Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.992
Filtrer
1.
J Comp Neurol ; 532(6): e25630, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38852043

RÉSUMÉ

Mitochondria play critical roles in neural stem/progenitor cell proliferation and fate decisions. The subcellular localization of mitochondria in neural stem/progenitor cells during mitosis potentially influences the distribution of mitochondria to the daughter cells and thus their fates. Therefore, understanding the spatial dynamics of mitochondria provides important knowledge about brain development. In this study, we analyzed the subcellular localization of mitochondria in the fetal human neocortex with a particular focus on the basal radial glial cells (bRGCs), a neural stem/progenitor cell subtype attributed to the evolutionary expansion of the human neocortex. During interphase, bRGCs exhibit a polarized localization of mitochondria that is localized at the base of the process or the proximal part of the process. Thereafter, mitochondria in bRGCs at metaphase show unpolarized distribution in which the mitochondria are randomly localized in the cytoplasm. During anaphase and telophase, mitochondria are still localized evenly, but mainly in the periphery of the cytoplasm. Mitochondria start to accumulate at the cleavage furrow during cytokinesis. These results suggest that the mitochondrial localization in bRGCs is tightly regulated during the cell cycle, which may ensure the proper distribution of mitochondria to the daughter cells and, thus in turn, influence their fates.


Sujet(s)
Cycle cellulaire , Cellules épendymogliales , Mitochondries , Néocortex , Humains , Néocortex/cytologie , Néocortex/métabolisme , Mitochondries/métabolisme , Cycle cellulaire/physiologie , Cellules épendymogliales/métabolisme , Cellules épendymogliales/cytologie , Cellules souches neurales/métabolisme , Cellules souches neurales/cytologie
2.
Nat Commun ; 15(1): 4879, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38849354

RÉSUMÉ

The mammalian neocortex comprises an enormous diversity regarding cell types, morphology, and connectivity. In this work, we discover a post-transcriptional mechanism of gene expression regulation, protein translation, as a determinant of cortical neuron identity. We find specific upregulation of protein synthesis in the progenitors of later-born neurons and show that translation rates and concomitantly protein half-lives are inherent features of cortical neuron subtypes. In a small molecule screening, we identify Ire1α as a regulator of Satb2 expression and neuronal polarity. In the developing brain, Ire1α regulates global translation rates, coordinates ribosome traffic, and the expression of eIF4A1. Furthermore, we demonstrate that the Satb2 mRNA translation requires eIF4A1 helicase activity towards its 5'-untranslated region. Altogether, we show that cortical neuron diversity is generated by mechanisms operating beyond gene transcription, with Ire1α-safeguarded proteostasis serving as an essential regulator of brain development.


Sujet(s)
Protéines de liaison aux séquences d'ADN MAR , Néocortex , Neurones , Biosynthèse des protéines , Protein-Serine-Threonine Kinases , Animaux , Néocortex/métabolisme , Néocortex/cytologie , Néocortex/embryologie , Neurones/métabolisme , Neurones/cytologie , Souris , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Protéines de liaison aux séquences d'ADN MAR/métabolisme , Protéines de liaison aux séquences d'ADN MAR/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Régulation de l'expression des gènes au cours du développement , Homéostasie protéique , Neurogenèse/génétique , ARN messager/métabolisme , ARN messager/génétique , Régions 5' non traduites/génétique , Ribosomes/métabolisme , Ribosomes/génétique , Humains , Endoribonucleases/métabolisme , Endoribonucleases/génétique , Différenciation cellulaire/génétique
3.
Cereb Cortex ; 34(6)2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38836835

RÉSUMÉ

Neocortex is a complex structure with different cortical sublayers and regions. However, the precise positioning of cortical regions can be challenging due to the absence of distinct landmarks without special preparation. To address this challenge, we developed a cytoarchitectonic landmark identification pipeline. The fluorescence micro-optical sectioning tomography method was employed to image the whole mouse brain stained by general fluorescent nucleotide dye. A fast 3D convolution network was subsequently utilized to segment neuronal somas in entire neocortex. By approach, the cortical cytoarchitectonic profile and the neuronal morphology were analyzed in 3D, eliminating the influence of section angle. And the distribution maps were generated that visualized the number of neurons across diverse morphological types, revealing the cytoarchitectonic landscape which characterizes the landmarks of cortical regions, especially the typical signal pattern of barrel cortex. Furthermore, the cortical regions of various ages were aligned using the generated cytoarchitectonic landmarks suggesting the structural changes of barrel cortex during the aging process. Moreover, we observed the spatiotemporally gradient distributions of spindly neurons, concentrated in the deep layer of primary visual area, with their proportion decreased over time. These findings could improve structural understanding of neocortex, paving the way for further exploration with this method.


Sujet(s)
Apprentissage profond , Néocortex , Neurones , Animaux , Néocortex/cytologie , Souris , Souris de lignée C57BL , Mâle , Imagerie tridimensionnelle/méthodes , Tomographie optique/méthodes
4.
J Biotechnol ; 389: 1-12, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38697361

RÉSUMÉ

Aging is associated with the slowdown of neuronal processing and cognitive performance in the brain; however, the exact cellular mechanisms behind this deterioration in humans are poorly elucidated. Recordings in human acute brain slices prepared from tissue resected during brain surgery enable the investigation of neuronal changes with age. Although neocortical fast-spiking cells are widely implicated in neuronal network activities underlying cognitive processes, they are vulnerable to neurodegeneration. Herein, we analyzed the electrical properties of 147 fast-spiking interneurons in neocortex samples resected in brain surgery from 106 patients aged 11-84 years. By studying the electrophysiological features of action potentials and passive membrane properties, we report that action potential overshoot significantly decreases and spike half-width increases with age. Moreover, the action potential maximum-rise speed (but not the repolarization speed or the afterhyperpolarization amplitude) significantly changed with age, suggesting a particular weakening of the sodium channel current generated in the soma. Cell passive membrane properties measured as the input resistance, membrane time constant, and cell capacitance remained unaffected by senescence. Thus, we conclude that the action potential in fast-spiking interneurons shows a significant weakening in the human neocortex with age. This may contribute to the deterioration of cortical functions by aging.


Sujet(s)
Potentiels d'action , Vieillissement , Interneurones , Néocortex , Humains , Néocortex/physiologie , Néocortex/cytologie , Sujet âgé , Interneurones/physiologie , Sujet âgé de 80 ans ou plus , Adulte , Vieillissement/physiologie , Adolescent , Enfant , Adulte d'âge moyen , Potentiels d'action/physiologie , Mâle , Jeune adulte , Femelle
5.
Cell Rep ; 43(5): 114212, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38743567

RÉSUMÉ

Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.


Sujet(s)
Interneurones , Interneurones/métabolisme , Animaux , Souris , Neuropeptide Y/métabolisme , Néocortex/métabolisme , Néocortex/cytologie , Néocortex/physiologie , Peptide vasoactif intestinal/métabolisme , Mâle , Parvalbumines/métabolisme
6.
Nat Commun ; 15(1): 3468, 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38658571

RÉSUMÉ

Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.


Sujet(s)
Protéines d'activation de la GTPase , Glutamate dehydrogenase , Néocortex , Néocortex/métabolisme , Néocortex/embryologie , Néocortex/croissance et développement , Néocortex/cytologie , Humains , Animaux , Glutamate dehydrogenase/métabolisme , Glutamate dehydrogenase/génétique , Protéines d'activation de la GTPase/métabolisme , Protéines d'activation de la GTPase/génétique , Acides cétoglutariques/métabolisme , Névroglie/métabolisme , Acide glutamique/métabolisme , Mitochondries/métabolisme , Mitochondries/génétique , Souris , Cycle citrique/génétique , Femelle
7.
Nature ; 629(8011): 402-409, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38632412

RÉSUMÉ

Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition, which is essential for neuronal computation1,2. Deviations from a balanced state have been linked to neurodevelopmental disorders, and severe disruptions result in epilepsy3-5. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here we identify a signalling pathway in the adult mouse neocortex that is activated in response to increased neuronal network activity. Overactivation of excitatory neurons is signalled to the network through an increase in the levels of BMP2, a growth factor that is well known for its role as a morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of perineuronal nets. PV-interneuron-specific disruption of BMP2-SMAD1 signalling is accompanied by a loss of glutamatergic innervation in PV cells, underdeveloped perineuronal nets and decreased excitability. Ultimately, this impairment of the functional recruitment of PV interneurons disrupts the cortical excitation-inhibition balance, with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signalling is repurposed to stabilize cortical networks in the adult mammalian brain.


Sujet(s)
Protéine morphogénétique osseuse de type 2 , Interneurones , Néocortex , Réseau nerveux , Inhibition nerveuse , Neurones , Transduction du signal , Protéine Smad-1 , Animaux , Femelle , Humains , Mâle , Souris , Protéine morphogénétique osseuse de type 2/métabolisme , Épilepsie/métabolisme , Épilepsie/physiopathologie , Interneurones/métabolisme , Néocortex/métabolisme , Néocortex/cytologie , Réseau nerveux/métabolisme , Neurones/métabolisme , Parvalbumines/métabolisme , Protéine Smad-1/métabolisme , Synapses/métabolisme , Acide glutamique/métabolisme
8.
Nature ; 629(8011): 384-392, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38600385

RÉSUMÉ

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Sujet(s)
Lignage cellulaire , Clones cellulaires , Mosaïcisme , Neurones , Prosencéphale , Sujet âgé , Femelle , Humains , Allèles , Lignage cellulaire/génétique , Clones cellulaires/cytologie , Clones cellulaires/métabolisme , Neurones GABAergiques/cytologie , Neurones GABAergiques/métabolisme , Hippocampe/cytologie , Protéines à homéodomaine/métabolisme , Néocortex/cytologie , Inhibition nerveuse , Neurones/cytologie , Neurones/métabolisme , Lobe pariétal/cytologie , Prosencéphale/anatomie et histologie , Prosencéphale/cytologie , Prosencéphale/métabolisme , Analyse sur cellule unique , Transcriptome/génétique
9.
EMBO J ; 43(8): 1388-1419, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38514807

RÉSUMÉ

Neocortex expansion during evolution is linked to higher numbers of neurons, which are thought to result from increased proliferative capacity and neurogenic potential of basal progenitor cells during development. Here, we show that EREG, encoding the growth factor EPIREGULIN, is expressed in the human developing neocortex and in gorilla cerebral organoids, but not in the mouse neocortex. Addition of EPIREGULIN to the mouse neocortex increases proliferation of basal progenitor cells, whereas EREG ablation in human cortical organoids reduces proliferation in the subventricular zone. Treatment of cortical organoids with EPIREGULIN promotes a further increase in proliferation of gorilla but not of human basal progenitor cells. EPIREGULIN competes with the epidermal growth factor (EGF) to promote proliferation, and inhibition of the EGF receptor abrogates the EPIREGULIN-mediated increase in basal progenitor cells. Finally, we identify putative cis-regulatory elements that may contribute to the observed inter-species differences in EREG expression. Our findings suggest that species-specific regulation of EPIREGULIN expression may contribute to the increased neocortex size of primates by providing a tunable pro-proliferative signal to basal progenitor cells in the subventricular zone.


Sujet(s)
Épiréguline , Néocortex , Animaux , Humains , Souris , Prolifération cellulaire , Épiréguline/génétique , Épiréguline/métabolisme , Gorilla gorilla/métabolisme , Protéines et peptides de signalisation intercellulaire/métabolisme , Néocortex/cytologie , Néocortex/métabolisme , Primates/physiologie
10.
Nat Cell Biol ; 26(5): 698-709, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38548890

RÉSUMÉ

The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids. Through the live analysis of hundreds of dividing progenitors, we show that basal radial glial cells undergo abundant symmetric amplifying divisions, and frequent self-consuming direct neurogenic divisions, bypassing intermediate progenitors. These direct neurogenic divisions are more abundant in the upper part of the subventricular zone. We furthermore demonstrate asymmetric Notch activation in the self-renewing daughter cells, independently of basal fibre inheritance. Our results reveal a remarkable conservation of fate decisions in cerebral organoids, supporting their value as models of early human neurogenesis.


Sujet(s)
Lignage cellulaire , Néocortex , Cellules souches neurales , Neurogenèse , Organoïdes , Humains , Néocortex/cytologie , Néocortex/embryologie , Néocortex/métabolisme , Organoïdes/cytologie , Organoïdes/métabolisme , Cellules souches neurales/cytologie , Cellules souches neurales/métabolisme , Différenciation cellulaire , Cellules épendymogliales/cytologie , Cellules épendymogliales/métabolisme , Récepteurs Notch/métabolisme , Récepteurs Notch/génétique , Division cellulaire , Prolifération cellulaire
11.
Neurosci Res ; 203: 51-56, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38224839

RÉSUMÉ

Neocortical slow waves are critical for memory consolidation. The retrosplenial cortex is thought to facilitate the slow wave propagation to regions beyond the neocortex. However, it remains unclear which population is responsible for the slow wave propagation. To address this issue, we performed in vivo whole-cell recordings to identify neurons that were synchronous and asynchronous with slow waves. By quantifying their intrinsic membrane properties, we observed that the former exhibited regular spiking, whereas the latter exhibited late spiking. Thus, these two cell types transmit information in different directions between the neocortex and subcortical regions.


Sujet(s)
Potentiels d'action , Néocortex , Neurones , Animaux , Néocortex/physiologie , Néocortex/cytologie , Neurones/physiologie , Potentiels d'action/physiologie , Souris , Techniques de patch-clamp , Souris de lignée C57BL , Mâle , Ondes du cerveau/physiologie , Anesthésie , Cortex cérébral/physiologie , Cortex cérébral/cytologie
12.
Nature ; 624(7991): 390-402, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38092918

RÉSUMÉ

Divergence of cis-regulatory elements drives species-specific traits1, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes. We find that conserved and divergent gene regulatory features are reflected in the evolution of the three-dimensional genome. Transposable elements contribute to nearly 80% of the human-specific candidate cis-regulatory elements in cortical cells. Through machine learning, we develop sequence-based predictors of candidate cis-regulatory elements in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Finally, we show that epigenetic conservation combined with sequence similarity helps to uncover functional cis-regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.


Sujet(s)
Séquence conservée , Évolution moléculaire , Régulation de l'expression des gènes , Réseaux de régulation génique , Mammifères , Néocortex , Animaux , Humains , Souris , Callithrix/génétique , Chromatine/génétique , Chromatine/métabolisme , Séquence conservée/génétique , Méthylation de l'ADN , Éléments transposables d'ADN/génétique , Épigénome , Régulation de l'expression des gènes/génétique , Macaca/génétique , Mammifères/génétique , Cortex moteur/cytologie , Cortex moteur/métabolisme , Multi-omique , Néocortex/cytologie , Néocortex/métabolisme , Séquences d'acides nucléiques régulatrices/génétique , Analyse sur cellule unique , Facteurs de transcription/métabolisme , Variation génétique/génétique
13.
Science ; 382(6669): 388-394, 2023 10 27.
Article de Anglais | MEDLINE | ID: mdl-37883552

RÉSUMÉ

The hypothalamus ("hypo" meaning below, and "thalamus" meaning bed) consists of regulatory circuits that support basic life functions that ensure survival. Sitting at the interface between peripheral, environmental, and neural inputs, the hypothalamus integrates these sensory inputs to influence a range of physiologies and behaviors. Unlike the neocortex, in which a stereotyped cytoarchitecture mediates complex functions across a comparatively small number of neuronal fates, the hypothalamus comprises upwards of thousands of distinct cell types that form redundant yet functionally discrete circuits. With single-cell RNA sequencing studies revealing further cellular heterogeneity and modern photonic tools enabling high-resolution dissection of complex circuitry, a new era of hypothalamic mapping has begun. Here, we provide a general overview of mammalian hypothalamic organization, development, and connectivity to help welcome newcomers into this exciting field.


Sujet(s)
Hypothalamus , Neurogenèse , Animaux , Hypothalamus/physiologie , Hypothalamus/ultrastructure , Mammifères , Néocortex/cytologie , Néocortex/physiologie , Neurones/physiologie , Thalamus/physiologie , Analyse de l'expression du gène de la cellule unique
14.
Science ; 382(6667): eadf0805, 2023 10 13.
Article de Anglais | MEDLINE | ID: mdl-37824667

RÉSUMÉ

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.


Sujet(s)
Néocortex , Animaux , Humains , Souris , Axones/métabolisme , Interneurones/métabolisme , Néocortex/cytologie , Néocortex/métabolisme , Cellules pyramidales/métabolisme , Transcriptome
15.
Science ; 382(6667): eadf6484, 2023 10 13.
Article de Anglais | MEDLINE | ID: mdl-37824669

RÉSUMÉ

Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid-producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was used to reliably target and analyze GABAergic neuron subclasses and individual transcriptomic types. This characterization elucidated transitions between PVALB and SST subclasses, revealed morphological heterogeneity within an abundant transcriptomic type, identified multiple spatially distinct types of the primate-specialized double bouquet cells (DBCs), and shed light on cellular differences between homologous mouse and human neocortical GABAergic neuron types. These results highlight the importance of multimodal phenotypic characterization for refinement of emerging transcriptomic cell type taxonomies and for understanding conserved and specialized cellular properties of human brain cell types.


Sujet(s)
Neurones GABAergiques , Interneurones , Néocortex , Animaux , Humains , Souris , Phénomènes électrophysiologiques , Neurones GABAergiques/métabolisme , Acide gamma-amino-butyrique/métabolisme , Interneurones/métabolisme , Néocortex/cytologie , Néocortex/métabolisme , Techniques de patch-clamp
16.
Science ; 379(6636): eadf2212, 2023 03 10.
Article de Anglais | MEDLINE | ID: mdl-36893240

RÉSUMÉ

Herai et al. discuss the known fact that a low percentage of modern humans who lack any overt phenotypes carry the ancestral TKTL1 allele. Our paper demonstrates that the amino acid substitution in TKTL1 increases neural progenitor cells and neurogenesis in the developing brain. It is another question if, and to what extent, this has consequences for the adult brain.


Sujet(s)
Néandertaliens , Néocortex , Cellules souches neurales , Neurogenèse , Transketolase , Animaux , Humains , Néandertaliens/génétique , Néocortex/cytologie , Néocortex/croissance et développement , Neurogenèse/génétique , Transketolase/génétique
17.
Biosystems ; 225: 104867, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-36792004

RÉSUMÉ

Perception of color by humans and other primates is a complex problem, studied by neurophysiology, psychophysiology, psycholinguistics, and even philosophy. Being mostly trichromats, simian primates have three types of opsin proteins, expressed in cone neurons in the eye, which allow for the sensing of color as the physical wavelength of light. Further, in neural networks of the retina, the coding principle changes from three types of sensor proteins to two opponent channels: activity of one type of neuron encode the evolutionarily ancient blue-yellow axis of color stimuli, and another more recent evolutionary channel, encoding the axis of red-green color stimuli. Both color channels are distinctive in neural organization at all levels from the eye to the neocortex, where it is thought that the perception of color (as philosophical qualia) emerges from the activity of some neuron ensembles. Here, using data from neurophysiology as a starting point, we propose a hypothesis on how the perception of color can be encoded in the activity of certain neurons in the neocortex. These conceptual neurons, herein referred to as 'color neurons', code only the hue of the color of visual stimulus, similar to place cells and number neurons, already described in primate brains. A case study with preliminary, but direct, evidence for existing conceptual color neurons in the human brain was published in 2008. We predict that the upcoming studies in non-human primates will be more extensive and provide a more detailed description of conceptual color neurons.


Sujet(s)
Néocortex , Primates , Perception visuelle , Animaux , Néocortex/cytologie , Néocortex/physiologie , Primates/physiologie , Couleur , Rétine/cytologie , Rétine/physiologie , Évolution biologique
18.
Nature ; 612(7940): 503-511, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36477535

RÉSUMÉ

The neocortex consists of a vast number of diverse neurons that form distinct layers and intricate circuits at the single-cell resolution to support complex brain functions1. Diverse cell-surface molecules are thought to be key for defining neuronal identity, and they mediate interneuronal interactions for structural and functional organization2-6. However, the precise mechanisms that control the fine neuronal organization of the neocortex remain largely unclear. Here, by integrating in-depth single-cell RNA-sequencing analysis, progenitor lineage labelling and mosaic functional analysis, we report that the diverse yet patterned expression of clustered protocadherins (cPCDHs)-the largest subgroup of the cadherin superfamily of cell-adhesion molecules7-regulates the precise spatial arrangement and synaptic connectivity of excitatory neurons in the mouse neocortex. The expression of cPcdh genes in individual neocortical excitatory neurons is diverse yet exhibits distinct composition patterns linked to their developmental origin and spatial positioning. A reduction in functional cPCDH expression causes a lateral clustering of clonally related excitatory neurons originating from the same neural progenitor and a significant increase in synaptic connectivity. By contrast, overexpression of a single cPCDH isoform leads to a lateral dispersion of clonally related excitatory neurons and a considerable decrease in synaptic connectivity. These results suggest that patterned cPCDH expression biases fine spatial and functional organization of individual neocortical excitatory neurons in the mammalian brain.


Sujet(s)
Régulation de l'expression des gènes , Néocortex , Protocadhérines , Animaux , Souris , Interneurones/métabolisme , Néocortex/anatomie et histologie , Néocortex/cytologie , Néocortex/métabolisme , Neurones/métabolisme , Protocadhérines/génétique , Protocadhérines/métabolisme , Synapses/métabolisme , Transmission synaptique
19.
Science ; 377(6611): 1155-1156, 2022 09 09.
Article de Anglais | MEDLINE | ID: mdl-36074827

RÉSUMÉ

A genetic change could explain increased cortical neurogenesis in modern humans.


Sujet(s)
Évolution biologique , Néocortex , Neurogenèse , Neurones , Animaux , Humains , Néocortex/cytologie , Néocortex/embryologie , Neurogenèse/génétique , Neurones/cytologie
20.
Science ; 377(6610): eabp9186, 2022 09 02.
Article de Anglais | MEDLINE | ID: mdl-36048957

RÉSUMÉ

The evolution of advanced cognition in vertebrates is associated with two independent innovations in the forebrain: the six-layered neocortex in mammals and the dorsal ventricular ridge (DVR) in sauropsids (reptiles and birds). How these innovations arose in vertebrate ancestors remains unclear. To reconstruct forebrain evolution in tetrapods, we built a cell-type atlas of the telencephalon of the salamander Pleurodeles waltl. Our molecular, developmental, and connectivity data indicate that parts of the sauropsid DVR trace back to tetrapod ancestors. By contrast, the salamander dorsal pallium is devoid of cellular and molecular characteristics of the mammalian neocortex yet shares similarities with the entorhinal cortex and subiculum. Our findings chart the series of innovations that resulted in the emergence of the mammalian six-layered neocortex and the sauropsid DVR.


Sujet(s)
Évolution biologique , Neurones , Pleurodeles , Télencéphale , Animaux , Atlas comme sujet , Néocortex/cytologie , Néocortex/physiologie , Neurones/métabolisme , Pleurodeles/physiologie , Télencéphale/cytologie , Télencéphale/physiologie , Transcriptome
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...