterized cohort comprising newly diagnosed patients with drug-sensitive pulmonary TB, confirmed through sputum smear and culture positivity. Our objective was to elucidate the TB antigen-stimulated cytokine profile at pre-treatment and at 2 months into anti-TB treatment (ATT) in patients with unfavorable treatment outcomes (cases, n = 27) in comparison to recurrence-free, microbiologically cured controls (n = 31). Whole blood was stimulated with TB antigens using the QuantiFERON In-tube gold method, and plasma supernatants were subjected to a panel of 14 cytokine measurements. Results: In our study, pre-treatment analysis revealed that eight cytokines (IL-2, IFN-γ, TNF-α, IL-6, IL-10, IL-17A, IL-18, and GM-CSF) were significantly elevated at baseline in cases compared to cured controls, both in unstimulated conditions and following TB antigen (CFP10, ESAT6, and TB7.7) stimulation. A similar pattern was observed at the 2-month mark of ATT, with eight cytokines (IL-2, IL-10, IL-13, IFN-γ, IL-6, IL-12p70, IL-17A, and TNF-α) showing significant differences between the groups. Importantly, no variations were detected following mitogen stimulation, underscoring that these distinctive immune responses are primarily driven by TB-specific antigens. Conclusion: Our findings indicate that individuals with unfavorable TB treatment outcomes display a characteristic cytokine profile distinct from TB-cured patients, even before commencing ATT. Therefore, the levels of specific cytokine pre-treatment and at the 2-month point in the course of treatment may serve as predictive immune markers for identifying individuals at risk of unfavorable TB treatment outcomes, with these responses being predominantly influenced by TB-specific antigens.


Sujet(s)
Antigènes bactériens , Antituberculeux , Marqueurs biologiques , Cytokines , Mycobacterium tuberculosis , Tuberculose pulmonaire , Humains , Tuberculose pulmonaire/immunologie , Tuberculose pulmonaire/sang , Tuberculose pulmonaire/diagnostic , Tuberculose pulmonaire/traitement médicamenteux , Cytokines/sang , Mâle , Femelle , Adulte , Adulte d'âge moyen , Marqueurs biologiques/sang , Antigènes bactériens/immunologie , Résultat thérapeutique , Antituberculeux/usage thérapeutique , Mycobacterium tuberculosis/immunologie , Sujet âgé
2.
Methods Mol Biol ; 2813: 1-17, 2024.
Article de Anglais | MEDLINE | ID: mdl-38888767

RÉSUMÉ

Intracellular pathogens comprise a diverse group of pathogens that all share a required location in a host cell to infect, survive, and replicate. Intracellular location allows pathogens to hide from host immune responses, avoid competition with other pathogens, mediate host cellular functions, replicate safely, and cause infection that is difficult to target with therapeutics. All intracellular pathogens have varying routes of infiltration into host cells and different host cell preferences. For example, bacteria Mycobacterium tuberculosis chooses to invade antigen-presenting cells, which allows them to moderate host antigen presentation to memory cells, whereas rabies virus prefers to invade neurons because they have pre-existing innate immunity protection systems. Regardless of the pathway that each intracellular pathogen follows, all share the capacity to cause disease if they succeed in entering host cells. Here, we give an overview of selected intracellular pathogens and infections they cause, immune responses they induce, and intervention strategies used to treat and control them.


Sujet(s)
Interactions hôte-pathogène , Humains , Animaux , Interactions hôte-pathogène/immunologie , Mycobacterium tuberculosis/immunologie , Mycobacterium tuberculosis/pathogénicité , Immunité innée , Virus de la rage/immunologie , Virus de la rage/pathogénicité
3.
Nat Commun ; 15(1): 5191, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38890283

RÉSUMÉ

A recent clinical trial demonstrated that Bacille Calmette-Guérin (BCG) revaccination of adolescents reduced the risk of sustained infection with Mycobacterium tuberculosis (M.tb). In a companion phase 1b trial, HVTN 602/Aeras A-042, we characterize in-depth the cellular responses to BCG revaccination or to a H4:IC31 vaccine boost to identify T cell subsets that could be responsible for the protection observed. High-dimensional clustering analysis of cells profiled using a 26-color flow cytometric panel show marked increases in five effector memory CD4+ T cell subpopulations (TEM) after BCG revaccination, two of which are highly polyfunctional. CITE-Seq single-cell analysis shows that the activated subsets include an abundant cluster of Th1 cells with migratory potential. Additionally, a small cluster of Th17 TEM cells induced by BCG revaccination expresses high levels of CD103; these may represent recirculating tissue-resident memory cells that could provide pulmonary immune protection. Together, these results identify unique populations of CD4+ T cells with potential to be immune correlates of protection conferred by BCG revaccination.


Sujet(s)
Vaccin BCG , Lymphocytes T CD4+ , Mycobacterium tuberculosis , Mycobacterium tuberculosis/immunologie , Humains , Adolescent , Lymphocytes T CD4+/immunologie , Vaccin BCG/immunologie , Rappel de vaccin , Tuberculose/immunologie , Tuberculose/prévention et contrôle , Tuberculose/microbiologie , Femelle , Mâle , Phénotype , Analyse sur cellule unique , Lymphocytes auxiliaires Th1/immunologie , Mémoire immunologique/immunologie
4.
Front Immunol ; 15: 1401867, 2024.
Article de Anglais | MEDLINE | ID: mdl-38846947

RÉSUMÉ

Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.


Sujet(s)
Marqueurs biologiques , Exosomes , Mycobacterium tuberculosis , Tuberculose , Exosomes/immunologie , Exosomes/métabolisme , Humains , Tuberculose/immunologie , Tuberculose/diagnostic , Tuberculose/thérapie , Tuberculose/microbiologie , Mycobacterium tuberculosis/immunologie , Animaux , Antituberculeux/usage thérapeutique
5.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38892443

RÉSUMÉ

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a prevalent infectious disease affecting populations worldwide. A classic trait of TB pathology is the formation of granulomas, which wall off the pathogen, via the innate and adaptive immune systems. Some key players involved include tumor necrosis factor-alpha (TNF-α), foamy macrophages, type I interferons (IFNs), and reactive oxygen species, which may also show overlap with cell death pathways. Additionally, host cell death is a primary method for combating and controlling Mtb within the body, a process which is influenced by both host and bacterial factors. These cell death modalities have distinct molecular mechanisms and pathways. Programmed cell death (PCD), encompassing apoptosis and autophagy, typically confers a protective response against Mtb by containing the bacteria within dead macrophages, facilitating their phagocytosis by uninfected or neighboring cells, whereas necrotic cell death benefits the pathogen, leading to the release of bacteria extracellularly. Apoptosis is triggered via intrinsic and extrinsic caspase-dependent pathways as well as caspase-independent pathways. Necrosis is induced via various pathways, including necroptosis, pyroptosis, and ferroptosis. Given the pivotal role of host cell death pathways in host defense against Mtb, therapeutic agents targeting cell death signaling have been investigated for TB treatment. This review provides an overview of the diverse mechanisms underlying Mtb-induced host cell death, examining their implications for host immunity. Furthermore, it discusses the potential of targeting host cell death pathways as therapeutic and preventive strategies against Mtb infection.


Sujet(s)
Mycobacterium tuberculosis , Tuberculose , Humains , Mycobacterium tuberculosis/immunologie , Mycobacterium tuberculosis/pathogénicité , Tuberculose/immunologie , Tuberculose/microbiologie , Tuberculose/anatomopathologie , Animaux , Mort cellulaire/immunologie , Interactions hôte-pathogène/immunologie , Apoptose , Immunité innée , Autophagie/immunologie , Transduction du signal , Macrophages/immunologie , Macrophages/microbiologie
6.
Front Immunol ; 15: 1413947, 2024.
Article de Anglais | MEDLINE | ID: mdl-38881887

RÉSUMÉ

CD36 is a scavenger receptor that has been reported to function as a signaling receptor that responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and could integrate metabolic pathways and cell signaling through its dual functions. Thereby influencing activation to regulate the immune response and immune cell differentiation. Recent studies have revealed that CD36 plays critical roles in the process of lipid metabolism, inflammatory response and immune process caused by Mycobacterium tuberculosis infection. This review will comprehensively investigate CD36's functions in lipid uptake and processing, inflammatory response, immune response and therapeutic targets and biomarkers in the infection process of M. tuberculosis. The study also raised outstanding issues in this field to designate future directions.


Sujet(s)
Antigènes CD36 , Mycobacterium tuberculosis , Tuberculose , Humains , Antigènes CD36/métabolisme , Mycobacterium tuberculosis/immunologie , Tuberculose/immunologie , Tuberculose/métabolisme , Tuberculose/microbiologie , Animaux , Métabolisme lipidique , Transduction du signal , Marqueurs biologiques , Interactions hôte-pathogène/immunologie
7.
Front Immunol ; 15: 1402024, 2024.
Article de Anglais | MEDLINE | ID: mdl-38873598

RÉSUMÉ

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.


Sujet(s)
Cholestérol , Macrophages , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/immunologie , Cholestérol/métabolisme , Humains , Macrophages/immunologie , Macrophages/métabolisme , Macrophages/microbiologie , Tuberculose/immunologie , Tuberculose/métabolisme , Tuberculose/microbiologie , Animaux , Interactions hôte-pathogène/immunologie , Antituberculeux/pharmacologie , Antituberculeux/usage thérapeutique , Métabolisme lipidique
8.
ACS Appl Bio Mater ; 7(6): 3877-3889, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38832760

RÉSUMÉ

Adjuvants and immunomodulators that effectively drive a Th17-skewed immune response are not part of the standard vaccine toolkit. Vaccine adjuvants and delivery technologies that can induce Th17 or Th1/17 immunity and protection against bacterial pathogens, such as tuberculosis (TB), are urgently needed. Th17-polarized immune response can be induced using agonists that bind and activate C-type lectin receptors (CLRs) such as macrophage inducible C-type lectin (Mincle). A simple but effective strategy was developed for codelivering Mincle agonists with the recombinant Mycobacterium tuberculosis fusion antigen, M72, using tunable silica nanoparticles (SNP). Anionic bare SNP, hydrophobic phenyl-functionalized SNP (P-SNP), and cationic amine-functionalized SNP (A-SNP) of different sizes were coated with three synthetic Mincle agonists, UM-1024, UM-1052, and UM-1098, and evaluated for adjuvant activity in vitro and in vivo. The antigen and adjuvant were coadsorbed onto SNP via electrostatic and hydrophobic interactions, facilitating multivalent display and delivery to antigen presenting cells. The cationic A-SNP showed the highest coloading efficiency for the antigen and adjuvant. In addition, the UM-1098-adsorbed A-SNP formulation demonstrated slow-release kinetics in vitro, excellent stability over 12 months of storage, and strong IL-6 induction from human peripheral blood mononuclear cells. Co-adsorption of UM-1098 and M72 on A-SNP significantly improved antigen-specific humoral and Th17-polarized immune responses in vivo in BALB/c mice relative to the controls. Taken together, A-SNP is a promising platform for codelivery and proper presentation of adjuvants and antigens and provides the basis for their further development as a vaccine delivery platform for immunization against TB or other diseases for which Th17 immunity contributes to protection.


Sujet(s)
Antigènes bactériens , Lectines de type C , Nanoparticules , Silice , Cellules Th17 , Lectines de type C/métabolisme , Lectines de type C/immunologie , Lectines de type C/agonistes , Nanoparticules/composition chimique , Cellules Th17/immunologie , Animaux , Silice/composition chimique , Souris , Antigènes bactériens/immunologie , Antigènes bactériens/administration et posologie , Antigènes bactériens/composition chimique , Mycobacterium tuberculosis/immunologie , Adjuvants immunologiques/composition chimique , Adjuvants immunologiques/pharmacologie , Adjuvants immunologiques/administration et posologie , Matériaux biocompatibles/composition chimique , Matériaux biocompatibles/pharmacologie , Taille de particule , Test de matériaux , Humains , Femelle , Protéines membranaires/immunologie , Protéines membranaires/agonistes
9.
Front Cell Infect Microbiol ; 14: 1398077, 2024.
Article de Anglais | MEDLINE | ID: mdl-38836056

RÉSUMÉ

Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.


Sujet(s)
Vésicules extracellulaires , Interactions hôte-pathogène , Mycobacterium tuberculosis , Tuberculose , Vésicules extracellulaires/métabolisme , Vésicules extracellulaires/immunologie , Mycobacterium tuberculosis/immunologie , Humains , Tuberculose/immunologie , Tuberculose/microbiologie , Tuberculose/métabolisme , Interactions hôte-pathogène/immunologie , Animaux
10.
Cell Mol Life Sci ; 81(1): 203, 2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38698289

RÉSUMÉ

Nitrogen metabolism of M. tuberculosis is critical for its survival in infected host cells. M. tuberculosis has evolved sophisticated strategies to switch between de novo synthesis and uptake of various amino acids from host cells for metabolic demands. Pyridoxal phosphate-dependent histidinol phosphate aminotransferase-HspAT enzyme is critically required for histidine biosynthesis. HspAT is involved in metabolic synthesis of histidine, phenylalanine, tyrosine, tryptophan, and novobiocin. We showed that M. tuberculosis Rv2231c is a conserved enzyme with HspAT activity. Rv2231c is a monomeric globular protein that contains α-helices and ß-sheets. It is a secretory and cell wall-localized protein that regulates critical pathogenic attributes. Rv2231c enhances the survival and virulence of recombinant M. smegmatis in infected RAW264.7 macrophage cells. Rv2231c is recognized by the TLR4 innate immune receptor and modulates the host immune response by suppressing the secretion of the antibacterial pro-inflammatory cytokines TNF, IL-12, and IL-6. It also inhibits the expression of co-stimulatory molecules CD80 and CD86 along with antigen presenting molecule MHC-I on macrophage and suppresses reactive nitrogen species formation, thereby promoting M2 macrophage polarization. Recombinant M. smegmatis expressing Rv2231c inhibited apoptosis in macrophages, promoting efficient bacterial survival and proliferation, thereby increasing virulence. Our results indicate that Rv2231c is a moonlighting protein that regulates multiple functions of M. tuberculosis pathophysiology to increase its virulence. These mechanistic insights can be used to better understand the pathogenesis of M. tuberculosis and to design strategies for tuberculosis mitigation.


Sujet(s)
Macrophages , Mycobacterium tuberculosis , Transaminases , Souris , Mycobacterium tuberculosis/pathogénicité , Mycobacterium tuberculosis/immunologie , Mycobacterium tuberculosis/enzymologie , Mycobacterium tuberculosis/métabolisme , Animaux , Cellules RAW 264.7 , Virulence , Macrophages/microbiologie , Macrophages/immunologie , Macrophages/métabolisme , Transaminases/métabolisme , Transaminases/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Mycobacterium smegmatis/pathogénicité , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/génétique , Mycobacterium smegmatis/enzymologie , Cytokines/métabolisme , Récepteur de type Toll-4/métabolisme , Humains , Immunité innée , Interactions hôte-pathogène/immunologie , Tuberculose/immunologie , Tuberculose/microbiologie
11.
Front Immunol ; 15: 1378040, 2024.
Article de Anglais | MEDLINE | ID: mdl-38698866

RÉSUMÉ

Background: Interleukin-17-producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with human immunodeficiency virus (HIV) disproportionately affects distinct Th17-cell subsets that respond to Mtb is incompletely defined. Methods: We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by liquid chromatography-mass spectrometry (LC/MS) on plasma and tested the hypothesis that tryptophan catabolism influences Th17-cell frequencies in this context. Results: We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3-cells of which subset 1 was significantly reduced in latent tuberculosis infection (LTBI) with HIV-ART, yet Mtb-responsive IL-17-producing CD4 T cells were preserved; we found that IL-17-producing CD4 T cells dominate the response to Mtb antigen but not cytomegalovirus (CMV) antigen or staphylococcal enterotoxin B (SEB), and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17-cell frequencies. Conclusions: We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL-17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.


Sujet(s)
Antigènes bactériens , Infections à VIH , Interleukine-17 , Tuberculose latente , Mycobacterium tuberculosis , Cellules Th17 , Adulte , Femelle , Humains , Mâle , Adulte d'âge moyen , Antigènes bactériens/immunologie , Infections à VIH/immunologie , Infections à VIH/virologie , Immunophénotypage , Interleukine-17/métabolisme , Interleukine-17/immunologie , Cynurénine/métabolisme , Tuberculose latente/immunologie , Tuberculose latente/microbiologie , Mycobacterium tuberculosis/immunologie , Phénotype , Sous-populations de lymphocytes T/immunologie , Sous-populations de lymphocytes T/métabolisme , Cellules Th17/immunologie , Cellules Th17/métabolisme , Tryptophane/métabolisme
12.
Elife ; 122024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38805257

RÉSUMÉ

Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.


Sujet(s)
Antigènes bactériens , Protéines bactériennes , Macrophages , Mycobacterium tuberculosis , Phagosomes , Anticorps à domaine unique , Humains , Antigènes bactériens/métabolisme , Antigènes bactériens/immunologie , Protéines bactériennes/métabolisme , Concentration en ions d'hydrogène , Macrophages/immunologie , Macrophages/métabolisme , Macrophages/microbiologie , Simulation de dynamique moléculaire , Mycobacterium tuberculosis/immunologie , Mycobacterium tuberculosis/métabolisme , Phagosomes/métabolisme , Anticorps à domaine unique/métabolisme
14.
Proc Natl Acad Sci U S A ; 121(19): e2318003121, 2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38691588

RÉSUMÉ

Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.


Sujet(s)
Antigènes d'histocompatibilité de classe I , Mycobacterium tuberculosis , Récepteurs aux antigènes des cellules T , Lymphocytes T , Mycobacterium tuberculosis/immunologie , Humains , Récepteurs aux antigènes des cellules T/immunologie , Récepteurs aux antigènes des cellules T/métabolisme , Antigènes d'histocompatibilité de classe I/immunologie , Antigènes d'histocompatibilité de classe I/métabolisme , Lymphocytes T/immunologie , , Protéines bactériennes/immunologie , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Tuberculose/immunologie
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167219, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38734321

RÉSUMÉ

Chronic infections induce CD4+ T-cells with cytotoxic functions (CD4 CTLs); at present, it is still unknown whether latent tuberculosis (LTB) and active tuberculosis (ATB) induce CD4 CTLs. Plasma and cells from four patient groups-uninfected contact (UC), LTB, and ATB (divided as sensitive [DS-TB]- or resistant [DR-TB]-drug)-were evaluated by flow cytometry, q-PCR, and proteomics. The data showed that ATB patients had an increased frequency of CD4+ T-cells and a decreased frequency of CD8+ T-cells. The latter displays an exhausted-like profile characterized by CD39, CD279, and TIM-3 expression. ATB had a high frequency of CD4 + perforin+ cells, suggesting a CD4 CTL profile. The expression (at the transcriptional level) of granzyme A, granzyme B, granulysin, and perforin, as well as the genes T-bet (Tbx21) and NKG2D (Klrk1), in enriched CD4+ T-cells, confirmed the cytotoxic signature of CD4+ T-cells during ATB (which was stronger in DS-TB than in DR-TB). Moreover, proteomic analysis revealed the presence of HSP70 (in DS-TB) and annexin A5 (in DR-TB), which are molecules that have been associated with favoring the CD4 CTL profile. Finally, we found that lipids from Mycobacterium tuberculosis increased the presence of CD4 CTLs in DR-TB patients. Our data suggest that ATB is characterized by exhausted-like CD8+ T-cells, which, together with a specific microenvironment, favor the presence of CD4 CTLs.


Sujet(s)
Lymphocytes T CD4+ , Lymphocytes T CD8+ , Granzymes , Récepteur cellulaire-2 du virus de l'hépatite A , Perforine , Tuberculose , Humains , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , Lymphocytes T CD4+/immunologie , Lymphocytes T CD4+/métabolisme , Mâle , Granzymes/métabolisme , Granzymes/génétique , Granzymes/immunologie , Perforine/métabolisme , Perforine/génétique , Perforine/immunologie , Adulte , Femelle , Récepteur cellulaire-2 du virus de l'hépatite A/métabolisme , Récepteur cellulaire-2 du virus de l'hépatite A/immunologie , Tuberculose/immunologie , Tuberculose/microbiologie , Tuberculose latente/immunologie , Tuberculose latente/microbiologie , Adulte d'âge moyen , Lymphocytes T cytotoxiques/immunologie , Lymphocytes T cytotoxiques/métabolisme , Mycobacterium tuberculosis/immunologie , Protéines à domaine boîte-T/métabolisme , Protéines à domaine boîte-T/génétique , Protéines à domaine boîte-T/immunologie , Antigènes CD/métabolisme , Antigènes CD/immunologie , Antigènes CD/génétique , Sous-famille K des récepteurs de cellules NK de type lectine/métabolisme , Sous-famille K des récepteurs de cellules NK de type lectine/immunologie , Sous-famille K des récepteurs de cellules NK de type lectine/génétique , Protéomique/méthodes , Antigènes de différenciation des lymphocytes T , Apyrase
16.
Microb Pathog ; 192: 106681, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38754565

RÉSUMÉ

Tuberculosis (TB) is a major fatal infectious disease globally, exhibiting high morbidity rates and impacting public health and other socio-economic factors. However, some individuals are resistant to TB infection and are referred to as "Resisters". Resisters remain uninfected even after exposure to high load of Mycobacterium tuberculosis (Mtb). To delineate this further, this study aimed to investigate the factors and mechanisms influencing the Mtb resistance phenotype. We assayed the phagocytic capacity of peripheral blood mononuclear cells (PBMCs) collected from Resisters, patients with latent TB infection (LTBI), and patients with active TB (ATB), following infection with fluorescent Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Phagocytosis was stronger in PBMCs from ATB patients, and comparable in LTBI patients and Resisters. Subsequently, phagocytes were isolated and subjected to whole transcriptome sequencing and small RNA sequencing to analyze transcriptional expression profiles and identify potential targets associated with the resistance phenotype. The results revealed that a total of 277 mRNAs, 589 long non-coding RNAs, 523 circular RNAs, and 35 microRNAs were differentially expressed in Resisters and LTBI patients. Further, the endogenous competitive RNA (ceRNA) network was constructed from differentially expressed genes after screening. Bioinformatics, statistical analysis, and quantitative real-time polymerase chain reaction were used for the identification and validation of potential crucial targets in the ceRNA network. As a result, we obtained a ceRNA network that contributes to the resistance phenotype. TCONS_00034796-F3, ENST00000629441-DDX43, hsa-ATAD3A_0003-CYP17A1, and XR_932996.2-CERS1 may be crucial association pairs for resistance to TB infection. Overall, this study demonstrated that the phagocytic capacity of PBMCs was not a determinant of the resistance phenotype and that some non-coding RNAs could be involved in the natural resistance to TB infection through a ceRNA mechanism.


Sujet(s)
Agranulocytes , microARN , Mycobacterium tuberculosis , Phagocytes , Phagocytose , Tuberculose , Humains , Phagocytes/métabolisme , Phagocytes/immunologie , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/immunologie , Tuberculose/génétique , Tuberculose/microbiologie , Tuberculose/immunologie , Phagocytose/génétique , microARN/génétique , microARN/métabolisme , Agranulocytes/immunologie , Agranulocytes/métabolisme , ARN long non codant/génétique , ARN long non codant/métabolisme , Mâle , Adulte , Analyse de profil d'expression de gènes , Réseaux de régulation génique , Femelle , Transcriptome/génétique , Tuberculose latente/génétique , Tuberculose latente/immunologie , Tuberculose latente/microbiologie , Résistance à la maladie/génétique , ARN messager/génétique , ARN messager/métabolisme , Mycobacterium bovis/immunologie , Adulte d'âge moyen , Biologie informatique/méthodes , Jeune adulte ,
17.
JCI Insight ; 9(9)2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38716731

RÉSUMÉ

T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.


Sujet(s)
Mycobacterium tuberculosis , Humains , Mycobacterium tuberculosis/immunologie , Ouganda , Adulte , Mâle , Antigènes mineurs d'histocompatibilité/immunologie , Antigènes mineurs d'histocompatibilité/génétique , Femelle , Tuberculose/immunologie , Tuberculose/microbiologie , Lymphocytes T/immunologie , Tuberculose latente/immunologie , Tuberculose latente/microbiologie , Clones cellulaires/immunologie , Résistance à la maladie/immunologie , Résistance à la maladie/génétique , Jeune adulte , Antigènes d'histocompatibilité de classe I
18.
Discov Med ; 36(184): 1002-1011, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38798259

RÉSUMÉ

BACKGROUND: Tuberculosis (TB) is still the main cause of mortality due to a single transfectant, Mycobacterium tuberculosis (MTB). Latent tuberculosis infection (LTBI) is a condition characterized by the presence of tuberculosis (TB) that is not clinically apparent but nonetheless shows a sustained response to MTB. Presently, tuberculin skin test (TST) and interferon gamma (IFN-γ) release assays (IGRAs) are mainly used to detect LTBI via cell-mediated immunity of T-cells. For people with end-stage renal disease (ESRD), the diagnosis of patients infected with MTB is difficult because of T-cell dysfunction. To get more accurate diagnosis results of LTBI, it must compensate for the deficiency of IGRA tests. METHODS: Sixty-seven hemodialysis (HD) patients and 96 non-HD patients were enrolled in this study and the study population is continuously included. IFN-γ levels were measured by the QuantiFERON-TB Gold In-Tube (QFT-GIT) test. Kidney function indicators, blood urea nitrogen (BUN), serum creatinine (Cr), and estimated glomerular filtration rate (eGFR) were used to compensate for the declined IFN-γ levels in the IGRA test. RESULTS: In individuals who were previously undetected, the results of compensation with serum Cr increased by 10.81%, allowing for about 28% more detection, and compensation with eGFR increased by 5.41%, allowing for approximately 14% more detectable potential among them and employing both of them could enhance the prior shortcomings of IGRA tests. when both are used, the maximum compensation results show a sensitivity increase rate of 8.81%, and approximately 23% of patients who were previously undetectable may be found. CONCLUSION: Therefore, the renal function markers which are routine tests for HD patients to compensate for the deficiency of IGRA tests could increase the accuracy of LTBI diagnosis.


Sujet(s)
Tests de libération d'interféron-gamma , Défaillance rénale chronique , Tuberculose latente , Dialyse rénale , Humains , Tuberculose latente/diagnostic , Tuberculose latente/immunologie , Tuberculose latente/sang , Mâle , Femelle , Adulte d'âge moyen , Dialyse rénale/effets indésirables , Tests de libération d'interféron-gamma/méthodes , Défaillance rénale chronique/thérapie , Défaillance rénale chronique/complications , Défaillance rénale chronique/sang , Défaillance rénale chronique/immunologie , Sujet âgé , Interféron gamma/sang , Adulte , Faux négatifs , Débit de filtration glomérulaire , Créatinine/sang , Mycobacterium tuberculosis/immunologie , Test tuberculinique/méthodes , Azote uréique sanguin
19.
Front Immunol ; 15: 1395018, 2024.
Article de Anglais | MEDLINE | ID: mdl-38799434

RÉSUMÉ

Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods: The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results: Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion: The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.


Sujet(s)
Co-infection , Modèles animaux de maladie humaine , Infections à VIH , Mycobacterium tuberculosis , Tuberculose , Animaux , Co-infection/immunologie , Co-infection/microbiologie , Infections à VIH/immunologie , Infections à VIH/complications , Humains , Souris , Tuberculose/immunologie , Mycobacterium tuberculosis/immunologie , Lymphocytes T CD4+/immunologie , Transplantation de cellules souches hématopoïétiques , Charge virale , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/immunologie , Poumon/immunologie , Poumon/anatomopathologie , Poumon/virologie , Cellules souches hématopoïétiques/immunologie , Souris SCID
20.
Curr Microbiol ; 81(7): 197, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38816607

RÉSUMÉ

Identifying and evaluating potential vaccine candidates has become one of the main objectives to combat tuberculosis. Among them, mannosylated Apa antigen from Mycobacterium tuberculosis and the non-mannosylated protein expressed in Escherichia coli, have been studied. Although both proteins can induce a protective response in mice, it has been considered that native protein can be dispensed. In this work, we study the protective response induced by Apa expressed in E. coli and in Streptomyces lividans. The latter, like native is secreted as a double band of 45/47 kDa, however, only its 47 kDa band is mannosylated. Both antigens and BCG were intranasal administrated in mice, and animals were then challenged by aerosol with M. tuberculosis H37Rv. The results showed that both, Apa from S. lividans and E. coli conferred statistically significantly protection to animals compared to controls. The cytokine immune response was studied by an immunoassay after animals' immunization, revealing that Apa from S. lividans induced a statistically significant proliferation of T cell, as well as the expression of IFN-γ, IL-1ß, IL-17 and IL-10. In contrast, non-proliferation was obtained with non-mannosylated protein, but induction of IL-12 and IL-17 was observed. Together, these results demonstrate that both proteins were able to modulate a specific immune response against M. tuberculosis, that could be driven by different mechanisms possibly associated with the presence or not of mannosylation. Furthermore, stimulation of cells from BCG-vaccinated animals with the proteins could be an important tool, to help define the use of a given subunit-vaccine after BCG vaccination.


Sujet(s)
Administration par voie nasale , Cytokines , Mycobacterium tuberculosis , Streptomyces lividans , Tuberculose , Animaux , Mycobacterium tuberculosis/immunologie , Mycobacterium tuberculosis/génétique , Souris , Cytokines/métabolisme , Tuberculose/prévention et contrôle , Tuberculose/immunologie , Streptomyces lividans/génétique , Streptomyces lividans/immunologie , Aérosols , Protéines recombinantes/immunologie , Protéines recombinantes/génétique , Protéines recombinantes/administration et posologie , Protéines bactériennes/génétique , Protéines bactériennes/immunologie , Protéines bactériennes/administration et posologie , Vaccins antituberculeux/immunologie , Vaccins antituberculeux/administration et posologie , Vaccins antituberculeux/génétique , Escherichia coli/génétique , Escherichia coli/métabolisme , Femelle , Souris de lignée BALB C , Antigènes bactériens/immunologie , Antigènes bactériens/génétique , Antigènes bactériens/administration et posologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...