Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.004
Filtrer
1.
Biol Direct ; 19(1): 61, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39095835

RÉSUMÉ

Myofibroblast buildup and prostatic fibrosis play a crucial role in the development of benign prostatic hyperplasia (BPH). Treatments specifically targeting myofibroblasts could be a promising approach for treating BPH. Tadalafil, a phosphodiesterase type 5 (PDE5) inhibitor, holds the potential to intervene in this biological process. This study employs prostatic stromal fibroblasts to induce myofibroblast differentiation through TGFß1 stimulation. As a result, tadalafil significantly inhibited prostatic stromal fibroblast proliferation and fibrosis process, compared to the control group. Furthermore, our transcriptome sequencing results revealed that tadalafil inhibited FGF9 secretion and simultaneously improved miR-3126-3p expression via TGFß1 suppression. Overall, TGFß1 can trigger pro-fibrotic signaling through miR-3126-3p in the prostatic stroma, and the use of tadalafil can inhibit this process.


Sujet(s)
Facteur de croissance fibroblastique de type 9 , Fibrose , microARN , Inhibiteurs de la phosphodiestérase-5 , Hyperplasie de la prostate , Tadalafil , Mâle , Hyperplasie de la prostate/métabolisme , Hyperplasie de la prostate/traitement médicamenteux , Hyperplasie de la prostate/génétique , microARN/génétique , microARN/métabolisme , Tadalafil/pharmacologie , Inhibiteurs de la phosphodiestérase-5/pharmacologie , Humains , Facteur de croissance fibroblastique de type 9/métabolisme , Facteur de croissance fibroblastique de type 9/génétique , Prostate/effets des médicaments et des substances chimiques , Prostate/métabolisme , Myofibroblastes/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Facteur de croissance transformant bêta-1/métabolisme , Facteur de croissance transformant bêta-1/génétique , Prolifération cellulaire/effets des médicaments et des substances chimiques
2.
FASEB J ; 38(15): e23848, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39092889

RÉSUMÉ

Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-ß pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.


Sujet(s)
Transdifférenciation cellulaire , Dexaméthasone , Glaucome , Myofibroblastes , Rho guanine nucleotide exchange factors , Réseau trabéculaire de la sclère , Dexaméthasone/pharmacologie , Réseau trabéculaire de la sclère/effets des médicaments et des substances chimiques , Réseau trabéculaire de la sclère/métabolisme , Réseau trabéculaire de la sclère/cytologie , Transdifférenciation cellulaire/effets des médicaments et des substances chimiques , Animaux , Humains , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/métabolisme , Myofibroblastes/cytologie , Souris , Rho guanine nucleotide exchange factors/métabolisme , Rho guanine nucleotide exchange factors/génétique , Glaucome/anatomopathologie , Glaucome/métabolisme , Cellules cultivées , Glucocorticoïdes/pharmacologie , Souris de lignée C57BL , Mâle
3.
Transl Vis Sci Technol ; 13(8): 22, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39133495

RÉSUMÉ

Purpose: The purpose of this study was to evaluate the safety and efficacy of topical losartan in the therapeutic treatment of established corneal scaring fibrosis at 1 month after alkali burn in rabbits. Methods: Standardized alkali burns were performed in 1 eye of 24 rabbits with 0.75N NaOH for 15 seconds. Corneas were allowed to heal and develop scaring of the cornea for 1 month. Twelve eyes per group were treated with 50 µL of topical 0.8 mg/mL losartan in balanced salt solution (BSS), pH 7.0, and 12 eyes were treated with vehicle BSS 6 times per day. Six corneas were analyzed at 1 week or 1 month in each group. Standardized slit lamp photographs were obtained at the end point for each cornea and opacity was quantitated using ImageJ. Corneoscleral rims were cryofixed in optimum cutting temperature (OCT) solution and combined duplex immunohistochemistry for myofibroblast marker alpha-smooth muscle actin (α-SMA), mesenchymal cell marker vimentin, and TUNEL assay for apoptosis was performed on all corneas. Results: Topical losartan was effective in the treatment of established stromal fibrosis following alkali burn injury to the rabbit cornea. Stromal myofibroblast density was decreased and stromal cell apoptosis was increased (included both α-SMA-positive myofibroblasts and α-SMA-negative, vimentin-positive cells) at both 1 week and 1 month in the topical losartan-treated compared with vehicle-treated groups. Conclusions: Topical losartan is effective in the treatment of established stromal fibrosis in rabbits. Most myofibroblasts disappear from the stroma within the first month of losartan treatment. Longer treatment with topical losartan is needed to allow time for corneal fibroblast regeneration of the epithelial basement membrane (in coordination with epithelial cells) and the removal of disordered extracellular matrix produced by myofibroblasts.


Sujet(s)
Brûlures chimiques , Brûlures oculaires , Fibrose , Losartan , Animaux , Lapins , Losartan/pharmacologie , Losartan/administration et posologie , Losartan/usage thérapeutique , Fibrose/traitement médicamenteux , Brûlures chimiques/traitement médicamenteux , Brûlures chimiques/anatomopathologie , Brûlures oculaires/traitement médicamenteux , Brûlures oculaires/anatomopathologie , Brûlures oculaires/induit chimiquement , Modèles animaux de maladie humaine , Apoptose/effets des médicaments et des substances chimiques , Antagonistes du récepteur de type 1 de l'angiotensine-II/administration et posologie , Antagonistes du récepteur de type 1 de l'angiotensine-II/pharmacologie , Antagonistes du récepteur de type 1 de l'angiotensine-II/usage thérapeutique , Hydroxyde de sodium , Maladies de la cornée/traitement médicamenteux , Maladies de la cornée/anatomopathologie , Solutions ophtalmiques/usage thérapeutique , Solutions ophtalmiques/administration et posologie , Cornée/effets des médicaments et des substances chimiques , Cornée/anatomopathologie , Méthode TUNEL , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/anatomopathologie , Actines/métabolisme , Mâle , Stroma de la cornée/effets des médicaments et des substances chimiques , Stroma de la cornée/anatomopathologie , Stroma de la cornée/métabolisme , Administration par voie topique , Vimentine/métabolisme , Cicatrisation de plaie/effets des médicaments et des substances chimiques
4.
Matrix Biol ; 132: 47-58, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39147560

RÉSUMÉ

BACKGROUND: Lung fibroblasts play a central role in maintaining lung homeostasis and facilitating repair through the synthesis and organization of the extracellular matrix (ECM). This study investigated the cross-talk between interleukin-1 alpha (IL-1α) and transforming growth factor-ß (TGF-ß) signaling, two key regulators in tissue repair and fibrosis, in the context of lung fibroblast repair in the healthy lung. RESULTS: Stimulation of lung fibroblasts with TGF-ß1 and TGF-ß2 induced collagen-I and fibronectin protein expression (p < 0.05), a response inhibited with co-treatment with IL-1α (p < 0.05). Additionally, TGF-ß1 and TGF-ß2 induced myofibroblast differentiation, and collagen-I gel contraction, which were both suppressed by IL-1α (p < 0.05). In contrast, interleukin (IL)-6, IL-8 and thymic stromal lymphopoietin induced by IL-1α, were unaffected by TGF-ß1 or TGF-ß2. Mechanistically, IL-1α administration led to the suppression of TGF-ß1 and TGF-ß2 signaling, through downregulation of mRNA and protein for TGF-ß receptor II and the downstream adaptor protein TRAF6, but not through miR-146a that is known to be induced by IL-1α. DISCUSSION: IL-1α acts as a master regulator, modulating TGF-ß1 and TGF-ß2-induced ECM production, remodeling, and myofibroblast differentiation in human lung fibroblasts, playing a vital role in balancing tissue repair versus fibrosis. Further research is required to understand the dysregulated cross-talk between IL-1α and TGF-ß signaling in chronic lung diseases and the exploration of therapeutic opportunities. METHODS: Primary human lung fibroblasts (PHLF) were treated with media control, or 1 ng/ml IL-1α with or without 50 ng/ml TGF-ß1 or TGF-ß2 for 1, 6 and 72 h. Cell lysates were assessed for the expression of ECM proteins and signaling molecules by western blot, miRNA by qPCR, mRNA by RNA sequencing and cell supernatants for cytokine production by ELISA. PHLFs were also seeded in non-tethered collagen-I gels to measure contraction, and myofibroblast differentiation using confocal microscopy.


Sujet(s)
Matrice extracellulaire , Fibroblastes , Interleukine-1 alpha , Poumon , Transduction du signal , Facteur de croissance transformant bêta-1 , Humains , Interleukine-1 alpha/métabolisme , Interleukine-1 alpha/génétique , Matrice extracellulaire/métabolisme , Facteur de croissance transformant bêta-1/métabolisme , Poumon/métabolisme , Poumon/cytologie , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/cytologie , Différenciation cellulaire , Myofibroblastes/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Cellules cultivées , Collagène de type I/métabolisme , Collagène de type I/génétique , microARN/génétique , microARN/métabolisme , Fibronectines/métabolisme , Fibronectines/génétique , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Facteur de croissance transformant bêta-2
5.
Biomed Pharmacother ; 178: 117246, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39096617

RÉSUMÉ

Idiopathic pulmonary fibrosis is a progressive lung disease characterized by excessive extracellular matrix accumulation and myofibroblast proliferation with limited treatment options available. M2 macrophages are pivotal in pulmonary fibrosis, where they induce the epithelial-to-mesenchymal and fibroblast-to-myofibroblast transitions. In this study, we evaluated whether MEL-dKLA, a hybrid peptide that can eliminate M2 macrophages, could attenuate pulmonary fibrosis in a cell co-culture system and in a bleomycin-induced mouse model. Our findings demonstrated that the removal of M2 macrophages using MEL-dKLA stimulated reprogramming to an antifibrotic environment, which effectively suppressed epithelial-to-mesenchymal and fibroblast-to-myofibroblast transition responses in lung epithelial and fibroblast cells and reduced extracellular matrix accumulation both in vivo and in vitro. Moreover, MEL-dKLA exhibited antifibrotic efficacy without damaging tissue-resident macrophages in the bleomycin-induced mouse model. Collectively, our findings suggest that MEL-dKLA may be a new therapeutic option for the treatment of idiopathic pulmonary fibrosis.


Sujet(s)
Bléomycine , Fibrose pulmonaire idiopathique , Macrophages , Souris de lignée C57BL , Animaux , Macrophages/effets des médicaments et des substances chimiques , Macrophages/métabolisme , Souris , Fibrose pulmonaire idiopathique/anatomopathologie , Fibrose pulmonaire idiopathique/induit chimiquement , Fibrose pulmonaire idiopathique/traitement médicamenteux , Fibrose pulmonaire idiopathique/métabolisme , Modèles animaux de maladie humaine , Mâle , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/anatomopathologie , Fibrose pulmonaire/traitement médicamenteux , Techniques de coculture , Humains , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/anatomopathologie , Fibroblastes/métabolisme , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques , Poumon/anatomopathologie , Poumon/effets des médicaments et des substances chimiques , Poumon/métabolisme , Matrice extracellulaire/métabolisme , Myofibroblastes/anatomopathologie , Myofibroblastes/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Cellules RAW 264.7
6.
Int J Biol Sci ; 20(9): 3353-3371, 2024.
Article de Anglais | MEDLINE | ID: mdl-38993568

RÉSUMÉ

Radiation-induced pulmonary fibrosis (RIPF) represents a serious complication observed in individuals undergoing thoracic radiation therapy. Currently, effective interventions for RIPF are unavailable. Prior research has demonstrated that nintedanib, a Food and Drug Administration (FDA)-approved anti-fibrotic agent for idiopathic pulmonary fibrosis, exerts therapeutic effects on chronic fibrosing interstitial lung disease. This research aimed to investigate the anti-fibrotic influences of nintedanib on RIPF and reveal the fundamental mechanisms. To assess its therapeutic impact, a mouse model of RIPF was established. The process involved nintedanib administration at various time points, both prior to and following thoracic radiation. In the RIPF mouse model, an assessment was conducted on survival rates, body weight, computed tomography features, histological parameters, and changes in gene expression. In vitro experiments were performed to discover the mechanism underlying the therapeutic impact of nintedanib on RIPF. Treatment with nintedanib, administered either two days prior or four weeks after thoracic radiation, significantly alleviated lung pathological changes, suppressed collagen deposition, and improved the overall health status of the mice. Additionally, nintedanib demonstrated significant mitigation of radiation-induced inflammatory responses in epithelial cells by inhibiting the PI3K/AKT and MAPK signaling pathways. Furthermore, nintedanib substantially inhibited fibroblast-to-myofibroblast transition by suppressing the TGF-ß/Smad and PI3K/AKT/mTOR signaling pathways. These findings suggest that nintedanib exerts preventive and therapeutic effects on RIPF by modulating multiple targets instead of a single anti-fibrotic pathway and encourage the further clinical trials to determine the efficacy of nintedanib in patients with RIPF.


Sujet(s)
Fibroblastes , Indoles , Fibrose pulmonaire , Animaux , Indoles/usage thérapeutique , Indoles/pharmacologie , Souris , Fibrose pulmonaire/étiologie , Fibrose pulmonaire/traitement médicamenteux , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/métabolisme , Cellules épithéliales/effets des médicaments et des substances chimiques , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/métabolisme , Souris de lignée C57BL , Inflammation/traitement médicamenteux , Transduction du signal/effets des médicaments et des substances chimiques
7.
Cells ; 13(13)2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38994947

RÉSUMÉ

Vimentin has been reported to play diverse roles in cell processes such as spreading, migration, cell-matrix adhesion, and fibrotic transformation. Here, we assess how vimentin impacts cell spreading, morphology, and myofibroblast transformation of human corneal fibroblasts. Overall, although knockout (KO) of vimentin did not dramatically impact corneal fibroblast spreading and mechanical activity (traction force), cell elongation in response to PDGF was reduced in vimentin KO cells as compared to controls. Blocking vimentin polymerization using Withaferin had even more pronounced effects on cell spreading and also inhibited cell-induced matrix contraction. Furthermore, although absence of vimentin did not completely block TGFß-induced myofibroblast transformation, the degree of transformation and amount of αSMA protein expression was reduced. Proteomics showed that vimentin KO cells cultured in TGFß had a similar pattern of protein expression as controls. One exception included periostin, an ECM protein associated with wound healing and fibrosis in other cell types, which was highly expressed only in Vim KO cells. We also demonstrate for the first time that LRRC15, a protein previously associated with myofibroblast transformation of cancer-associated fibroblasts, is also expressed by corneal myofibroblasts. Interestingly, proteins associated with LRRC15 in other cell types, such as collagen, fibronectin, ß1 integrin and α11 integrin, were also upregulated. Overall, our data show that vimentin impacts both corneal fibroblast spreading and myofibroblast transformation. We also identified novel proteins that may regulate corneal myofibroblast transformation in the presence and/or absence of vimentin.


Sujet(s)
Cornée , Fibroblastes , Myofibroblastes , Vimentine , Humains , Vimentine/métabolisme , Myofibroblastes/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Cornée/cytologie , Cornée/métabolisme , Facteur de croissance transformant bêta/métabolisme , Mouvement cellulaire/effets des médicaments et des substances chimiques , Withanolides/pharmacologie , Cellules cultivées
8.
FASEB J ; 38(13): e23749, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38953707

RÉSUMÉ

Pulmonary fibrosis is a formidable challenge in chronic and age-related lung diseases. Myofibroblasts secrete large amounts of extracellular matrix and induce pro-repair responses during normal wound healing. Successful tissue repair results in termination of myofibroblast activity via apoptosis; however, some myofibroblasts exhibit a senescent phenotype and escape apoptosis, causing over-repair that is characterized by pathological fibrotic scarring. Therefore, the removal of senescent myofibroblasts using senolytics is an important method for the treatment of pulmonary fibrosis. Procyanidin C1 (PCC1) has recently been discovered as a senolytic compound with very low toxicity and few side effects. This study aimed to determine whether PCC1 could improve lung fibrosis by promoting apoptosis in senescent myofibroblasts and to investigate the mechanisms involved. The results showed that PCC1 attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. In addition, we found that PCC1 inhibited extracellular matrix deposition and promoted the apoptosis of senescent myofibroblasts by increasing PUMA expression and activating the BAX signaling pathway. Our findings represent a new method of pulmonary fibrosis management and emphasize the potential of PCC1 as a senotherapeutic agent for the treatment of pulmonary fibrosis, providing hope for patients with pulmonary fibrosis worldwide. Our results advance our understanding of age-related diseases and highlight the importance of addressing cellular senescence in treatment.


Sujet(s)
Bléomycine , Catéchine , Vieillissement de la cellule , Souris de lignée C57BL , Myofibroblastes , Fibrose pulmonaire , Animaux , Bléomycine/toxicité , Myofibroblastes/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/métabolisme , Fibrose pulmonaire/traitement médicamenteux , Fibrose pulmonaire/anatomopathologie , Souris , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Catéchine/pharmacologie , Catéchine/analogues et dérivés , Proanthocyanidines/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Mâle , Biflavonoïdes/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques
9.
ACS Appl Mater Interfaces ; 16(29): 37530-37544, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-38989714

RÉSUMÉ

Contrary to the initial belief that myofibroblasts are terminally differentiated cells, myofibroblasts have now been widely recognized as an activation state that is reversible. Therefore, strategies targeting myofibroblast to be a quiescent state may be an effective way for antihypertrophic scar therapy. Graphene quantum dots (GQDs), a novel zero-dimensional and carbon-based nanomaterial, have recently garnered significant interest in nanobiomedicine, owing to their excellent biocompatibility, tunable photoluminescence, and superior physiological stability. Although multiple nanoparticles have been used to alleviate hypertrophic scars, a GQD-based therapy has not been reported. Our in vivo studies showed that GQDs exhibited significant antiscar efficacy, with scar appearance improvement, collagen reduction and rearrangement, and inhibition of myofibroblast overproliferation. Further in vitro experiments revealed that GQDs inhibited α-SMA expression, collagen synthesis, and cell proliferation and migration, inducing myofibroblasts to become quiescent fibroblasts. Mechanistic studies have demonstrated that the effect of GQDs on myofibroblast proliferation blocked cell cycle progression by disrupting the cyclin-CDK-E2F axis. This study suggests that GQDs, which promote myofibroblast-to-fibroblast transition, could be a novel antiscar nanomedicine for the treatment of hypertrophic scars and other types of pathological fibrosis.


Sujet(s)
Prolifération cellulaire , Cicatrice hypertrophique , Graphite , Myofibroblastes , Boîtes quantiques , Boîtes quantiques/composition chimique , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/anatomopathologie , Myofibroblastes/métabolisme , Graphite/composition chimique , Graphite/pharmacologie , Cicatrice hypertrophique/traitement médicamenteux , Cicatrice hypertrophique/anatomopathologie , Prolifération cellulaire/effets des médicaments et des substances chimiques , Animaux , Humains , Souris , Collagène/composition chimique , Mouvement cellulaire/effets des médicaments et des substances chimiques
10.
Cell Death Dis ; 15(7): 493, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987529

RÉSUMÉ

Lung cancer is a leading cause of cancer-related mortality globally, with a dismal 5-year survival rate, particularly for Lung Adenocarcinoma (LUAD). Mechanical changes within the tumor microenvironment, such as extracellular matrix (ECM) remodeling and fibroblast activity, play pivotal roles in cancer progression and metastasis. However, the specific impact of the basement membrane (BM) on the mechanical characteristics of LUAD remains unclear. This study aims to identify BM genes influencing internal mechanical stress in tumors, elucidating their effects on LUAD metastasis and therapy resistance, and exploring strategies to counteract these effects. Using Matrigel overlay and Transwell assays, we found that mechanical stress, mimicked by matrix application, augmented LUAD cell migration and invasion, correlating with ECM alterations and activation of the epithelial-mesenchymal transition (EMT) pathway. Employing machine learning, we developed the SVM_Score model based on relevant BM genes, which accurately predicted LUAD patient prognosis and EMT propensity across multiple datasets. Lower SVM_Scores were associated with worse survival outcomes, elevated cancer-related pathways, increased Tumor Mutation Burden, and higher internal mechanical stress in LUAD tissues. Notably, the SVM_Score was closely linked to COL5A1 expression in myofibroblasts, a key marker of mechanical stress. High COL5A1 expression from myofibroblasts promoted tumor invasiveness and EMT pathway activation in LUAD cells. Additionally, treatment with Sorafenib, which targets COL5A1 secretion, attenuated the tumor-promoting effects of myofibroblast-derived COL5A1, inhibiting LUAD cell proliferation, migration, and enhancing chemosensitivity. In conclusion, this study elucidates the complex interplay between mechanical stress, ECM alterations, and LUAD progression. The SVM_Score emerges as a robust prognostic tool reflecting tumor mechanical characteristics, while Sorafenib intervention targeting COL5A1 secretion presents a promising therapeutic strategy to mitigate LUAD aggressiveness. These findings deepen our understanding of the biomechanical aspects of LUAD and offer insights for future research and clinical applications.


Sujet(s)
Adénocarcinome pulmonaire , Collagène de type V , Transition épithélio-mésenchymateuse , Tumeurs du poumon , Myofibroblastes , Contrainte mécanique , Humains , Adénocarcinome pulmonaire/anatomopathologie , Adénocarcinome pulmonaire/génétique , Adénocarcinome pulmonaire/métabolisme , Adénocarcinome pulmonaire/traitement médicamenteux , Myofibroblastes/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/anatomopathologie , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/métabolisme , Tumeurs du poumon/génétique , Tumeurs du poumon/traitement médicamenteux , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques , Collagène de type V/métabolisme , Collagène de type V/génétique , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Animaux , Mouvement cellulaire/effets des médicaments et des substances chimiques , Métastase tumorale , Souris , Microenvironnement tumoral , Sorafénib/pharmacologie , Sorafénib/usage thérapeutique , Matrice extracellulaire/métabolisme
11.
Respir Res ; 25(1): 284, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39026235

RÉSUMÉ

Idiopathic pulmonary fibrosis is a lethal, progressive, and irreversible condition that has become a significant focus of medical research due to its increasing incidence. This rising trend presents substantial challenges for patients, healthcare providers, and researchers. Despite the escalating burden of pulmonary fibrosis, the available therapeutic options remain limited. Currently, the United States Food and Drug Administration has approved two drugs for the treatment of pulmonary fibrosis-nintedanib and pirfenidone. However, their therapeutic effectiveness is limited, and they cannot reverse the fibrosis process. Additionally, these drugs are associated with significant side effects. Myofibroblasts play a central role in the pathophysiology of pulmonary fibrosis, significantly contributing to its progression. Consequently, strategies aimed at inhibiting myofibroblast differentiation or promoting their dedifferentiation hold promise as effective treatments. This review examines the regulation of myofibroblast dedifferentiation, exploring various signaling pathways, regulatory targets, and potential pharmaceutical interventions that could provide new directions for therapeutic development.


Sujet(s)
Dédifférenciation cellulaire , Myofibroblastes , Humains , Myofibroblastes/anatomopathologie , Myofibroblastes/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Dédifférenciation cellulaire/effets des médicaments et des substances chimiques , Dédifférenciation cellulaire/physiologie , Animaux , Fibrose pulmonaire idiopathique/anatomopathologie , Fibrose pulmonaire idiopathique/métabolisme , Fibrose pulmonaire idiopathique/traitement médicamenteux , Transduction du signal/physiologie , Antifibrotiques/usage thérapeutique , Antifibrotiques/pharmacologie , Fibrose pulmonaire/anatomopathologie , Fibrose pulmonaire/métabolisme
12.
Matrix Biol ; 132: 72-86, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39009171

RÉSUMÉ

Post-mitotic, non-proliferative dermal fibroblasts have crucial functions in maintenance and restoration of tissue homeostasis. They are involved in essential processes such as wound healing, pigmentation and hair growth, but also tumor development and aging-associated diseases. These processes are energetically highly demanding and error prone when mitochondrial damage occurs. However, mitochondrial function in fibroblasts and the influence of mitochondrial dysfunction on fibroblast-specific demands are still unclear. To address these questions, we created a mouse model in which accelerated cell-specific mitochondrial DNA (mtDNA) damage accumulates. We crossed mice carrying a dominant-negative mutant of the mitochondrial replicative helicase Twinkle (RosaSTOP system) with mice that express fibroblast-specific Cre Recombinase (Collagen1A2 CreERT) which can be activated by Tamoxifen (TwinkleFIBRO). Thus, we are able to induce mtDNA deletions and duplications in specific cells, a process which resembles the physiological aging process in humans, where this damage accumulates in all tissues. Upon proliferation in vitro, Tamoxifen induced Twinkle fibroblasts deplete most of their mitochondrial DNA which, although not disturbing the stoichiometry of the respiratory chain complexes, leads to reduced ROS production and mitochondrial membrane potential as well as an anti-inflammatory and anti-fibrotic profile of the cells. In Sodium Azide treated wildtype fibroblasts, without a functioning respiratory chain, we observe the opposite, a rather pro-inflammatory and pro-fibrotic signature. Upon accumulation of mitochondrial DNA mutations in vivo the TwinkleFIBRO mice are protected from fibrosis development induced by intradermal Bleomycin injections. This is due to dampened differentiation of the dermal fibroblasts into α-smooth-muscle-actin positive myofibroblasts in TwinkleFIBRO mice. We thus provide evidence for striking differences of the impact that mtDNA mutations have in contrast to blunted mitochondrial function in dermal fibroblasts and skin homeostasis. These data contribute to improved understanding of mitochondrial function and dysfunction in skin and provide mechanistic insight into potential targets to treat skin fibrosis in the future.


Sujet(s)
Bléomycine , Différenciation cellulaire , ADN mitochondrial , Fibrose , Mutation , Myofibroblastes , Animaux , Bléomycine/effets indésirables , Bléomycine/toxicité , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , Souris , Myofibroblastes/métabolisme , Myofibroblastes/anatomopathologie , Myofibroblastes/effets des médicaments et des substances chimiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Helicase/génétique , Helicase/métabolisme , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/anatomopathologie , Tamoxifène/pharmacologie , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/anatomopathologie , Modèles animaux de maladie humaine , Espèces réactives de l'oxygène/métabolisme , Humains , Peau/anatomopathologie , Peau/métabolisme , Peau/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Protéines mitochondriales/génétique , Protéines mitochondriales/métabolisme , Collagène de type I
13.
Allergol Immunopathol (Madr) ; 52(4): 15-20, 2024.
Article de Anglais | MEDLINE | ID: mdl-38970260

RÉSUMÉ

BACKGROUND: Pulmonary fibrosis (PF) is a chronic, progressive, and irreversible heterogeneous disease of lung interstitial tissue. To combat progression of PF, new drugs are required to be developed. Rhizoma coptidis (COP), one of the main alkaloids of Coptis chinensis, is a traditional herbal medicine used to treat various inflammatory diseases. OBJECTIVE: To investigate the possible effects of Coptisine (Cop) on the growth, inflammation, as well as FMT of TNF-ß1-induced HFL1 cells and uncover the mechanism. MATERIAL AND METHODS: Human fetal lung fibroblast 1 (HFL1) was induced using 6ng/mL TGF-ß1 as a model of pulmonary fibrosis. CCK-8, Brdu, and transwell assays indicated the effects on cell growth as well as motility. qPCR and the corresponding kits indicted the effects on cell inflammation. Immunoblot showed the effects on FMT and further confirmed the mechanism. RESULTS: Coptisine inhibits excessive growth as well as motility of TNF-ß1-induced HFL1 cells. It further inhibits inflammation and ROS levels in TNF-ß1-induced HFL1 cells. Coptisine inhibits the FMT process of TNF-ß1-induced HFL1 cells. Mechanically, coptisine promotes the Nrf2/HO-1 pathway. CONCLUSION: Coptisine can inhibit the excessive growth, inflammation as well as FMT of lung fibroblasts into myofibroblasts. It could serve as a promising drug of PF.


Sujet(s)
Berbérine , Prolifération cellulaire , Fibroblastes , Poumon , Myofibroblastes , Humains , Prolifération cellulaire/effets des médicaments et des substances chimiques , Berbérine/pharmacologie , Berbérine/analogues et dérivés , Myofibroblastes/effets des médicaments et des substances chimiques , Poumon/anatomopathologie , Poumon/effets des médicaments et des substances chimiques , Fibroblastes/effets des médicaments et des substances chimiques , Inflammation/traitement médicamenteux , Facteur-2 apparenté à NF-E2/métabolisme , Fibrose pulmonaire/traitement médicamenteux , Facteur de croissance transformant bêta-1/métabolisme , Lignée cellulaire , Coptis , Heme oxygenase-1/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Mouvement cellulaire/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Différenciation cellulaire/effets des médicaments et des substances chimiques , Anti-inflammatoires/pharmacologie
14.
Cells ; 13(12)2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38920695

RÉSUMÉ

Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their transition to myofibroblasts remains unknown. Therefore, we herein explored whether inhibition of sialylation could interfere with the process of skin fibroblast-to-myofibroblast transition induced by the master profibrotic mediator transforming growth factor ß1 (TGFß1). Adult human skin fibroblasts were pretreated with the competitive pan-sialyltransferase inhibitor 3-Fax-peracetyl-Neu5Ac (3-Fax) before stimulation with recombinant human TGFß1, and then analyzed for polySia expression, cell viability, proliferation, migratory ability, and acquisition of myofibroblast-like morphofunctional features. Skin fibroblast stimulation with TGFß1 resulted in overexpression of polySia, which was effectively blunted by 3-Fax pre-administration. Pretreatment with 3-Fax efficiently lessened TGFß1-induced skin fibroblast proliferation, migration, changes in cell morphology, and phenotypic and functional differentiation into myofibroblasts, as testified by a significant reduction in FAP, ACTA2, COL1A1, COL1A2, and FN1 gene expression, and α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, as well as a reduced contractile capability. Moreover, skin fibroblasts pre-administered with 3-Fax displayed a significant decrease in Smad3-dependent canonical TGFß1 signaling. Collectively, our in vitro findings demonstrate for the first time that aberrant sialylation with increased polySia levels has a functional role in skin fibroblast-to-myofibroblast transition and suggest that competitive sialyltransferase inhibition might offer new therapeutic opportunities against skin fibrosis.


Sujet(s)
Différenciation cellulaire , Prolifération cellulaire , Fibroblastes , Myofibroblastes , Acides sialiques , Peau , Facteur de croissance transformant bêta-1 , Humains , Facteur de croissance transformant bêta-1/métabolisme , Facteur de croissance transformant bêta-1/pharmacologie , Peau/métabolisme , Peau/anatomopathologie , Acides sialiques/métabolisme , Myofibroblastes/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Mouvement cellulaire/effets des médicaments et des substances chimiques , Sialyltransferases/métabolisme , Sialyltransferases/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Cellules cultivées
15.
Respir Res ; 25(1): 242, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38877465

RÉSUMÉ

BACKGROUND: Silicosis represents a paramount occupational health hazard globally, with its incidence, morbidity, and mortality on an upward trajectory, posing substantial clinical dilemmas due to limited effective treatment options available. Trigonelline (Trig), a plant alkaloid extracted mainly from coffee and fenugreek, have diverse biological properties such as protecting dermal fibroblasts against ultraviolet radiation and has the potential to inhibit collagen synthesis. However, it's unclear whether Trig inhibits fibroblast activation to attenuate silicosis-induced pulmonary fibrosis is unclear. METHODS: To evaluate the therapeutic efficacy of Trig in the context of silicosis-related pulmonary fibrosis, a mouse model of silicosis was utilized. The investigation seeks to elucidated Trig's impact on the progression of silica-induced pulmonary fibrosis by evaluating protein expression, mRNA levels and employing Hematoxylin and Eosin (H&E), Masson's trichrome, and Sirius Red staining. Subsequently, we explored the mechanism underlying of its functions. RESULTS: In vivo experiment, Trig has been demonstrated the significant efficacy in mitigating SiO2-induced silicosis and BLM-induced pulmonary fibrosis, as evidenced by improved histochemical staining and reduced fibrotic marker expressions. Additionally, we showed that the differentiation of fibroblast to myofibroblast was imped in Trig + SiO2 group. In terms of mechanism, we obtained in vitro evidence that Trig inhibited fibroblast-to-myofibroblast differentiation by repressing TGF-ß/Smad signaling according to the in vitro evidence. Notably, our finding indicated that Trig seemed to be safe in mice and fibroblasts. CONCLUSION: In summary, Trig attenuated the severity of silicosis-related pulmonary fibrosis by alleviating the differentiation of myofibroblasts, indicating the development of novel therapeutic approaches for silicosis fibrosis.


Sujet(s)
Alcaloïdes , Différenciation cellulaire , Fibroblastes , Souris de lignée C57BL , Myofibroblastes , Fibrose pulmonaire , Silice , Silicose , Animaux , Fibrose pulmonaire/métabolisme , Fibrose pulmonaire/anatomopathologie , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/traitement médicamenteux , Fibrose pulmonaire/prévention et contrôle , Alcaloïdes/pharmacologie , Silice/toxicité , Souris , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/métabolisme , Myofibroblastes/anatomopathologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Silicose/anatomopathologie , Silicose/métabolisme , Silicose/traitement médicamenteux , Mâle
16.
Circ Res ; 135(2): 280-297, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38847080

RÉSUMÉ

BACKGROUND: Heart failure (HF) is one of the leading causes of mortality worldwide. Extracellular vesicles, including small extracellular vesicles or exosomes, and their molecular cargo are known to modulate cell-to-cell communication during multiple cardiac diseases. However, the role of systemic extracellular vesicle biogenesis inhibition in HF models is not well documented and remains unclear. METHODS: We investigated the role of circulating exosomes during cardiac dysfunction and remodeling in a mouse transverse aortic constriction (TAC) model of HF. Importantly, we investigate the efficacy of tipifarnib, a recently identified exosome biogenesis inhibitor that targets the critical proteins (Rab27a [Ras associated binding protein 27a], nSMase2 [neutral sphingomyelinase 2], and Alix [ALG-2-interacting protein X]) involved in exosome biogenesis for this mouse model of HF. In this study, 10-week-old male mice underwent TAC surgery were randomly assigned to groups with and without tipifarnib treatment (10 mg/kg 3 times/wk) and monitored for 8 weeks, and a comprehensive assessment was conducted through performed echocardiographic, histological, and biochemical studies. RESULTS: TAC significantly elevated circulating plasma exosomes and markedly increased cardiac left ventricular dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, injection of plasma exosomes from TAC mice induced left ventricular dysfunction and cardiomyocyte hypertrophy in uninjured mice without TAC. On the contrary, treatment of tipifarnib in TAC mice reduced circulating exosomes to baseline and remarkably improved left ventricular functions, hypertrophy, and fibrosis. Tipifarnib treatment also drastically altered the miRNA profile of circulating post-TAC exosomes, including miR 331-5p, which was highly downregulated both in TAC circulating exosomes and in TAC cardiac tissue. Mechanistically, miR 331-5p is crucial for inhibiting the fibroblast-to-myofibroblast transition by targeting HOXC8, a critical regulator of fibrosis. Tipifarnib treatment in TAC mice upregulated the expression of miR 331-5p that acts as a potent repressor for one of the fibrotic mechanisms mediated by HOXC8. CONCLUSIONS: Our study underscores the pathological role of exosomes in HF and fibrosis in response to pressure overload. Tipifarnib-mediated inhibition of exosome biogenesis and cargo sorting may serve as a viable strategy to prevent progressive cardiac remodeling in HF.


Sujet(s)
Vésicules extracellulaires , Défaillance cardiaque , Quinolinone , Animaux , Mâle , Souris , Cardiotoniques/pharmacologie , Cardiotoniques/usage thérapeutique , Modèles animaux de maladie humaine , Vésicules extracellulaires/effets des médicaments et des substances chimiques , Défaillance cardiaque/anatomopathologie , Défaillance cardiaque/prévention et contrôle , Quinolinone/pharmacologie , Quinolinone/usage thérapeutique , Répartition aléatoire , Régulation positive/effets des médicaments et des substances chimiques , microARN , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/métabolisme
17.
JCI Insight ; 9(15)2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38900587

RÉSUMÉ

Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis have potential as antifibrotic agents. We identify the collagen chaperone cyclophilin B as a major cellular target of the natural product sanglifehrin A (SfA) using photoaffinity labeling and chemical proteomics. Mechanistically, SfA inhibits and induces the secretion of cyclophilin B from the endoplasmic reticulum (ER) and prevents TGF-ß1-activated myofibroblasts from synthesizing and secreting collagen type I in vitro, without inducing ER stress or affecting collagen type I mRNA transcription, myofibroblast migration, contractility, or TGF-ß1 signaling. In vivo, SfA induced cyclophilin B secretion in preclinical models of fibrosis, thereby inhibiting collagen synthesis from fibrotic fibroblasts and mitigating the development of lung and skin fibrosis in mice. Ex vivo, SfA induces cyclophilin B secretion and inhibits collagen type I secretion from fibrotic human lung fibroblasts and samples from patients with idiopathic pulmonary fibrosis (IPF). Taken together, we provide chemical, molecular, functional, and translational evidence for demonstrating direct antifibrotic activities of SfA in preclinical and human ex vivo fibrotic models. Our results identify the cellular target of SfA, the collagen chaperone cyclophilin B, as a mechanistic target for the treatment of organ fibrosis.


Sujet(s)
Cyclophilines , Animaux , Humains , Souris , Cyclophilines/métabolisme , Cyclophilines/antagonistes et inhibiteurs , Collagène de type I/métabolisme , Fibrose , Myofibroblastes/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/anatomopathologie , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Fibrose pulmonaire idiopathique/traitement médicamenteux , Fibrose pulmonaire idiopathique/anatomopathologie , Fibrose pulmonaire idiopathique/métabolisme , Poumon/anatomopathologie , Poumon/effets des médicaments et des substances chimiques , Poumon/métabolisme , Modèles animaux de maladie humaine , Réticulum endoplasmique/métabolisme , Réticulum endoplasmique/effets des médicaments et des substances chimiques , Mâle , Souris de lignée C57BL , Facteur de croissance transformant bêta-1/métabolisme , Lactones , Spiranes
18.
Int Immunopharmacol ; 136: 112338, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-38850787

RÉSUMÉ

Cardiac fibrosis is a typical feature of cardiac pathological remodeling, which is associated with adverse clinical outcomes and has no effective therapy. Nicotine is an important risk factor for cardiac fibrosis, yet its underlying molecular mechanism remains poorly understood. This study aimed to identify its potential molecular mechanism in nicotine-induced cardiac fibrosis. Our results showed nicotine exposure led to the proliferation and transformation of cardiac fibroblasts (CFs) into myofibroblasts (MFs) by impairing autophagy flux. Through the use of drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR) technology, it was discovered that nicotine directly increased the stability and protein levels of lactate dehydrogenase A (LDHA) by binding to it. Nicotine treatment impaired autophagy flux by regulating the AMPK/mTOR signaling pathway, impeding the nuclear translocation of transcription factor EB (TFEB), and reducing the activity of cathepsin B (CTSB). In vivo, nicotine treatment exacerbated cardiac fibrosis induced in spontaneously hypertensive rats (SHR) and worsened cardiac function. Interestingly, the absence of LDHA reversed these effects both in vitro and in vivo. Our study identified LDHA as a novel nicotine-binding protein that plays a crucial role in mediating cardiac fibrosis by blocking autophagy flux. The findings suggest that LDHA could potentially serve as a promising target for the treatment of cardiac fibrosis.


Sujet(s)
Autophagie , Fibrose , Nicotine , Animaux , Autophagie/effets des médicaments et des substances chimiques , Rats , Mâle , Rats de lignée SHR , Transduction du signal/effets des médicaments et des substances chimiques , Myocarde/anatomopathologie , Myocarde/métabolisme , Lactate dehydrogenase 5/métabolisme , Cellules cultivées , Humains , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/métabolisme , Rat Sprague-Dawley
19.
Stem Cell Res Ther ; 15(1): 166, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38867276

RÉSUMÉ

BACKGROUND: Hypertrophic scarring results from myofibroblast differentiation and persistence during wound healing. Currently no effective treatment for hypertrophic scarring exists however, autologous fat grafting has been shown to improve scar elasticity, appearance, and function. The aim of this study was to understand how paracrine factors from adipose tissues and adipose-derived stromal cells (ADSC) affect fibroblast to myofibroblast differentiation. METHODS: The transforming growth factor-ß1 (TGF-ß1) induced model of myofibroblast differentiation was used to test the effect of conditioned media from adipose tissue, ADSC or lipid on the proportion of fibroblasts and myofibroblasts. RESULTS: Adipose tissue conditioned media inhibited the differentiation of fibroblasts to myofibroblasts but this inhibition was not observed following treatment with ADSC or lipid conditioned media. Hepatocyte growth factor (HGF) was readily detected in the conditioned medium from adipose tissue but not ADSC. Cells treated with HGF, or fortinib to block HGF, demonstrated that HGF was not responsible for the inhibition of myofibroblast differentiation. Conditioned media from adipose tissue was shown to reduce the proportion of myofibroblasts when added to fibroblasts previously treated with TGF-ß1, however, conditioned media treatment was unable to significantly reduce the proportion of myofibroblasts in cell populations isolated from scar tissue. CONCLUSIONS: Cultured ADSC or adipocytes have been the focus of most studies, however, this work highlights the importance of considering whole adipose tissue to further our understanding of fat grafting. This study supports the use of autologous fat grafts for scar treatment and highlights the need for further investigation to determine the mechanism.


Sujet(s)
Tissu adipeux , Différenciation cellulaire , Facteur de croissance des hépatocytes , Myofibroblastes , Facteur de croissance transformant bêta-1 , Myofibroblastes/métabolisme , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/cytologie , Facteur de croissance transformant bêta-1/pharmacologie , Facteur de croissance transformant bêta-1/métabolisme , Tissu adipeux/cytologie , Tissu adipeux/métabolisme , Différenciation cellulaire/effets des médicaments et des substances chimiques , Milieux de culture conditionnés/pharmacologie , Humains , Facteur de croissance des hépatocytes/pharmacologie , Facteur de croissance des hépatocytes/métabolisme , Communication paracrine/effets des médicaments et des substances chimiques , Phénotype , Cellules cultivées , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/cytologie , Adipocytes/métabolisme , Adipocytes/cytologie , Adipocytes/effets des médicaments et des substances chimiques , Cellules stromales/métabolisme , Cellules stromales/cytologie , Cellules stromales/effets des médicaments et des substances chimiques
20.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 505-511, 2024 Jun 18.
Article de Chinois | MEDLINE | ID: mdl-38864137

RÉSUMÉ

OBJECTIVE: To investigate the effect of tofacitinib, a pan-Janus kinase (JAK) inhibitor, on transforming growth factor-beta 1 (TGF-ß1)-induced fibroblast to myofibroblast transition (FMT) and to explore its mechanism. To provide a theoretical basis for the clinical treatment of connective tissue disease-related interstitial lung disease (CTD-ILD). METHODS: (1) Human fetal lung fibroblast 1 (HFL-1) were cultured in vitro, and 6 groups were established: DMSO blank control group, TGF-ß1 induction group, and TGF-ß1 with different concentrations of tofacitinib (0.5, 1.0, 2.0, 5.0 µmol/L) drug intervention experimental groups. CCK-8 was used to measure the cell viability, and wound-healing assay was performed to measure cell migration ability. After 48 h of combined treatment, quantitative real-time PCR (RT-PCR) and Western blotting were used to detect the gene and protein expression levels of α-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type Ⅰ (COL1). (2) RT-PCR and enzyme-linked immunosorbnent assay (ELISA) were used to detect the interleukin-6 (IL-6) gene and protein expression changes, respectively. (3) DMSO carrier controls, 1.0 µmol/L and 5.0 µmol/L tofacitinib were added to the cell culture media of different groups for pre-incubation for 30 min, and then TGF-ß1 was added to treat for 1 h, 6 h and 24 h. The phosphorylation levels of Smad2/3 and signal transducer and activator of transcription 3 (STAT3) protein were detected by Western blotting. RESULTS: (1) Tofacitinib inhibited the viability and migration ability of HFL-1 cells after TGF-ß1 induction. (2) The expression of α-SMA, COL1A1 and FN1 genes of HFL-1 in the TGF-ß1-induced groups was significantly up-regulated compared with the blank control group (P < 0.05). Compared with the TGF-ß1 induction group, α-SMA expression in the 5.0 µmol/L tofacitinib intervention group was significantly inhi-bited (P < 0.05). Compared with the TGF-ß1-induced group, FN1 gene was significantly inhibited in each intervention group at a concentration of 0.5-5.0 µmol/L (P < 0.05). Compared with the TGF-ß1-induced group, the COL1A1 gene expression in each intervention group did not change significantly. (3) Western blotting results showed that the protein levels of α-SMA and FN1 in the TGF-ß1-induced group were significantly higher than those in the control group (P < 0.05), and there was no significant difference in the expression of COL1A1. Compared with the TGF-ß1-induced group, the α-SMA protein level in the intervention groups with different concentrations decreased. And the differences between the TGF-ß1-induced group and 2.0 µmol/L or 5.0 µmol/L intervention groups were statistically significant (P < 0.05). Compared with the TGF-ß1-induced group, the FN1 protein levels in the intervention groups with different concentrations showed a downward trend, but the difference was not statistically significant. There was no difference in COL1A1 protein expression between the intervention groups compared with the TGF-ß1-induced group. (4) After TGF-ß1 acted on HFL-1 cells for 48 h, the gene expression of the IL-6 was up-regulated and IL-6 in culture supernatant was increased, the intervention with tofacitinib partly inhibited the TGF-ß1-induced IL-6 gene expression and IL-6 in culture supernatant. TGF-ß1 induced the increase of Smad2/3 protein phosphorylation in HFL-1 cells for 1 h and 6 h, STAT3 protein phosphorylation increased at 1 h, 6 h and 24 h, the pre-intervention with tofacitinib inhibited the TGF-ß1-induced Smad2/3 phosphorylation at 6 h and inhibited TGF-ß1-induced STAT3 phosphorylation at 1 h, 6 h and 24 h. CONCLUSION: Tofacitinib can inhibit the transformation of HFL-1 cells into myofibroblasts induced by TGF-ß1, and the mechanism may be through inhibiting the classic Smad2/3 pathway as well as the phosphorylation of STAT3 induced by TGF-ß1, thereby protecting the disease progression of pulmonary fibrosis.


Sujet(s)
Fibroblastes , Poumon , Myofibroblastes , Pipéridines , Pyrimidines , Facteur de transcription STAT-3 , Transduction du signal , Facteur de croissance transformant bêta-1 , Humains , Pyrimidines/pharmacologie , Pipéridines/pharmacologie , Facteur de transcription STAT-3/métabolisme , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Facteur de croissance transformant bêta-1/métabolisme , Myofibroblastes/métabolisme , Myofibroblastes/cytologie , Myofibroblastes/effets des médicaments et des substances chimiques , Poumon/cytologie , Transduction du signal/effets des médicaments et des substances chimiques , Fibronectines/métabolisme , Mouvement cellulaire/effets des médicaments et des substances chimiques , Pyrroles/pharmacologie , Actines/métabolisme , Collagène de type I/métabolisme , Collagène de type I/génétique , Janus kinases/métabolisme , Survie cellulaire/effets des médicaments et des substances chimiques , Protéine Smad2/métabolisme , Pneumopathies interstitielles/métabolisme , Interleukine-6/métabolisme , Protéine Smad-3/métabolisme , Cellules cultivées
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE