Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 6.267
Filtrer
1.
Behav Brain Funct ; 20(1): 18, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38965529

RÉSUMÉ

BACKGROUND: Anxiety disorders are one of the most common mental disorders. Ghrelin is a critical orexigenic brain-gut peptide that regulates food intake and metabolism. Recently, the ghrelin system has attracted more attention for its crucial roles in psychiatric disorders, including depression and anxiety. However, the underlying neural mechanisms involved have not been fully investigated. METHODS: In the present study, the effect and underlying mechanism of ghrelin signaling in the nucleus accumbens (NAc) core on anxiety-like behaviors were examined in normal and acute stress rats, by using immunofluorescence, qRT-PCR, neuropharmacology, molecular manipulation and behavioral tests. RESULTS: We reported that injection of ghrelin into the NAc core caused significant anxiolytic effects. Ghrelin receptor growth hormone secretagogue receptor (GHSR) is highly localized and expressed in the NAc core neurons. Antagonism of GHSR blocked the ghrelin-induced anxiolytic effects. Moreover, molecular knockdown of GHSR induced anxiogenic effects. Furthermore, injection of ghrelin or overexpression of GHSR in the NAc core reduced acute restraint stress-induced anxiogenic effects. CONCLUSIONS: This study demonstrates that ghrelin and its receptor GHSR in the NAc core are actively involved in modulating anxiety induced by acute stress, and raises an opportunity to treat anxiety disorders by targeting ghrelin signaling system.


Sujet(s)
Anxiété , Ghréline , Noyau accumbens , Rat Sprague-Dawley , Récepteurs à la ghréline , Transduction du signal , Stress psychologique , Animaux , Ghréline/métabolisme , Noyau accumbens/métabolisme , Noyau accumbens/effets des médicaments et des substances chimiques , Mâle , Anxiété/métabolisme , Anxiété/psychologie , Récepteurs à la ghréline/métabolisme , Récepteurs à la ghréline/génétique , Rats , Stress psychologique/métabolisme , Stress psychologique/psychologie , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/physiologie , Comportement animal/effets des médicaments et des substances chimiques
2.
Transl Psychiatry ; 14(1): 277, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38965230

RÉSUMÉ

The mechanisms contributing to alcohol use disorder (AUD) are complex and the orexigenic peptide ghrelin, which enhances alcohol reward, is implied as a crucial modulator. The major proportion of circulating ghrelin is however the non-octanoylated form of ghrelin, des-acyl ghrelin (DAG), whose role in reward processes is unknown. As recent studies show that DAG decreases food intake, we hypothesize that DAG attenuates alcohol-related responses in animal models. Acute and repeated DAG treatment dose-dependently decreased alcohol drinking in male and female rats. In these alcohol-consuming male rats, repeated DAG treatment causes higher levels of dopamine metabolites in the ventral tegmental area, an area central to reward processing. The role of DAG in reward processing is further supported as DAG prevents alcohol-induced locomotor stimulation, reward in the conditioned place preference paradigm, and dopamine release in the nucleus accumbens in male rodents. On the contrary, DAG does not alter the memory of alcohol reward or affect neurotransmission in the hippocampus, an area central to memory. Further, circulating DAG levels are positively correlated with alcohol drinking in female but not male rats. Studies were conducted in attempts to identify tentative targets of DAG, which currently are unknown. Data from these recombinant cell system revealed that DAG does not bind to either of the monoamine transporters, 5HT2A, CB1, or µ-opioid receptors. Collectively, our data show that DAG attenuates alcohol-related responses in rodents, an effect opposite to that of ghrelin, and contributes towards a deeper insight into behaviors regulated by the ghrelinergic signaling pathway.


Sujet(s)
Consommation d'alcool , Dopamine , Ghréline , Noyau accumbens , Récompense , Aire tegmentale ventrale , Animaux , Ghréline/pharmacologie , Ghréline/métabolisme , Mâle , Rats , Femelle , Dopamine/métabolisme , Aire tegmentale ventrale/métabolisme , Aire tegmentale ventrale/effets des médicaments et des substances chimiques , Noyau accumbens/métabolisme , Noyau accumbens/effets des médicaments et des substances chimiques , Éthanol/pharmacologie , Éthanol/administration et posologie , Humains , Hippocampe/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Rat Sprague-Dawley
3.
Mol Brain ; 17(1): 37, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38872222

RÉSUMÉ

The potential role of the ghrelin receptor, also known as the growth hormone secretagogue receptor (GHSR), within the nucleus accumbens (NAcc) in regulating drug addiction and feeding has been documented; however, the pattern of its expression in this site remains elusive. In this study, we characterized the expression patterns of GHSR1a and 1b, two subtypes of GHSRs, within the NAcc of the rat brain by immunohistochemistry. We visually detected GHSR signals, for the first time, at the protein level in the NAcc in which they were mostly expressed in neurons including both medium spiny neurons (MSNs) and non-MSNs. Furthermore, GHSR1a was found expressed as localized near the cellular membrane or some in the cytoplasm, whereas GHSR1b expressed solely throughout the large cytoplasmic area. The existence and subcellular expression pattern of GHSRs in the NAcc identified in this study will contribute to improving our understanding about the role of GHSR-mediated neurosignaling in feeding and drug addiction.


Sujet(s)
Noyau accumbens , Récepteurs à la ghréline , Animaux , Récepteurs à la ghréline/métabolisme , Noyau accumbens/métabolisme , Mâle , Rats , Neurones/métabolisme , Rat Sprague-Dawley , Immunohistochimie
4.
eNeuro ; 11(7)2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38918053

RÉSUMÉ

The magnitude of dopamine signals elicited by rewarding events and their predictors is updated when reward value changes. It is actively debated how readily these dopamine signals adapt and whether adaptation aligns with model-free or model-based reinforcement-learning principles. To investigate this, we trained male rats in a pavlovian-conditioning paradigm and measured dopamine release in the nucleus accumbens core in response to food reward (unconditioned stimulus) and reward-predictive conditioned stimuli (CS), both before and after reward devaluation, induced via either sensory-specific or nonspecific satiety. We demonstrate that (1) such devaluation reduces CS-induced dopamine release rapidly, without additional pairing of CS with devalued reward and irrespective of whether the devaluation was sensory-specific or nonspecific. In contrast, (2) reward devaluation did not decrease food reward-induced dopamine release. Surprisingly, (3) postdevaluation reconditioning, by additional pairing of CS with devalued reward, rapidly reinstated CS-induced dopamine signals to predevaluation levels. Taken together, we identify distinct, divergent adaptations in dopamine-signal magnitude when reward value is decreased: CS dopamine diminishes but reinstates fast, whereas reward dopamine is resistant to change. This implies that, respective to abovementioned findings, (1) CS dopamine may be governed by a model-based mechanism and (2) reward dopamine by a model-free one, where (3) the latter may contribute to swift reinstatement of the former. However, changes in CS dopamine were not selective for sensory specificity of reward devaluation, which is inconsistent with model-based processes. Thus, mesolimbic dopamine signaling incorporates both model-free and model-based mechanisms and is not exclusively governed by either.


Sujet(s)
Conditionnement classique , Dopamine , Noyau accumbens , Récompense , Animaux , Dopamine/métabolisme , Mâle , Noyau accumbens/métabolisme , Noyau accumbens/physiologie , Conditionnement classique/physiologie , Rats , Rat Sprague-Dawley , Adaptation physiologique/physiologie
5.
Cell Mol Life Sci ; 81(1): 268, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38884814

RÉSUMÉ

It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.


Sujet(s)
Potentiels d'action , Glycine , Neurones , Noyau accumbens , Récepteurs couplés aux protéines G , Animaux , Glycine/pharmacologie , Glycine/métabolisme , Noyau accumbens/métabolisme , Noyau accumbens/effets des médicaments et des substances chimiques , Noyau accumbens/cytologie , Neurones/métabolisme , Neurones/effets des médicaments et des substances chimiques , Récepteurs couplés aux protéines G/métabolisme , Mâle , Potentiels d'action/effets des médicaments et des substances chimiques , Souris , Souris de lignée C57BL , Récepteur de la glycine/métabolisme , Techniques de patch-clamp , Phosphorylation/effets des médicaments et des substances chimiques , Neurones épineux moyens
6.
Nature ; 630(8017): 677-685, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38839962

RÉSUMÉ

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Sujet(s)
Neurones dopaminergiques , Neurones GABAergiques , Morphine , Gaine de myéline , Plasticité neuronale , Noyau accumbens , Oligodendroglie , Optogénétique , Récompense , Aire tegmentale ventrale , Aire tegmentale ventrale/physiologie , Aire tegmentale ventrale/cytologie , Aire tegmentale ventrale/effets des médicaments et des substances chimiques , Animaux , Neurones dopaminergiques/métabolisme , Neurones dopaminergiques/effets des médicaments et des substances chimiques , Neurones dopaminergiques/physiologie , Souris , Gaine de myéline/métabolisme , Morphine/pharmacologie , Mâle , Noyau accumbens/cytologie , Noyau accumbens/métabolisme , Noyau accumbens/physiologie , Noyau accumbens/effets des médicaments et des substances chimiques , Plasticité neuronale/effets des médicaments et des substances chimiques , Plasticité neuronale/physiologie , Oligodendroglie/métabolisme , Oligodendroglie/cytologie , Oligodendroglie/effets des médicaments et des substances chimiques , Neurones GABAergiques/métabolisme , Neurones GABAergiques/effets des médicaments et des substances chimiques , Analgésiques morphiniques/pharmacologie , Dopamine/métabolisme , Femelle , Souris de lignée C57BL
7.
Dev Psychobiol ; 66(6): e22514, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38922890

RÉSUMÉ

Repeated exposure to abused drugs leads to reorganizing synaptic connections in the brain, playing a pivotal role in the relapse process. Additionally, recent research has highlighted the impact of parental drug exposure before gestation on subsequent generations. This study aimed to explore the influence of parental morphine exposure 10 days prior to pregnancy on drug-induced locomotor sensitization. Adult male and female Wistar rats were categorized into morphine-exposed and control groups. Ten days after their last treatment, they were mated, and their male offspring underwent morphine, methamphetamine, cocaine, and nicotine-induced locomotor sensitization tests. The results indicated increased locomotor activity in both groups after drug exposure, although the changes were attenuated in morphine and cocaine sensitization among the offspring of morphine-exposed parents (MEPs). Western blotting analysis revealed altered levels of D2 dopamine receptors (D2DRs) in the prefrontal cortex and nucleus accumbens of the offspring from MEPs. Remarkably, despite not having direct in utero drug exposure, these offspring exhibited molecular alterations affecting morphine and cocaine-induced sensitization. The diminished sensitization to morphine and cocaine suggested the development of a tolerance phenotype in these offspring. The changes in D2DR levels in the brain might play a role in these adaptations.


Sujet(s)
Cocaïne , Locomotion , Morphine , Noyau accumbens , Cortex préfrontal , Effets différés de l'exposition prénatale à des facteurs de risque , Rat Wistar , Récepteur D2 de la dopamine , Animaux , Femelle , Morphine/pharmacologie , Morphine/administration et posologie , Mâle , Cocaïne/pharmacologie , Cocaïne/administration et posologie , Grossesse , Effets différés de l'exposition prénatale à des facteurs de risque/physiopathologie , Effets différés de l'exposition prénatale à des facteurs de risque/induit chimiquement , Rats , Récepteur D2 de la dopamine/métabolisme , Récepteur D2 de la dopamine/effets des médicaments et des substances chimiques , Noyau accumbens/effets des médicaments et des substances chimiques , Noyau accumbens/métabolisme , Cortex préfrontal/effets des médicaments et des substances chimiques , Cortex préfrontal/métabolisme , Locomotion/effets des médicaments et des substances chimiques , Comportement animal/effets des médicaments et des substances chimiques , Comportement animal/physiologie , Stupéfiants/pharmacologie , Exposition paternelle/effets indésirables , Inhibiteurs de la capture de la dopamine/pharmacologie , Inhibiteurs de la capture de la dopamine/administration et posologie , Activité motrice/effets des médicaments et des substances chimiques , Activité motrice/physiologie
8.
Genes Brain Behav ; 23(3): e12906, 2024 06.
Article de Anglais | MEDLINE | ID: mdl-38861664

RÉSUMÉ

Motherhood is a costly life-history transition accompanied by behavioral and neural plasticity necessary for offspring care. Motherhood in the monogamous prairie vole is associated with decreased pair bond strength, suggesting a trade-off between parental investment and pair bond maintenance. Neural mechanisms governing pair bonds and maternal bonds overlap, creating possible competition between the two. We measured mRNA expression of genes encoding receptors for oxytocin (oxtr), dopamine (d1r and d2r), mu-opioids (oprm1a), and kappa-opioids (oprk1a) within three brain areas processing salience of sociosensory cues (anterior cingulate cortex; ACC), pair bonding (nucleus accumbens; NAc), and maternal care (medial preoptic area; MPOA). We compared gene expression differences between pair bonded prairie voles that were never pregnant, pregnant (~day 16 of pregnancy), and recent mothers (day 3 of lactation). We found greater gene expression in the NAc (oxtr, d2r, oprm1a, and oprk1a) and MPOA (oxtr, d1r, d2r, oprm1a, and oprk1a) following the transition to motherhood. Expression for all five genes in the ACC was greatest for females that had been bonded for longer. Gene expression within each region was highly correlated, indicating that oxytocin, dopamine, and opioids comprise a complimentary gene network for social signaling. ACC-NAc gene expression correlations indicated that being a mother (oxtr and d1r) or maintaining long-term pair bonds (oprm1a) relies on the coordination of different signaling systems within the same circuit. Our study suggests the maternal brain undergoes changes that prepare females to face the trade-off associated with increased emotional investment in offspring, while also maintaining a pair bond.


Sujet(s)
Arvicolinae , Comportement maternel , Noyau accumbens , Monogamie , Récepteur mu , Animaux , Femelle , Arvicolinae/génétique , Récepteur mu/génétique , Récepteur mu/métabolisme , Comportement maternel/physiologie , Noyau accumbens/métabolisme , Grossesse , Récepteurs à l'ocytocine/génétique , Récepteurs à l'ocytocine/métabolisme , Récepteur kappa/génétique , Récepteur kappa/métabolisme , Gyrus du cingulum/métabolisme , Aire préoptique/métabolisme , Récepteur dopamine D1/génétique , Récepteur dopamine D1/métabolisme
9.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38892320

RÉSUMÉ

Declining estrogen (E2) leads to physical inactivity and adipose tissue (AT) dysfunction. Mechanisms are not fully understood, but E2's effects on dopamine (DA) activity in the nucleus accumbens (NAc) brain region may mediate changes in mood and voluntary physical activity (PA). Our prior work revealed that loss of E2 robustly affected NAc DA-related gene expression, and the pattern correlated with sedentary behavior and visceral fat. The current study used a new transgenic mouse model (D1ERKO) to determine whether the abolishment of E2 receptor alpha (ERα) signaling within DA-rich brain regions affects PA and AT metabolism. Adult male and female wild-type (WT) and D1ERKO (KD) mice were assessed for body composition, energy intake (EE), spontaneous PA (SPA), and energy expenditure (EE); underwent glucose tolerance testing; and were assessed for blood biochemistry. Perigonadal white AT (PGAT), brown AT (BAT), and NAc brain regions were assessed for genes and proteins associated with DA, E2 signaling, and metabolism; AT sections were also assessed for uncoupling protein (UCP1). KD mice had greater lean mass and EE (genotype effects) and a visible change in BAT phenotype characterized by increased UCP1 staining and lipid depletion, an effect seen only among females. Female KD had higher NAc Oprm1 transcript levels and greater PGAT UCP1. This group tended to have improved glucose tolerance (p = 0.07). NAc suppression of Esr1 does not appear to affect PA, yet it may directly affect metabolism. This work may lead to novel targets to improve metabolic dysfunction following E2 loss, possibly by targeting the NAc.


Sujet(s)
Tissu adipeux , Métabolisme énergétique , Récepteur alpha des oestrogènes , Noyau accumbens , Récepteur dopamine D1 , Animaux , Noyau accumbens/métabolisme , Récepteur alpha des oestrogènes/métabolisme , Récepteur alpha des oestrogènes/génétique , Souris , Femelle , Mâle , Récepteur dopamine D1/métabolisme , Récepteur dopamine D1/génétique , Métabolisme énergétique/génétique , Tissu adipeux/métabolisme , Tissu adipeux brun/métabolisme , Souris knockout , Protéine-1 de découplage/métabolisme , Protéine-1 de découplage/génétique , Encéphale/métabolisme , Souris transgéniques , Techniques de knock-down de gènes , Souris de lignée C57BL
10.
Nature ; 630(8015): 141-148, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38778097

RÉSUMÉ

Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement1. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement2,3 (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs4. Among the opioid receptors, µ-opioid receptors have a key role5, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.


Sujet(s)
Fentanyl , Récepteur mu , , Animaux , Femelle , Mâle , Souris , Analgésiques morphiniques/pharmacologie , Analgésiques morphiniques/administration et posologie , Noyau central de l'amygdale/cytologie , Noyau central de l'amygdale/effets des médicaments et des substances chimiques , Noyau central de l'amygdale/métabolisme , Dopamine/métabolisme , Neurones dopaminergiques/effets des médicaments et des substances chimiques , Neurones dopaminergiques/métabolisme , Fentanyl/pharmacologie , Souris de lignée C57BL , Noyau accumbens/cytologie , Noyau accumbens/effets des médicaments et des substances chimiques , Noyau accumbens/métabolisme , Troubles liés aux opiacés/métabolisme , Troubles liés aux opiacés/anatomopathologie , Optogénétique , Récepteur mu/métabolisme , Syndrome de sevrage/métabolisme , Syndrome de sevrage/anatomopathologie , Aire tegmentale ventrale/cytologie , Aire tegmentale ventrale/effets des médicaments et des substances chimiques , Aire tegmentale ventrale/métabolisme
11.
Addict Biol ; 29(5): e13401, 2024 05.
Article de Anglais | MEDLINE | ID: mdl-38782631

RÉSUMÉ

Addictive properties of propofol have been demonstrated in both humans and animals. The nucleus accumbens (NAc) shell (NAsh) in the brain, along with the interactions between N-methyl-D-aspartate receptor (NMDAR) and the dopamine D1 receptor (D1R), as well as their downstream ERK/CREB signalling pathway in the NAc, are integral in regulating reward-seeking behaviour. Nevertheless, it remains unclear whether NMDARs and the NMDAR-D1R/ERK/CREB signalling pathway in the NAsh are involved in mediating propofol addiction. To investigate it, we conducted experiments with adult male Sprague-Dawley rats to establish a model of propofol self-administration behaviour. Subsequently, we microinjected D-AP5 (a competitive antagonist of NMDARs, 1.0-4.0 µg/0.3 µL/site) or vehicle into bilateral NAsh in rats that had previously self-administered propofol to examine the impact of NMDARs within the NAsh on propofol self-administration behaviour. Additionally, we examined the protein expressions of NR2A and NR2B subunits, and the D1R/ERK/CREB signalling pathways within the NAc. The results revealed that propofol administration behaviour was enhanced by D-AP5 pretreatment in NAsh, accompanied by elevated expressions of phosphorylation of NR2A (Tyr1246) and NR2B (Tyr1472) subunits. There were statistically significant increases in the expressions of D1Rs, as well as in the phosphorylated ERK1/2 (p-ERK1/2) and CREB (p-CREB). This evidence substantiates a pivotal role of NMDARs in the NAsh, with a particular emphasis on the NR2A and NR2B subunits, in mediating propofol self-administration behaviour. Furthermore, it suggests that this central reward processing mechanism may operate through the NMDAR-D1R/ERK/CREB signal transduction pathway.


Sujet(s)
Protéine de liaison à l'élément de réponse à l'AMP cyclique , Noyau accumbens , Propofol , Rat Sprague-Dawley , Récepteur dopamine D1 , Récepteurs du N-méthyl-D-aspartate , Autoadministration , Transduction du signal , Animaux , Noyau accumbens/effets des médicaments et des substances chimiques , Noyau accumbens/métabolisme , Propofol/pharmacologie , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteurs du N-méthyl-D-aspartate/effets des médicaments et des substances chimiques , Mâle , Récepteur dopamine D1/métabolisme , Récepteur dopamine D1/effets des médicaments et des substances chimiques , Rats , Transduction du signal/effets des médicaments et des substances chimiques , Protéine de liaison à l'élément de réponse à l'AMP cyclique/métabolisme , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques
12.
Pharmacol Biochem Behav ; 241: 173792, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38806117

RÉSUMÉ

Formosan wood mice (Apodemus semotus) are endemic rodents in Taiwan. Recently Formosan wood mice exhibit similar locomotor behaviors in the laboratory environment as in the field environment has shown. Contemporaneously, Formosan wood mice have higher moving distances of and central dopaminergic (DAergic) activities than C57BL/6 mice in behavioral test. This study tried to compare the behavioral responses between male Formosan wood mice and male C57BL/6 mice in the light-dark exploration tests. We also measured the levels of DA and 3,4-dihydroxyphenylacetic acid (DOPAC), the primary metabolite of DA, to assess the dopaminergic activity of the medial prefrontal cortex, striatum, and nucleus accumbens. Our data show that Formosan wood mice revealed higher exploration and central DAergic activities than did C57BL/6 mice in the light-dark exploration tests, and diazepam (an anxiolytics) treatment reduced the exploratory activity and central dopaminergic activities in Formosan wood mice, but not in C57BL/6 mice. After repeated exposure to light-dark exploration tests, the latency to dark zone was increased, and the duration in light zone as well as the central DAergic activity were decreased in C57BL/6 mice. This study provides comparative findings; Formosan wood mice showed the higher exploratory activities than C57BL/6 mice did, and their central DAergic activities were related to the behavioral responses in these two mice. This could potentially shed light on the reasons behind the prevalence of higher exploration and central dopaminergic activities. Using Formosan wood mice as a model to study human diseases related to hyperactivity adds significant value to the potential research.


Sujet(s)
Comportement animal , Dopamine , Comportement d'exploration , Souris de lignée C57BL , Murinae , Animaux , Mâle , Souris , Dopamine/métabolisme , Comportement d'exploration/effets des médicaments et des substances chimiques , Comportement animal/effets des médicaments et des substances chimiques , Acide 3,4-dihydroxy-benzèneacétique/métabolisme , Diazépam/pharmacologie , Anxiolytiques/pharmacologie , Noyau accumbens/métabolisme , Noyau accumbens/effets des médicaments et des substances chimiques , Cortex préfrontal/métabolisme , Cortex préfrontal/effets des médicaments et des substances chimiques , Corps strié/métabolisme , Corps strié/effets des médicaments et des substances chimiques , Activité motrice/effets des médicaments et des substances chimiques
13.
Neuropharmacology ; 255: 110001, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38750804

RÉSUMÉ

Emerging evidence suggests an important role of astrocytes in mediating behavioral and molecular effects of commonly misused drugs. Passive exposure to nicotine alters molecular, morphological, and functional properties of astrocytes. However, a potential involvement of astrocytes in nicotine reinforcement remains largely unexplored. The overall hypothesis tested in the current study is that astrocytes play a critical role in nicotine reinforcement. Protein levels of the astrocyte marker glial fibrillary acidic protein (GFAP) were examined in key mesocorticolimbic regions following chronic nicotine intravenous self-administration. Fluorocitrate, a metabolic inhibitor of astrocytes, was tested for its effects on behaviors related to nicotine reinforcement and relapse. Effects of fluorocitrate on extracellular neurotransmitter levels, including glutamate, GABA, and dopamine, were determined with microdialysis. Chronic nicotine intravenous self-administration increased GFAP expression in the nucleus accumbens core (NACcr), but not other key mesocorticolimbic regions, compared to saline intravenous self-administration. Both intra-ventricular and intra-NACcr microinjection of fluorocitrate decreased nicotine self-administration. Intra-NACcr fluorocitrate microinjection also inhibited cue-induced reinstatement of nicotine seeking. Local perfusion of fluorocitrate decreased extracellular glutamate levels, elevated extracellular dopamine levels, but did not alter extracellular GABA levels in the NACcr. Fluorocitrate did not alter basal locomotor activity. These results indicate that nicotine reinforcement upregulates the astrocyte marker GFAP expression in the NACcr, metabolic inhibition of astrocytes attenuates nicotine reinforcement and relapse, and metabolic inhibition of astrocytes disrupts extracellular dopamine and glutamate transmission. Overall, these findings suggest that astrocytes play an important role in nicotine reinforcement and relapse, potentially through regulation of extracellular glutamate and dopamine neurotransmission.


Sujet(s)
Astrocytes , Citrates , Dopamine , Acide glutamique , Nicotine , Noyau accumbens , Rat Wistar , Autoadministration , Animaux , Noyau accumbens/effets des médicaments et des substances chimiques , Noyau accumbens/métabolisme , Astrocytes/effets des médicaments et des substances chimiques , Astrocytes/métabolisme , Nicotine/pharmacologie , Nicotine/administration et posologie , Mâle , Acide glutamique/métabolisme , Dopamine/métabolisme , Citrates/pharmacologie , Citrates/administration et posologie , Rats , Protéine gliofibrillaire acide/métabolisme , Agonistes nicotiniques/pharmacologie , Agonistes nicotiniques/administration et posologie , Microdialyse , , Acide gamma-amino-butyrique/métabolisme
14.
Neuropharmacology ; 254: 109972, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38710443

RÉSUMÉ

Opioid use disorder (OUD) is a chronic condition associated with long-lasting molecular and behavioral changes. Animals with prolonged access to opioids develop behaviors similar to human OUD. Identifying associated molecular changes can provide insight to underpinnings that lead to or maintain OUD. In pilot studies, we identified several miRNA targets that are altered by the administration of oxycodone. We selected mir182 for follow up as it was recently shown to be dysregulated in plasma of men administered oxycodone. In addition, mir182 is increased in reward-related brain regions of male rats following exposure to various addictive substances. The present study utilizes a long-access oxycodone self-administration paradigm to examine changes in mir182 and its mRNA targets associated with neuroplasticity, which may be involved in the maintenance of OUD-like phenotype in rats. Male rats were trained to self-administer oxycodone (0.1 mg/kg/infusion, i. v.) for 6 h daily sessions for 12 days. Each animal had a yoked saline control that received matched saline infusions. Animals were then tested on a progressive ratio schedule to measure motivation to obtain a single infusion of oxycodone. Drug seeking was measured following 28 days of forced abstinence using a 90-min cued/test. RTqPCR was utilized to measure mir182 and mRNA targets related to neuroplasticity (wnt3, plppr4, pou3f3, tle4, cacna2d, and bdnf) from the nucleus accumbens. Data revealed that animals responded on a continuum for oxycodone. When divided into two groups termed high- and low responders, animals diverged during self-administration acquisition and maintained differences in behavior and gene expression throughout the study. mir182 was upregulated in the nucleus accumbens of both high and low responders and negatively correlated with tle4, which showed a strong negative correlation with reinstatement behavior. mRNA target levels were correlated with behaviors associated with increased severity of OUD behavior in male rats.


Sujet(s)
microARN , Plasticité neuronale , Oxycodone , Autoadministration , Animaux , Mâle , Oxycodone/administration et posologie , Oxycodone/pharmacologie , Plasticité neuronale/effets des médicaments et des substances chimiques , Rats , microARN/métabolisme , microARN/génétique , Individualité , Rat Sprague-Dawley , Analgésiques morphiniques/administration et posologie , Analgésiques morphiniques/pharmacologie , Troubles liés aux opiacés/génétique , Noyau accumbens/effets des médicaments et des substances chimiques , Noyau accumbens/métabolisme , Facteur neurotrophique dérivé du cerveau/métabolisme , Facteur neurotrophique dérivé du cerveau/génétique
15.
eNeuro ; 11(6)2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38806231

RÉSUMÉ

Amylin, a pancreatic hormone that is cosecreted with insulin, has been highlighted as a potential treatment target for obesity. Amylin receptors are distributed widely throughout the brain and are coexpressed on mesolimbic dopamine neurons. Activation of amylin receptors is known to reduce food intake, but the neurochemical mechanisms behind this remain to be elucidated. Amylin receptor activation in the ventral tegmental area (VTA), a key dopaminergic nucleus in the mesolimbic reward system, has a potent ability to suppress intake of palatable fat and sugar solutions. Although previous work has demonstrated that VTA amylin receptor activation can dampen mesolimbic dopamine signaling elicited by random delivery of sucrose, whether this is also the case for fat remains unknown. Herein we tested the hypothesis that amylin receptor activation in the VTA of male rats would attenuate dopamine signaling in the nucleus accumbens core in response to random intraoral delivery of either fat or sugar solutions. Results show that fat solution produces a greater potentiation of accumbens dopamine than an isocaloric sucrose solution. Moreover, activation of VTA amylin receptors elicits a more robust suppression of accumbens dopamine signaling in response to fat solution than to sucrose. Taken together these results shed new light on the amylin system as a therapeutic target for obesity and emphasize the reinforcing nature of high-fat/high-sugar diets.


Sujet(s)
Dopamine , Noyau accumbens , Récepteurs du polypeptide amyloïde des ilots , Aire tegmentale ventrale , Animaux , Aire tegmentale ventrale/effets des médicaments et des substances chimiques , Aire tegmentale ventrale/métabolisme , Mâle , Dopamine/métabolisme , Noyau accumbens/effets des médicaments et des substances chimiques , Noyau accumbens/métabolisme , Récepteurs du polypeptide amyloïde des ilots/métabolisme , Rat Sprague-Dawley , Matières grasses alimentaires/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/physiologie , Agonistes des récepteurs de l'amyline/pharmacologie , Rats , Saccharose/administration et posologie , Saccharose/pharmacologie
16.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38723884

RÉSUMÉ

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Sujet(s)
Maladie d'Alzheimer , Modèles animaux de maladie humaine , Éthanol , Souris transgéniques , Noyau accumbens , Récepteur de la glycine , Récompense , Animaux , Noyau accumbens/métabolisme , Noyau accumbens/effets des médicaments et des substances chimiques , Maladie d'Alzheimer/métabolisme , Récepteur de la glycine/métabolisme , Éthanol/administration et posologie , Éthanol/pharmacologie , Souris , Mâle , Neurones/métabolisme , Souris de lignée C57BL , Consommation d'alcool/métabolisme
17.
Neuropharmacology ; 253: 109971, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38705568

RÉSUMÉ

The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.


Sujet(s)
Dopamine , Éthanol , Noyau accumbens , Ocytocine , Récepteur dopamine D1 , Récepteurs à l'ocytocine , Récompense , Animaux , Ocytocine/métabolisme , Ocytocine/analogues et dérivés , Mâle , Éthanol/pharmacologie , Éthanol/administration et posologie , Souris , Récepteur dopamine D1/métabolisme , Récepteur dopamine D1/antagonistes et inhibiteurs , Dopamine/métabolisme , Récepteurs à l'ocytocine/métabolisme , Récepteurs à l'ocytocine/antagonistes et inhibiteurs , Noyau accumbens/métabolisme , Noyau accumbens/effets des médicaments et des substances chimiques , Environnement , Hypothalamus/métabolisme , Hypothalamus/effets des médicaments et des substances chimiques , Dépresseurs du système nerveux central/pharmacologie , Dominance sociale , Comportement social , Motivation/physiologie , Motivation/effets des médicaments et des substances chimiques
18.
Neuropharmacology ; 255: 110008, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38797243

RÉSUMÉ

Ketamine (KET), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has rapid onset of antidepressant effects in Treatment-Resistant Depression patients and repeated infusions are required to sustain its antidepressant properties. However, KET is an addictive drug, and so more preclinical and clinical research is needed to assess the safety of recurring treatments in both sexes. Thus, the aim of this study was to investigate the reinforcing properties of various doses of KET (0-, 0.125-, 0.25-, 0.5 mg/kg/infusion) and assess KET's cue-induced reinstatement and neuronal activation in both sexes of Long Evans rats. Neuronal activation was assessed using the protein expression of the immediate early gene cFos in the nucleus accumbens (Nac), an important brain area implicated in reward, reinforcement and reinstatement to most drug-related cues. Our findings show that KET has reinforcing effects in both male and female rats, albeit exclusively at the highest two doses (0.25 and 0.5 mg/kg/infusion). Furthermore, we noted sex differences, particularly at the highest dose of ketamine, with female rats displaying a higher rate of self-administration. Interestingly, all groups that self-administered KET reinstated to drug-cues. Following drug cue-induced reinstatement test in rats exposed to KET (0.25 mg/kg/infusion) or saline, there was higher cFos protein expression in KET-treated animals compared to saline controls, and higher cFos expression in the core compared to the shell subregions of the Nac. As for reinstatement, there were no notable sex differences reported for cFos expression in the Nac. These findings reveal some sex and dose dependent effects in KET's reinforcing properties and that KET at all doses induced similar reinstatement in both sexes. This study also demonstrated that cues associated with ketamine induce comparable neuronal activation in the Nac of both male and female rats. This work warrants further research into the potential addictive properties of KET, especially when administered at lower doses which are now being used in the clinic for treating various psychopathologies.


Sujet(s)
Signaux , Relation dose-effet des médicaments , Kétamine , Noyau accumbens , Rat Long-Evans , , Animaux , Kétamine/pharmacologie , Kétamine/administration et posologie , Mâle , Noyau accumbens/effets des médicaments et des substances chimiques , Noyau accumbens/métabolisme , Femelle , Protéines proto-oncogènes c-fos/métabolisme , Antagonistes des acides aminés excitateurs/pharmacologie , Antagonistes des acides aminés excitateurs/administration et posologie , Rats , Caractères sexuels , Autoadministration , Conditionnement opérant/effets des médicaments et des substances chimiques
19.
CNS Neurosci Ther ; 30(5): e14737, 2024 05.
Article de Anglais | MEDLINE | ID: mdl-38702929

RÉSUMÉ

AIMS: This study aims to investigate the pharmacological effects and the underlying mechanism of cannabidiol (CBD) on methamphetamine (METH)-induced relapse and behavioral sensitization in male mice. METHODS: The conditioned place preference (CPP) test with a biased paradigm and open-field test were used to assess the effects of CBD on METH-induced relapse and behavioral sensitization in male mice. RNA sequencing and bioinformatics analysis was employed to identify differential expressed (DE) circRNAs, miRNAs, and mRNAs in the nucleus accumbens (NAc) of mice, and the interaction among them was predicted using competing endogenous RNAs (ceRNAs) network analysis. RESULTS: Chronic administration of CBD (40 mg/kg) during the METH withdrawal phase alleviated METH (2 mg/kg)-induced CPP reinstatement and behavioral sensitization in mice, as well as mood and cognitive impairments following behavioral sensitization. Furthermore, 42 DEcircRNAs, 11 DEmiRNAs, and 40 DEmRNAs were identified in the NAc of mice. The circMeis2-miR-183-5p-Kcnj5 network in the NAc of mice is involved in the effects of CBD on METH-induced CPP reinstatement and behavioral sensitization. CONCLUSIONS: This study constructed the ceRNAs network for the first time, revealing the potential mechanism of CBD in treating METH-induced CPP reinstatement and behavioral sensitization, thus advancing the application of CBD in METH use disorders.


Sujet(s)
Cannabidiol , Métamfétamine , Souris de lignée C57BL , microARN , ARN circulaire , ARN messager , Animaux , Cannabidiol/pharmacologie , Mâle , Métamfétamine/pharmacologie , microARN/génétique , microARN/métabolisme , Souris , ARN circulaire/génétique , ARN messager/métabolisme , Récidive , Stimulants du système nerveux central/pharmacologie , Noyau accumbens/effets des médicaments et des substances chimiques , Noyau accumbens/métabolisme , Réseaux de régulation génique/effets des médicaments et des substances chimiques
20.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-38731799

RÉSUMÉ

Parkinson's disease (PD) is the second most common neurodegenerative disorder. Dopamine (DA) neurons in the substantia nigra pars compacta, which have axonal projections to the dorsal striatum (dSTR), degenerate in PD. In contrast, DA neurons in the ventral tegmental area, with axonal projections to the ventral striatum, including the nucleus accumbens (NAcc) shell, are largely spared. This study aims to uncover the relative contributions of glycolysis and oxidative phosphorylation (OxPhos) to DA release in the striatum. We measured evoked DA release in mouse striatal brain slices using fast-scan cyclic voltammetry applied every two minutes. Blocking OxPhos resulted in a greater reduction in evoked DA release in the dSTR when compared to the NAcc shell, while blocking glycolysis caused a more significant decrease in evoked DA release in the NAcc shell than in the dSTR. Furthermore, when glycolysis was bypassed in favor of direct OxPhos, evoked DA release in the NAcc shell decreased by approximately 50% over 40 min, whereas evoked DA release in the dSTR was largely unaffected. These results demonstrate that the dSTR relies primarily on OxPhos for energy production to maintain evoked DA release, whereas the NAcc shell depends more on glycolysis. Consistently, two-photon imaging revealed higher oxidation levels of DA terminals in the dSTR than in the NAcc shell. Together, these findings partly explain the selective vulnerability of DA terminals in the dSTR to degeneration in PD.


Sujet(s)
Corps strié , Dopamine , Glycolyse , Phosphorylation oxydative , Animaux , Dopamine/métabolisme , Souris , Corps strié/métabolisme , Mâle , Souris de lignée C57BL , Neurones dopaminergiques/métabolisme , Noyau accumbens/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...