Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 913
Filtrer
1.
BMC Plant Biol ; 24(1): 669, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39004716

RÉSUMÉ

BACKGROUND: Fenugreeks (Trigonella L. spp.), belonging to the legume family (Fabaceae), are well-known multipurpose crops that their materials are currently received much attention in the pharmaceutical and food industries for the production of healthy and functional foods all over the world. Iran is one of the main diversity origins of this valuable plant. Therefore, the aim of the present study was to explore vitamins, minerals, and fatty acids profile, proximate composition, content of diosgenin, trigonelline, phenolic acids, total carotenoids, saponins, phenols, flavonoids, and tannins, mucilage and bitterness value, and antioxidant activity of the seed of thirty populations belonging to the ten different Iranian Trigonella species. RESULTS: We accordingly identified notable differences in the nutrient and bioactive compounds of each population. The highest content (mg/100 g DW) of ascorbic acid (18.67 ± 0.85‒22.48 ± 0.60) and α-tocopherol (31.61 ± 0.15‒38.78 ± 0.67) were found in the populations of T. filipes and T. coerulescens, respectively. Maximum content of catechin was found in the populations of T. teheranica (52.67 ± 0.05‒63.50 ± 0.72 mg/l). Linoleic acid (> 39.11% ± 0.61%) and linolenic acid (> 48.78 ± 0.39%) were the main polyunsaturated fatty acids, with the majority in the populations of T. stellata (54.81 ± 1.39‒63.46 ± 1.21%). The populations of T. stellata were also rich in trigonelline (4.95 ± 0.03‒7.66 ± 0.16 mg/g DW) and diosgenin (9.06 ± 0.06‒11.03 ± 0.17 mg/g DW). CONCLUSIONS: The obtained data provides baseline information to expand the inventory of wild and cultivated Iranian Trigonella species for further exploitation of rich chemotypes in the new foods and specific applications.


Sujet(s)
Alcaloïdes , Antioxydants , Diosgénine , Acides gras , Graines , Trigonella , Antioxydants/métabolisme , Alcaloïdes/analyse , Iran , Graines/composition chimique , Acides gras/analyse , Trigonella/composition chimique , Minéraux/analyse , Phénols/métabolisme , Nutriments/analyse
2.
PeerJ ; 12: e17719, 2024.
Article de Anglais | MEDLINE | ID: mdl-39006035

RÉSUMÉ

Dragon fruit has significant economic value in many countries due to has excellent nutritional content, health advantages, and adaptability to different climates, making it an important crop in the global fruit industry. This study aimed to gather comprehensive nutritional data on three dragon fruit cultivars by analysing the levels of micronutrients, fibre, carbohydrates, antioxidants, vitamins, and minerals in their pulps. Uniform dragon fruit samples underwent thorough analysis for proximate composition, mineral content, pigments, antioxidants, and vitamin C, with statistical methods used to assess significant differences among the parameters studied. The proximate composition analysis revealed significant differences among the three dragon fruit cultivars. Among the proximate components, protein (0.40 ± 0.02 g/100 g), moisture (91.33 ± 0.88%), crude fibre (0.32 ± 0.07 g/100 g), and ash (1.27 ± 0.09 g/100 g) were more abundant in Hylocereus costaricensis than in Hylocereus undatus and Hylocereus megalanthus. On the other hand, Hylocereus undatus had higher carbohydrate (17.02 ± 0.63 g/100 g) and energy (69.74 ± 2.44 kcal/100 g) contents. K (7.23 ± 0.35 mg/100 g), Ca (1.61 ± 0.13 mg/100 g), Fe (1.84 ± 0.05 mg/100 g), and Zn (0.37 ± 0.034 mg/100 g) are highly abundant in H. costaricensis. Additionally, Hylocereus costaricensis had the highest anthocyanin content (120.15 ± 3.29 mg/g FW) and total carotenoid content (72.51 ± 1.62 mg/g FW), along with the highest vitamin C content (8.92 ± 0.13 mg/g FW) and total soluble phenolic content (572.48 ± 20.77 mg/100 g). Its remarkable antioxidant activity was further highlighted by the lowest SC50 value (13.50 ± 0.4 mg/mL) for its DPPH radical scavenging capacity. The total soluble sugar content was highest in Hylocereus megalanthus (8.72 ± 0.30 g/100 g FW). Hierarchical clustering analysis revealed distinct trait and genotype associations; among the studied cultivars, Hylocereus costaricensis demonstrated superior performance across multiple traits. Correlation analysis indicated significant positive correlations among several traits, while principal component analysis highlighted the contribution of each trait to overall variance, with PC1 explaining 73.95% of the total variance. This study highlights the nutritional variations among dragon fruit cultivars, with Hylocereus costaricensis showing superior performance, guiding dietary planning and functional food development.


Sujet(s)
Antioxydants , Fruit , Valeur nutritive , Antioxydants/analyse , Fruit/composition chimique , Cactaceae/composition chimique , Nutriments/analyse , Acide ascorbique/analyse
3.
Mar Pollut Bull ; 205: 116692, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38972219

RÉSUMÉ

Phytoplankton blooms are common along the Chinese coast in the East China Sea, driven by various nutrient sources including river discharge, bottom water regeneration, and Kuroshio subsurface water intrusion. A notable 2014 summer bloom off the Zhejiang coast, exhibiting a Chl a concentration of 20.1 µg L-1, was significantly influenced by Changjiang River discharge, and high nutrient concentrations are often observed in the region's surface water. During blooms, primary production peaks at 1686.3 mg C m-3 d-1, indicating substantial CO2 absorption, with surface water fCO2 declining to 299.5 µatm, closely linked to plankton activities. Hypoxia often coincides with these frequent bloom occurrences, implicating marine-derived organic matter decomposition as a pivotal factor. Elevated particulate organic carbon concentrations further support this assumption, alongside increased nutrient levels, fCO2, and low pH in hypoxic waters. These findings underscore the intricate interplay between phytoplankton, nutrient cycling, and hypoxia formation, essential for effective coastal ecosystem management.


Sujet(s)
Surveillance de l'environnement , Eutrophisation , Phytoplancton , Eau de mer , Chine , Eau de mer/composition chimique , Nutriments/analyse , Saisons , Écosystème , Océans et mers , Chlorophylle A , Peuples d'Asie de l'Est
4.
Glob Chang Biol ; 30(7): e17416, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38994730

RÉSUMÉ

Climate change is exposing subarctic ecosystems to higher temperatures, increased nutrient availability, and increasing cloud cover. In this study, we assessed how these factors affect the fluxes of greenhouse gases (GHGs) (i.e., methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)), and biogenic volatile organic compounds (BVOCs) in a subarctic mesic heath subjected to 34 years of climate change related manipulations of temperature, nutrient availability, and light. GHGs were sampled from static chambers and gases analyzed with gas chromatograph. BVOCs were measured using the push-pull method and gases analyzed with chromatography-mass spectrometry. The soil temperature and moisture content in the warmed and shaded plots did not differ significantly from that in the controls during GHG and BVOC measurements. Also, the enclosure temperatures during BVOC measurements in the warmed and shaded plots did not differ significantly from temperatures in the controls. Hence, this allowed for assessment of long-term effects of the climate treatment manipulations without interference of temperature and moisture differences at the time of measurements. Warming enhanced CH4 uptake and the emissions of CO2, N2O, and isoprene. Increased nutrient availability increased the emissions of CO2 and N2O but caused no significant changes in the fluxes of CH4 and BVOCs. Shading (simulating increased cloudiness) enhanced CH4 uptake but caused no significant changes in the fluxes of other gases compared to the controls. The results show that climate warming and increased cloudiness will enhance CH4 sink strength of subarctic mesic heath ecosystems, providing negative climate feedback, while climate warming and enhanced nutrient availability will provide positive climate feedback through increased emissions of CO2 and N2O. Climate warming will also indirectly, through vegetation changes, increase the amount of carbon lost as isoprene from subarctic ecosystems.


Sujet(s)
Changement climatique , Gaz à effet de serre , Nutriments , Composés organiques volatils , Gaz à effet de serre/analyse , Composés organiques volatils/analyse , Nutriments/analyse , Toundra , Méthane/analyse , Dioxyde de carbone/analyse , Réchauffement de la planète , Température , Butadiènes , Hémiterpènes
5.
Sci Total Environ ; 946: 174352, 2024 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-38969108

RÉSUMÉ

Marine plastic debris (MPD) is a potential threat to marine ecosystems, but its function as a vector for the transportation of harmful microalgae and its impact on the habitats of other marine organisms are uncertain. To address this gap in knowledge, we performed month-long experiments in 30 L microcosms that contained plates made of six different plastic polymers (polypropylene [PP], low-density polyethylene [LDPE], high-density polyethylene [HDPE], polyvinyl chloride [PVC], polyethylene terephthalate [PET], and polystyrene [PS]), and examined the time course of changes in planktonic and periphytic microalgae. There were no significant differences in the composition of periphytic microalgae or biomass among the different plastic polymers (p > 0.05). Nutrient depletion decreased the abundance of planktonic microalgae, but increased the biomass of attached periphytic microalgae (p < 0.05). In particular, analysis of the plastic plates showed that the abundance of benthic species that are responsible for harmful algal blooms (HABs), such as Amphidinium operculatum and Coolia monotis, significantly increased over time (days 21-28; p < 0.05). Our findings demonstrated that periphyton species, including benthic microalgae that cause HABs, can easily attach to different types of plastic and potentially spread to different regions and negatively impact these ecosystems. These observations have important implications for understanding the potential role of MPD in the spread of microalgae, including HABs, which pose a significant threat to marine ecosystems.


Sujet(s)
Biomasse , Microalgues , Matières plastiques , Matières plastiques/analyse , Prolifération d'algues nuisibles , Polluants chimiques de l'eau/analyse , Nutriments/analyse , Surveillance de l'environnement , Écosystème
6.
BMC Plant Biol ; 24(1): 684, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39020284

RÉSUMÉ

Malus sieversii, commonly known as wild apples, represents a Tertiary relict plant species and serves as the progenitor of globally cultivated apple varieties. Unfortunately, wild apple populations are facing significant degradation in localized areas due to a myriad of factors. To gain a comprehensive understanding of the nutrient status and spatiotemporal variations of M. sieversii, green leaves were collected in May and July, and the fallen leaves were collected in October. The concentrations of leaf nitrogen (N), phosphorus (P), and potassium (K) were measured, and the stoichiometric ratios as well as nutrient resorption efficiencies were calculated. The study also explored the relative contributions of soil, topographic, and biotic factors to the variation in nutrient traits. The results indicate that as the growing period progressed, the concentrations of N and P in the leaves significantly decreased (P < 0.05), and the concentration of K in October was significantly lower than in May and July. Throughout plant growth, leaf N-P and N-K exhibited hyperallometric relationships, while P-K showed an isometric relationship. Resorption efficiency followed the order of N < P < K (P < 0.05), with all three ratios being less than 1; this indicates that the order of nutrient limitation is K > P > N. The resorption efficiencies were mainly regulated by nutrient concentrations in fallen leaves. A robust spatial dependence was observed in leaf nutrient concentrations during all periods (70.1-97.9% for structural variation), highlighting that structural variation, rather than random factors, dominated the spatial variation. Nutrient resorption efficiencies (NRE, PRE, and KRE) displayed moderate structural variation (30.2-66.8%). The spatial patterns of nutrient traits varied across growth periods, indicating they are influenced by multifactorial elements (in which, soil property showed the highest influence). In conclusion, wild apples manifested differentiated spatiotemporal variability and influencing factors across various leaf nutrient traits. These results provide crucial insights into the spatiotemporal patterns and influencing factors of leaf nutrient traits of M. sieversii at the permanent plot scale for the first time. This work is of great significance for the ecosystem restoration and sustainable management of degrading wild fruit forests.


Sujet(s)
Malus , Azote , Phosphore , Feuilles de plante , Potassium , Feuilles de plante/métabolisme , Malus/métabolisme , Malus/croissance et développement , Malus/physiologie , Chine , Phosphore/métabolisme , Phosphore/analyse , Azote/métabolisme , Potassium/métabolisme , Potassium/analyse , Forêts , Nutriments/métabolisme , Nutriments/analyse , Sol/composition chimique , Fruit/croissance et développement , Fruit/métabolisme , Analyse spatio-temporelle
7.
Environ Monit Assess ; 196(8): 699, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38963427

RÉSUMÉ

The United Nations (UN) emphasizes the pivotal role of sustainable agriculture in addressing persistent starvation and working towards zero hunger by 2030 through global development. Intensive agricultural practices have adversely impacted soil quality, necessitating soil nutrient analysis for enhancing farm productivity and environmental sustainability. Researchers increasingly turn to Artificial Intelligence (AI) techniques to improve crop yield estimation and optimize soil nutrition management. This study reviews 155 papers published from 2014 to 2024, assessing the use of machine learning (ML) and deep learning (DL) in predicting soil nutrients. It highlights the potential of hyperspectral and multispectral sensors, which enable precise nutrient identification through spectral analysis across multiple bands. The study underscores the importance of feature selection techniques to improve model performance by eliminating redundant spectral bands with weak correlations to targeted nutrients. Additionally, the use of spectral indices, derived from mathematical ratios of spectral bands based on absorption spectra, is examined for its effectiveness in accurately predicting soil nutrient levels. By evaluating various performance measures and datasets related to soil nutrient prediction, this paper offers comprehensive insights into the applicability of AI techniques in optimizing soil nutrition management. The insights gained from this review can inform future research and policy decisions to achieve global development goals and promote environmental sustainability.


Sujet(s)
Agriculture , Surveillance de l'environnement , Apprentissage machine , Sol , Sol/composition chimique , Agriculture/méthodes , Surveillance de l'environnement/méthodes , Nutriments/analyse
8.
Nutrients ; 16(14)2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-39064623

RÉSUMÉ

The International Breakfast Research Initiative is a global study of breakfast nutrition, involving 17 countries in four continents, aiming to derive nutrient-based regional recommendations for breakfast. This study aimed to propose a harmonised recommendation for three South-East Asian countries: Indonesia, Malaysia, and the Philippines. For each country, data from nationally representative dietary surveys on the contribution of breakfast to daily nutrient intakes at both the adult population level and at the level of the upper tertile of daily nutrient density using the Nutrient Rich Food (NRF) Index were collated and examined. Energy intakes at breakfast ranged from 26 to 27% of daily energy intake. In all three countries, breakfast was carbohydrate-rich, providing 52 to 72% of breakfast energy intake, while it was higher in total and saturated fat in Malaysia and Indonesia. Intakes of fibre and vitamin C were low in all countries, while Malaysia tended to have higher intakes of most minerals, including sodium. Daily and breakfast nutrient intakes (at the population level and in the upper tertile of the NRF Index) were compared to the Codex Alimentarius nutrient reference values (NRVs) to assess adequacy. A decision tree was established based on these data to guide the development of recommendations for nutrient intakes at breakfast across the three countries.


Sujet(s)
Petit-déjeuner , Ration calorique , Humains , Indonésie , Malaisie , Philippines , Adulte , Femelle , Mâle , Adulte d'âge moyen , Nutriments/analyse , Apports nutritionnels recommandés , Enquêtes sur le régime alimentaire , Jeune adulte , Valeur nutritive , Sujet âgé
9.
Molecules ; 29(14)2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39065014

RÉSUMÉ

Jujube (Ziziphus jujuba Mill.) is the first tree species in China, with a long history and abundant yield. However, fresh jujubes have a short shelf-life and are not resistant to storage. Therefore, more and more processed jujube products are being studied. These processed products can extend the shelf-life of jujubes and attract widespread attention for their rich functional nutrients. This review summarized changes in nutrients of fresh jujube and processed products and the research progress of different preparation methods of jujubes. Meanwhile, the pharmacological effects of bioactive components in jujube-based products were concluded. Jujube and its processed products contain rich polysaccharides, vitamin C, and other functional nutrients, which are beneficial to humans. As the initial processing method for jujubes, vacuum freezing or microwave drying have become the most commonly used and efficient drying methods. Additionally, processed jujube products cannot be separated from the maximum retention of nutrients and innovation of flavor. Fermentation is the main deep-processing method with broad development potential. In the future, chemical components and toxicological evaluation need to be combined with research to bring consumers higher quality functional jujube products and ensure the sustainable development of the jujube industry.


Sujet(s)
Ziziphus , Ziziphus/composition chimique , Manipulation des aliments/méthodes , Nutriments/analyse , Extraits de plantes/composition chimique , Acide ascorbique/analyse , Acide ascorbique/composition chimique , Humains , Polyosides/composition chimique , Fermentation
10.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-39062831

RÉSUMÉ

Globalization and climate change are both contributing to an increase in the number of potentially invasive algae in coastal areas. In terms of biodiversity and financial losses, the invasiveness of algae has become a significant issue in Orbetello Lagoon. Indeed, studies from the Tuscany Regional Agency for Environmental Protection show that the reduction in dissolved oxygen caused by algal diffusion is detrimental to fisheries and biodiversity. Considering that wakame and numerous other potentially invasive seaweeds are consumed as food in Asia, we assess the nutritional and nutraceutical qualities of two potentially invasive seaweeds: Valonia aegagrophila and Chaetomorpha linum. We found that both algae are a valuable source of proteins and essential amino acids. Even if the fat content accounts for less than 2% of the dried weight, its quality is high, due to the presence of unsaturated fatty acids. Both algae are rich in antioxidants pigments and polyphenols, which can be exploited as nutraceuticals. Most importantly, human gastrointestinal digestion increased the quantity of polyphenols and originated secondary metabolites with ACE inhibitory activity. Taken together, our data strongly promote the use of Valonia aegagrophila and Chaetomorpha linum as functional foods, with possible application in the treatment of hypertension and cardiovascular diseases.


Sujet(s)
Inhibiteurs de l'enzyme de conversion de l'angiotensine , Antioxydants , Aliment fonctionnel , Algue marine , Antioxydants/pharmacologie , Antioxydants/composition chimique , Algue marine/composition chimique , Inhibiteurs de l'enzyme de conversion de l'angiotensine/pharmacologie , Humains , Nutriments/analyse , Compléments alimentaires , Polyphénols/analyse , Polyphénols/pharmacologie , Polyphénols/composition chimique , Valeur nutritive
11.
J Environ Sci (China) ; 146: 91-102, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38969465

RÉSUMÉ

In this study, a gravity-driven membrane (GDM) filtration system and hydroponic system (cultivating basil and lettuce) were combined for nutrient recovery from primary municipal wastewater. The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min (∼15 hr per 3-4 days), resulting in a ∼52% reduction of irreversible fouling. However, the total fouling was not alleviated, and the water productivity remained comparable. The GDM-filtrated water was then delivered to hydroponic systems, and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated, with fertilizer- and tap water-based hydroponic systems and soil cultivation system (with tap water) for comparison. It was found that (i) the hydroponic system under batch mode facilitated to promote vegetable growth with higher nutrient uptake rates compared to that under flow-through feed mode; (ii) a shift in nutrient levels in the hydroponic system could impact plant growth (such as plant height and leaf length), especially in the early stages. Nevertheless, the plants cultivated with the GDM-treated water had comparable growth profiles to those with commercial fertilizer or in soils. Furthermore, the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer. Especially, compared to the lettuce, the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk, when the treated water was employed for the hydroponic system.


Sujet(s)
Filtration , Culture hydroponique , Nutriments , Élimination des déchets liquides , Eaux usées , Élimination des déchets liquides/méthodes , Nutriments/analyse , Nutriments/métabolisme , Céramiques , Membrane artificielle , Polluants chimiques de l'eau/analyse , Gravitation , Engrais
12.
Sci Rep ; 14(1): 16305, 2024 07 15.
Article de Anglais | MEDLINE | ID: mdl-39009646

RÉSUMÉ

The agronomic stability and nutritional importance of 30 (Test genotypes: 29 + Check: 1 = 30) promising horse gram mutants were evaluated in this multi-environment-based experiment (MEE). Attempts were made to (i) identify stable mutants for agronomic traits through AMMI and GGE biplot models, (ii) quantify nutritional traits, (iii) understand the linkage between yield and nutritional traits, and (iv) estimate physical (PP) and cooking properties (CP) of selected genotypes to fix their food-chain usability. The ANOVA of the pooled data exhibited significant differences among environments (E), genotypes (G), and GxE interaction. The combined AMMI and GGE results helped to identify a few good-yielding and stable genotypes (GYSM) (G1, G25, G3, and G27). The yield advantages of these GYSMs over the parent PAIYUR 2 are 42.99%, 34.63%, 28.68%, and 30.59% respectively. The nutrient profiling of mutants revealed (i) a significant coefficient of variation for macronutrients (fat: 29.98%; fibre: 20.72%, and protein: 5.01%), (ii) a good range of variation for micronutrients, and (iii) helped to identify macro (MaNSM) and micro nutrient-specific mutants (MiNSM). The relationship analysis between yield and nutrient traits ascertained that yield had (i) positivity with protein (r2 = 0.69) and negativity for micronutrients except for Mn (r2 = 0.63), Cu (r2 = 0.46), and B (r2 = 0.01) in GYSM, (ii) positivity with protein and fibre in MaNSM, and (iii) negativity with micronutrients in MiNSM. Of the GYSM, G1 and G25 offer scope for commercial exploitation, and their PP and CP analyses revealed that G1 can be used for pastry and baked product preparation while G25 for weaning foods. Cooking time exhibited positivity with seed size parameters and negativity with water absorption capacity (r2 = - 0.53). An LC-MS-MS-based amino acid (AA) fractionation study showed the effect of induced mutagenesis on the contents of amino acids and also revealed the significance of horse gram for its lysine and methionine contents.


Sujet(s)
Génotype , Mutation , Valeur nutritive , Fabaceae/génétique , Nutriments/métabolisme , Nutriments/analyse
13.
Sci Rep ; 14(1): 15028, 2024 07 01.
Article de Anglais | MEDLINE | ID: mdl-38951538

RÉSUMÉ

Honey bees are important insect pollinators that provide critical pollination services to fruit and nut crops in the US. They face challenges likely due to pressures associated with agricultural intensification related habitat loss. To better understand this, pollen preferences of foraging bees and the nutritional profile of pollen brought into hives by foraging bees in crop fields and nut orchards can provide valuable information. We trained bees to forage on bee-collected pollen from hives placed for pollination services in almond orchards, sunflower fields, or mixed species from inter-row plantings. Using bees trained to a certain kind of hive pollen, we applied a binary scoring system, to test preferences of these preconditioned foragers. We also performed metabolomic analyses of the hive pollen used for training and testing to elucidate their nutritional content. Irrespective of preconditioning, bees collected all the available choice pollen types, predominantly choosing hive-collected mixed species pollen (MSP), followed by almond orchard pollen. The hive-collected MSP was chemically diverse, richest in cholesterol, vitamins, and phytochemicals quercetin, kaempferol, coumarin, and quinine, but was not consistently high for essential amino acids and polyunsaturated fatty acids. Although diversity in chemical profiles may not directly relate to plant species diversity, our results suggest that foragers collect a variety of pollen types when available reiterating the importance of diverse floral resources.


Sujet(s)
Nutriments , Pollen , Pollinisation , Abeilles/physiologie , Animaux , Nutriments/analyse , Nutriments/métabolisme , Prunus dulcis , Comportement alimentaire/physiologie
14.
Sci Rep ; 14(1): 16007, 2024 07 11.
Article de Anglais | MEDLINE | ID: mdl-38992147

RÉSUMÉ

This study addresses the effect of using animal excreta on the nutritional content of forages, focusing on macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu, zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental]).


Sujet(s)
Aliment pour animaux , Fèces , Sol , Urine , Animaux , Fèces/composition chimique , Bovins , Sol/composition chimique , Ovis , Urine/composition chimique , Aliment pour animaux/analyse , Nutriments/analyse , Nutriments/métabolisme , Ruminants/physiologie , Azote/métabolisme , Azote/urine , Azote/analyse , Phosphore/urine , Phosphore/analyse , Phosphore/métabolisme
15.
Sci Rep ; 14(1): 17329, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39068278

RÉSUMÉ

In order to evaluate the effects of continuous cropping of millet on soil nutrients and soil enzyme activities, the present study was based on four treatments of 2 years of continuous cropping (T1), 3 years of continuous cropping (T2), 4 years of continuous cropping (T3) and rotational cropping (CK), based on 4 years of no fertilizer positioning experiments, and the soil nutrients, soil enzyme activities and millets yields were determined, respectively. The results showed that with the increase of continuous cropping years, the millet yield decreased and was significantly lower than that of rotating with legume crops, and compared with CK, the yields of T1, T2 and T3 treatments were reduced by 8.92%, 13.73% and 37.60%, respectively; the soil nitrogen and phosphorus contents were reduced, the quick-acting potassium content did not change obviously, and the soil pH was increased; Soil urease, alkaline phosphatase, sucrase and catalase activities generally showed a decreasing trend and the decrease was more significant with the increase in the number of years of continuous cropping. Therefore, in order to maintain the soil fertility and increase the millet yield, it is necessary to practice crop rotation and stubble reversal between millets and leguminous crops such as kidney beans, and to apply certain fertilizers.


Sujet(s)
Produits agricoles , Engrais , Millets , Azote , Sol , Sol/composition chimique , Azote/analyse , Azote/métabolisme , Produits agricoles/croissance et développement , Engrais/analyse , Phosphore/analyse , Phosphore/métabolisme , Nutriments/analyse , Agriculture/méthodes , Production végétale/méthodes , Potassium/analyse , Potassium/métabolisme , Phosphatase alcaline/métabolisme , Concentration en ions d'hydrogène , Urease/métabolisme , Invertase/métabolisme
16.
Microb Ecol ; 87(1): 97, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39046569

RÉSUMÉ

Microbial communities are crucial for water quality and biogeochemical cycling in freshwaters. Microbes secrete extracellular enzymes to decompose organic matter for their needs of nutrients and scarce elements. Yet, there is a lack of knowledge on microbial metabolic limitations in freshwaters, especially in lake sediments. Here, we examined the carbon, nitrogen, and phosphorus-acquiring extracellular enzyme activities and the bacterial and fungal communities of 30 sediments across Xingkai Lake, the largest freshwater lake in Northeast Asia. We further analyzed the microbial metabolic limitations via extracellular enzyme stoichiometry and explored the direct and indirect effects of abiotic and biotic factors on the limitations. We found that microbial metabolisms were primarily limited by phosphorus in Xingkai Lake. For instance, microbial carbon and phosphorus limitations were closely correlated to abiotic factors like water depth, total dissolved solids, sediment total carbon, and conductivity. The metabolic limitations were also affected by biotic factors, such as showing positive relationships with the alpha and beta diversity of bacteria, and with the beta diversity of fungi. In addition, community compositions of bacteria and fungi were mainly correlated to abiotic factors such as total carbon and dissolved organic carbon, respectively. Collectively, microbial metabolic limitations were affected directly or indirectly by abiotic factors and microbial communities. Our findings indicate that microbial metabolic limitations are not only driven by bacteria and fungi but also by abiotic factors such as water depth and total nitrogen, and thus provide empirical evidence for effective management of freshwater lakes under climate warming and intensified human activities.


Sujet(s)
Bactéries , Carbone , Champignons , Sédiments géologiques , Lacs , Microbiote , Azote , Phosphore , Lacs/microbiologie , Lacs/composition chimique , Chine , Carbone/métabolisme , Phosphore/métabolisme , Phosphore/analyse , Bactéries/métabolisme , Bactéries/classification , Bactéries/génétique , Bactéries/isolement et purification , Champignons/métabolisme , Champignons/classification , Azote/métabolisme , Sédiments géologiques/microbiologie , Nutriments/métabolisme , Nutriments/analyse
17.
Life Sci Space Res (Amst) ; 42: 91-98, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39067997

RÉSUMÉ

A Closed Aquatic Ecosystem (CAES) housed an aquatic plant Ceratophyllum demersum, zebrafish (Danio rerio), and microbes that were simultaneously obtained with the zebrafish, and it was used to study the operation of the ecosystem. The results indicated that the CAES can operate steadily for about 4 weeks. The dissolved oxygen (DO), pH, and conductivity values of the ecosystem regularly oscillated, while the total nitrogen of the water decreased and the total phosphate slightly increased. Additionally, the chemical oxygen demand (COD, a measure of organic compounds) of the water after the experiment increased to 39 times more than that of the water before the experiment. The meta-genomic data showed that the number of genera decreased by 38 % and the top 10 most abundant genera were almost completely different before and after the experiment, which demonstrated a great shift in the microbes during the operation process. These results suggested that although the CAES operated steadily during the 28-day experiment, there were more organic materials and less nitrogen in the water by the end of the experiment, which may have influenced the structure and operation of the ecosystem. Thus, it is necessary to remove superfluous plant biomass from the CAES and supply nitrogen to keep the ecosystem stable.


Sujet(s)
Systèmes écologiques fermés , Azote , Danio zébré , Animaux , Azote/analyse , Azote/métabolisme , Écosystème , Nutriments/analyse , Concentration en ions d'hydrogène , Oxygène/métabolisme , Oxygène/analyse
18.
Sci Rep ; 14(1): 16598, 2024 07 18.
Article de Anglais | MEDLINE | ID: mdl-39025914

RÉSUMÉ

Poultry manure (PM) has demonstrated its potential to enhance crop nutritional quality. Nevertheless, there remains a dearth of knowledge regarding its synergistic effects when combined with wood biochar (B) on the nutrient concentrations in sweet potato leaves (Ipomoea batatas L.) and the mineral content stored in sweet potato storage roots. Hence, a two-year field trial was undertaken during the 2019 and 2020 cropping seasons in southwestern Nigeria, spanning two locations (Owo-site A and Obasooto-site B), to jointly apply poultry manure and wood biochar as soil amendments aimed at enhancing the nutritional quality of sweet potato crop. Each year, the experiment involved different combinations of poultry manure at rates of 0, 5.0, and 10.0 t ha-1 and biochar at rates of 0, 10.0, 20.0, and 30.0 t ha-1, organized in a 3 × 4 factorial layout. The results of the present study demonstrated that the individual application of poultry manure (PM), biochar (B), or their combination had a significant positive impact on the nutrient composition of sweet potato leaves and minerals stored in the sweet potato storage roots, with notable synergistic effects between poultry manure and biochar (PM × B) in enhancing these parameters. This highlights the potential of biochar to enhance the efficiency of poultry manure utilization and improve nutrient utilization from poultry manure. The highest application rate of poultry manure at 10.0 t ha-1 and biochar at 30.0 t ha-1 (PM10 + B30), resulted in the highest leaf nutrient concentrations and mineral composition compared to other treatments at both sites. Averaged over two years, the highest application rate of poultry manure at 10.0 t ha-1 and biochar at 30.0 t ha-1 (PM10 + B30) significantly increased sweet potato leaf nutrient concentrations: nitrogen by 88.2%, phosphorus by 416.7%, potassium by 123.8%, calcium by 927.3%, and magnesium by 333.3%, compared to those in the control (PM0 + B0). The same treatment increased the concentration of sweet potato root storage minerals: phosphorus by 152.5%, potassium by 77.4%, calcium by 205.5%, magnesium by 294.6%, iron by 268.4%, zinc by 228.6%, and sodium by 433.3%, compared to the control. The highest application rate of poultry manure at 10.0 t ha-1 and biochar at 30.0 t ha-1 yielded the highest economic profitability in terms of gross margin (44,034 US$ ha-1), net return (30,038 US$ ha-1) and return rate or value-to-cost ratio (VCR) (263). The results suggested that the application of poultry manure at 10 t ha-1 and biochar at 30 t ha-1 is economically profitable in the study areas and under similar agroecological zones and soil conditions.


Sujet(s)
Charbon de bois , Ipomoea batatas , Fumier , Minéraux , Feuilles de plante , Racines de plante , Volaille , Ipomoea batatas/métabolisme , Ipomoea batatas/composition chimique , Fumier/analyse , Charbon de bois/composition chimique , Animaux , Feuilles de plante/composition chimique , Feuilles de plante/métabolisme , Racines de plante/composition chimique , Racines de plante/métabolisme , Minéraux/analyse , Minéraux/composition chimique , Engrais/analyse , Sol/composition chimique , Nutriments/analyse , Phosphore/analyse , Nigeria
19.
J Food Sci ; 89(8): 4660-4670, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39054701

RÉSUMÉ

We hypothesized that removing water from fish muscle homogenate by freeze-drying might be a cost-effective way to stabilize nutrients and allow higher temperatures for long-term frozen storage prior to analytical measurements. To test our hypothesis, fish muscle fillets from lipid-rich farmed Atlantic salmon (n = 5) and lean wild-caught European plaice (n = 5) were homogenized and fresh-frozen at -20 and -80°C. A subset of these samples was freeze-dried prior to further frozen storage at the respective temperatures. Using validated methods, vitamins, amino acids, and fatty acids were measured after a short time of storage (starting point) and up to 1 year (endpoint), with intermediate analytical checkpoints of 1, 3, and 6 months. Trends in the degradation of certain nutrients during the different frozen storage conditions are discussed. In general, by freeze-drying fish homogenate samples prior to frozen storage at -20°C for up to 1 year, amino acids, vitamins, and fatty acids were stabilized in both salmon and plaice when compared to wet-frozen storage of the same samples, and storage at -80°C did not improve preservation of the freeze-dried samples. For wet-frozen samples, -80°C would be recommended for 1-year storage of fillet homogenate samples, even though several nutrients preserved well at -20°C. PRACTICAL APPLICATION: We present individual nutrient stability profiles in muscle homogenates from fatty fish (salmon) and lean fish (plaice) during different frozen storage conditions over time. Based on these data, freeze-drying followed by frozen storage at -20°C for at least 1 year could be applied prior to analyses of amino acids, fat-soluble vitamins, water-soluble vitamins, and fatty acids. Of note is that freeze-drying followed by frozen storage before analysis led to slightly increased measurements of several fatty acids in plaice samples, possibly attributable to an increase in dry weight or an enhancement in extraction efficiency through freeze-drying.


Sujet(s)
Acides aminés , Acides gras , Stockage des aliments , Lyophilisation , Congélation , Salmo salar , Produits de la mer , Animaux , Acides aminés/analyse , Lyophilisation/méthodes , Stockage des aliments/méthodes , Produits de la mer/analyse , Acides gras/analyse , Conservation aliments/méthodes , Vitamines/analyse , Saumon , Valeur nutritive , Nutriments/analyse
20.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1233-1241, 2024 May.
Article de Chinois | MEDLINE | ID: mdl-38886421

RÉSUMÉ

The alteration of stand age instigates modifications in soil properties and microbial communities. Understanding the impacts of stand age on soil enzyme stoichiometry and microbial nutrient limitations in Camellia oleifera plantation is crucial for nutrient management. Taking C. oleifera plantation across four age groups (<10 a, 15-25 a, 30-50 a, >60 a) in a subtropical red soil region as test objects, we examined the response of soil enzyme stoichiometry and microbial nutrient limitations to change in stand age and analyzed the pathways for such responses. The results showed that, compared to that of stand age <10 a, enzyme C:N in the 15-25 a was increased and enzyme N:P was significantly reduced. Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) exhibited a trend of initially decreasing and then increasing with stand age. MBN and MBN:MBP were significantly higher in the <10 a compared to that in the 30-50 a. MBC:MBN was significantly higher in the 30-50 a and >60 a compared to the <10 a and 15-25 a. Results of redundancy analysis revealed that soil nutrients, microbial biomass and their stoichiometry explained 92.4% of the variations in enzyme stoichiometry. Partial least squares path modeling (PLS-PM) results demonstrated that soil organic carbon (SOC) had a positive effect on microbial C limitation; MBN, MBN:MBP, MBC:MBP, SOC, and total nitrogen had a nega-tive overall effect on microbial P limitation, whereas soil C:N had a positive overall effect on microbial P limitation. There was a significant positive correlation between microbial C and P limitations. With increasing stand age, microbial nutrient limitation shifted from N and P limitation (<10 a) to C and P limitation (15-25 a, 30-50 a, >60 a).


Sujet(s)
Camellia , Carbone , Azote , Phosphore , Microbiologie du sol , Sol , Camellia/métabolisme , Camellia/croissance et développement , Camellia/composition chimique , Sol/composition chimique , Azote/métabolisme , Azote/analyse , Carbone/métabolisme , Phosphore/métabolisme , Nutriments/métabolisme , Nutriments/analyse , Facteurs temps , Chine , Biomasse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE