Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 102
Filtrer
1.
Life Sci Space Res (Amst) ; 42: 1-7, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39067981

RÉSUMÉ

The mechanism through which gravity influences the biosynthesis of essential oils in herbs is an important issue for plant and space biology. Sweet basil (Ocimum basilicum L.) seedlings were cultivated under centrifugal hypergravity conditions at 100 g in the light, and the growth of cotyledons, development of glandular hairs, and biosynthesis of essential oils were analyzed. The area and fresh weight of the cotyledons increased by similar amounts irrespective of the gravitational conditions. On the abaxial surface of the cotyledons, glandular hairs, where essential oils are synthesized and stored, developed from those with single-cell heads to those with four-cell heads; however, hypergravity did not affect this development. The main components, methyl eugenol and 1,8-cineole, in the essential oils of cotyledons were lower in cotyledons grown under hypergravity conditions. The gene expression of enzymes in the phenylpropanoid pathway involved in the synthesis of methyl eugenol, such as phenylalanine ammonia lyase (PAL) and eugenol O-methyltransferase (EOMT), was downregulated by hypergravity. Hypergravity also decreased the gene expression of enzymes in the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway involved in the synthesis of 1,8-cineole, such as 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and 1,8-cineole synthase (CINS). These results indicate that hypergravity without affecting the development of glandular hairs, decreases the expression of genes related to the biosynthesis of methyl eugenol and 1,8-cineole, which may cause a decrease in the amounts of both essential oils in sweet basil cotyledons.


Sujet(s)
Cotylédon , Surpesanteur , Ocimum basilicum , Huile essentielle , Cotylédon/métabolisme , Cotylédon/croissance et développement , Ocimum basilicum/métabolisme , Ocimum basilicum/croissance et développement , Ocimum basilicum/génétique , Huile essentielle/métabolisme , Régulation de l'expression des gènes végétaux , Plant/croissance et développement , Plant/métabolisme , Eugénol/analogues et dérivés , Eugénol/métabolisme , Eucalyptol/métabolisme
2.
BMC Plant Biol ; 24(1): 712, 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39060976

RÉSUMÉ

BACKGROUND: The effects of different photoperiods on plant phytochemical synthesis can be improved by adjusting the daily light integral. Photoperiod is one of the most important environmental factors that control growth, plant's internal rhythm and the synthesis of secondary metabolites. Information about the appropriate standard in terms of photoperiod for growing basil microgreens as one of the most important medicinal plants is limited. In this study, the effects of five different photoperiods, 6 (6 h × 3 cycles), 8 (8 h × 2 cycles), 16, 18, and 24 h day- 1 on the yield, photosynthesis and synthesis of secondary metabolites of three cultivars and one genotype of basil microgreens in floating system were evaluated. The purpose of this research was to determine the feasibility of using permanent light in growing basil microgreens and to create the best balance between beneficial secondary metabolites and performance. RESULTS: The results showed that the effects of photoperiod and cultivar on all investigated traits and their interaction on photosynthetic pigments, antioxidant capacity, total phenolic compounds, proline content and net photosynthesis rate were significantly different at the 1% level. The highest levels of vitamin C, flavonoids, anthocyanins, yield and antioxidant potential composite index (APCI) were obtained under the 24-h photoperiod. The highest antioxidant capacity was obtained for the Kapoor cultivar, and the highest total phenolic compound and proline contents were measured for the Ablagh genotype under a 24-h photoperiod. The highest yield (4.36 kg m- 2) and APCI (70.44) were obtained for the Ablagh genotype. The highest nitrate content was obtained with a photoperiod of 18 h for the Kapoor cultivar. The highest net photosynthesis rate was related to the Violeto cultivar under a 24-hour photoperiod (7.89 µmol CO2 m- 2 s- 1). Antioxidant capacity and flavonoids had a positive correlation with phenolic compounds and vitamin C. Yield had a positive correlation with antioxidant capacity, flavonoids, vitamin C, APCI, and proline. CONCLUSIONS: Under continuous light conditions, basil microgreens resistance to light stress by increasing the synthesis of secondary metabolites and the increase of these biochemical compounds made basil microgreens increase their performance along with the increase of these health-promoting compounds. The best balance between antioxidant compounds and performance was achieved in continuous red + blue light. Based on these results, the use of continuous artificial LED lighting, due to the increase in plant biochemical with antioxidant properties and yield, can be a suitable strategy for growing basil microgreens in floating systems.


Sujet(s)
Ocimum basilicum , Photopériode , Photosynthèse , Ocimum basilicum/génétique , Ocimum basilicum/métabolisme , Ocimum basilicum/croissance et développement , Antioxydants/métabolisme , Métabolisme secondaire , Génotype
3.
Sci Rep ; 14(1): 17725, 2024 07 31.
Article de Anglais | MEDLINE | ID: mdl-39085371

RÉSUMÉ

A major challenge in agriculture, horticulture and aquaponics practices is the reduction of mineral fertilisers and peat to reduce CO2 emissions and increase sustainability. This study used a three-phase-natural fertiliser, the Humicacid Fiber-Substrate (HFS), made from natural regenerative organic and mineral-fractions (Humus-Mineral-Complex), to reduce the peat content in plant pots for aquaponics farming. Basil (Ocimum basilicum) growth was compared with i) 100% standard media substrate ("Einheitserde", white peat 80%, clay 20%), and ii) 85% "Einheitserde" and 15% of HFS under irrigation with aquaculture process waters from an extensive and intensive production of African catfish (Clarias gariepinus) under coupled aquaponic conditions. The substitution with 15% HFS and use of intensive fish water resulted in comparable plant growth to a fertiliser solution as control, and in higher leaf width and leaf green weight and lower root dry weight compared with the standard media substrate "Einheitserde". Basil leaf chlorophyll content from the aquaponics was higher compared with local market plants. This suggests the possible substitution of the peat substrate "Einheitserde" with at least 15% HFS to reduce the natural peat fraction. Further studies on crop-specific substrates are needed to reduce peat in aquaponics farming plant cultivation.


Sujet(s)
Aquaculture , Poissons-chats , Ocimum basilicum , Animaux , Ocimum basilicum/croissance et développement , Ocimum basilicum/métabolisme , Poissons-chats/croissance et développement , Aquaculture/méthodes , Engrais , Sol/composition chimique , Feuilles de plante/croissance et développement , Feuilles de plante/métabolisme , Chlorophylle/métabolisme
4.
Int J Mol Sci ; 25(11)2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38891916

RÉSUMÉ

Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 µmol photons m-2 s-1) and high light (HL, 900 µmol photons m-2 s-1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants.


Sujet(s)
Sécheresses , Ocimum basilicum , Complexe protéique du photosystème II , Feuilles de plante , Acide salicylique , Stress physiologique , Complexe protéique du photosystème II/métabolisme , Acide salicylique/pharmacologie , Acide salicylique/métabolisme , Ocimum basilicum/métabolisme , Ocimum basilicum/effets des médicaments et des substances chimiques , Feuilles de plante/métabolisme , Feuilles de plante/effets des médicaments et des substances chimiques , Chlorophylle/métabolisme , Photosynthèse/effets des médicaments et des substances chimiques , Thylacoïdes/métabolisme , Thylacoïdes/effets des médicaments et des substances chimiques , Lumière
5.
BMC Plant Biol ; 24(1): 512, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38849727

RÉSUMÉ

BACKGROUND: This study investigates a novel idea about the foliar application of nanoparticles as nanofertilizer combined with a natural stimulant, blue-green algae Spirulina platensis L. extract, as a bio-fertilizer to achieve safety from using nanoparticles for enhancement of the growth and production of the plant. Thus, this experiment aimed to chemically synthesize copper nanoparticles via copper sulfate in addition to evaluate the impact of CuNPs at 500, 1000, and 1500 mg/L and the combination of CuNPs with or without microalgae extract at 0.5, 1, and 1.5 g/L on the morphological parameters, photosynthetic pigments accumulation, essential oil production, and antioxidant activity of French basil. RESULTS: The results revealed that foliar application of CuNPs and its interaction with spirulina extract significantly increased growth and yield compared with control, the treatments of 1000 and 1500 mg/L had less impact than 500 mg/L CuNPs. Plants treated with 500 mg/L CuNPs and 1.5 g/L spirulina extract showed the best growth and oil production, as well as the highest accumulation of chlorophylls and carotenoids. The application of CuNPs nanofertilizer caused a significant increase in the antioxidant activity of the French basil plant, but the combination of CuNPs with spirulina extract caused a decrease in antioxidant activity. CONCULOSION: Therefore, foliar application of natural bio-fertilizer with CuNPsis necessary for obtaining the best growth and highest oil production from the French basil plant with the least damage to the plant and the environment.


Sujet(s)
Cuivre , Nanoparticules métalliques , Ocimum basilicum , Spirulina , Spirulina/métabolisme , Spirulina/effets des médicaments et des substances chimiques , Spirulina/croissance et développement , Ocimum basilicum/effets des médicaments et des substances chimiques , Ocimum basilicum/croissance et développement , Ocimum basilicum/métabolisme , Antioxydants/métabolisme , Feuilles de plante/effets des médicaments et des substances chimiques , Feuilles de plante/croissance et développement , Engrais , Chlorophylle/métabolisme , Photosynthèse/effets des médicaments et des substances chimiques , Huile essentielle/pharmacologie
6.
Sci Rep ; 14(1): 12759, 2024 06 04.
Article de Anglais | MEDLINE | ID: mdl-38834771

RÉSUMÉ

Exposure to N2O5 generated by plasma technology activates immunity in Arabidopsis through tryptophan metabolites. However, little is known about the effects of N2O5 exposure on other plant species. Sweet basil synthesizes many valuable secondary metabolites in its leaves. Therefore, metabolomic analyses were performed at three different exposure levels [9.7 (Ex1), 19.4 (Ex2) and 29.1 (Ex3) µmol] to assess the effects of N2O5 on basil leaves. As a result, cinnamaldehyde and phenolic acids increased with increasing doses. Certain flavonoids, columbianetin, and caryophyllene oxide increased with lower Ex1 exposure, cineole and methyl eugenol increased with moderate Ex2 exposure and L-glutathione GSH also increased with higher Ex3 exposure. Furthermore, gene expression analysis by quantitative RT-PCR showed that certain genes involved in the syntheses of secondary metabolites and jasmonic acid were significantly up-regulated early after N2O5 exposure. These results suggest that N2O5 exposure increases several valuable secondary metabolites in sweet basil leaves via plant defense responses in a controllable system.


Sujet(s)
Ocimum basilicum , Feuilles de plante , Métabolisme secondaire , Ocimum basilicum/métabolisme , Ocimum basilicum/génétique , Feuilles de plante/métabolisme , Feuilles de plante/effets des médicaments et des substances chimiques , Feuilles de plante/génétique , Métabolisme secondaire/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes végétaux , Métabolomique/méthodes , Flavonoïdes/métabolisme , Eugénol/analogues et dérivés , Eugénol/métabolisme , Oxylipines/métabolisme
7.
BMC Plant Biol ; 24(1): 556, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38877484

RÉSUMÉ

BACKGROUND: Perfluoroalkyl substances (PFASs) are emerging contaminants of increasing concern due to their presence in the environment, with potential impacts on ecosystems and human health. These substances are considered "forever chemicals" due to their recalcitrance to degradation, and their accumulation in living organisms can lead to varying levels of toxicity based on the compound and species analysed. Furthermore, concerns have been raised about the possible transfer of PFASs to humans through the consumption of edible parts of food plants. In this regard, to evaluate the potential toxic effects and the accumulation of perfluorooctanoic acid (PFOA) in edible plants, a pot experiment in greenhouse using three-week-old basil (Ocimum basilicum L.) plants was performed adding PFOA to growth substrate to reach 0.1, 1, and 10 mg Kg- 1 dw. RESULTS: After three weeks of cultivation, plants grown in PFOA-added substrate accumulated PFOA at different levels, but did not display significant differences from the control group in terms of biomass production, lipid peroxidation levels (TBARS), content of α-tocopherol and activity of ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (POX) in the leaves. A reduction of total phenolic content (TPC) was instead observed in relation to the increase of PFOA content in the substrate. Furthermore, chlorophyll content and photochemical reflectance index (PRI) did not change in plants exposed to PFAS in comparison to control ones. Chlorophyll fluorescence analysis revealed an initial, rapid photoprotective mechanism triggered by PFOA exposure, with no impact on other parameters (Fv/Fm, ΦPSII and qP). Higher activity of glutathione S-transferase (GST) in plants treated with 1 and 10 mg Kg- 1 PFOA dw (30 and 50% to control, respectively) paralleled the accumulation of PFOA in the leaves of plants exposed to different PFOA concentration in the substrate (51.8 and 413.9 ng g- 1 dw, respectively). CONCLUSION: Despite of the absorption and accumulation of discrete amount of PFOA in the basil plants, the analysed parameters at biometric, physiological and biochemical level in the leaves did not reveal any damage effect, possibly due to the activation of a detoxification pathway likely involving GST.


Sujet(s)
Caprylates , Fluorocarbones , Ocimum basilicum , Photosynthèse , Feuilles de plante , Ocimum basilicum/métabolisme , Ocimum basilicum/croissance et développement , Ocimum basilicum/effets des médicaments et des substances chimiques , Caprylates/métabolisme , Feuilles de plante/métabolisme , Feuilles de plante/effets des médicaments et des substances chimiques , Feuilles de plante/croissance et développement , Photosynthèse/effets des médicaments et des substances chimiques , Fluorocarbones/métabolisme , Stress oxydatif , Peroxydation lipidique/effets des médicaments et des substances chimiques
8.
Environ Pollut ; 347: 123715, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38462191

RÉSUMÉ

Microcystin-LR (MC-LR) is a hepatotoxic metabolite that naturally occurs during some cyanobacterial blooms in eutrophic waterbodies, and irrigation of edible plants with MC-LR-contaminated water causes bioaccumulation of the toxin. However, sufficient information about accumulation and depuration mechanics in hydroculture-grown herb plants is still lacking. This work aimed at 1) investigating bioaccumulation and depuration of MC-LR in basil, 2) verifying the possible MC-LR detoxification mechanisms in the plant, and 3) detecting the natural occurrence of MC-LR in basil (n = 50) collected from the Belgian market. Basil plants grown in a hydroculture were exposed to MC-LR (5, 20, and 50 µg L-1) spiked in a Hoagland solution for seven days. MC-LR depuration was also studied by transferring the plants to a non-contaminated Hoagland solution after exposure to MC-LR for another seven days. MC-LR concentrations in Hoagland solution, basil leaves, and roots were quantified using a validated UHPLC-MS/MS method. In addition, ELISA and LC-HRMS (only basil leaves) were used for confirmation. The results showed an increase in the accumulated levels of MC-LR at higher exposure doses, with higher MC-LR levels in roots than in leaves for all the treatment conditions. For MC-LR depuration, significant reductions were observed in all the treatment conditions for roots only. No MC-LR conjugates, potentially related to metabolism, were detected by LC-HRMS. Finally, MC-LR was detected in one store-bought basil sample, representing the first occurrence of cyanotoxins in an edible crop from Belgium.


Sujet(s)
Toxines de la flore et de la faune marines , Ocimum basilicum , Ocimum basilicum/métabolisme , Spectrométrie de masse en tandem , Microcystines/toxicité , Toxines de cyanobactéries
9.
Environ Sci Pollut Res Int ; 31(11): 16485-16496, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38319425

RÉSUMÉ

The underlying mechanisms through which silicon oxide nanoparticles (SiNPs) can confer salinity resistance to plants are poorly understood. This study explored the efficacy of supplementing nutrient solution with SiNPs (20-30 nm; 10 mg kg-1 soil) to stimulate metabolism and alleviate the risks associated with salinity (0.73 g kg-1 soil) in basil seedlings. For this purpose, variations in photosynthetic indices, proline osmoprotectant, antioxidant markers, phenylpropanoid metabolism, and transcriptional behaviors of genes were investigated. SiNPs increased shoot fresh weight (38%) and mitigated the risk associated with the salinity stress by 14%. SiNPs alleviated the inhibitory effects of salinity on the total chlorophyll concentration by 15%. The highest increase (twofold) in proline content was recorded in the SiNP-treated seedlings grown under salinity. The nano-supplement enhanced the activity of enzymatic antioxidants, including peroxidase (2.5-fold) and catalase (4.7-fold). SiNPs induced the expression of gamma-cadinene synthase (CDS) and caffeic acid O-methyltransferase (COMT) genes by 6.5- and 18.3-fold, respectively. SiNPs upregulated the eugenol synthase (EGS1) and fenchol synthase (FES) genes by six- and nine-fold, respectively. Salinity transcriptionally downregulated the geraniol synthase (GES) gene, while this gene displayed an upward trend in response to SiNPs by eight-fold. The nano-supplement transcriptionally stimulated the R-linalool synthase (LIS) gene by 3.3-fold. The terpinolene synthase (TES) gene displayed a similar trend to that of the GES gene. The highest expression (25-fold) of the phenylalanine ammonia-lyase (PAL) gene was recorded in seedlings supplemented with SiNPs. The physiological and molecular assessments demonstrated that employing SiNPs is a sustainable strategy for improving plant primary/secondary metabolism and crop protection.


Sujet(s)
Nanoparticules , Ocimum basilicum , Ocimum basilicum/métabolisme , Métabolisme secondaire , Protection des cultures , Antioxydants/métabolisme , Stress salin , Plant , Proline/métabolisme , Sol , Expression des gènes
10.
Ecotoxicol Environ Saf ; 271: 115956, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38215665

RÉSUMÉ

The new-type tobacco varieties "Zisu" and "Luole" were obtained by distant hybridization between N. tabacum L. var. HHY and Perilla frutescens and Ocimum basilicum, with obviously different chemical composition. Smoking is the major risk factor for COPD, characterized by neutrophil-dominant inflammation. In the present study, rat COPD model was established by cigarette exposure, and the health hazard of three varieties was compared by general condition observation, pathological and morphological evaluation, total and differential cell numeration, and characterization of major inflammatory mediators and MAPK/NF-κB pathway, etc. Rats in "HHY" group developed obvious symptoms such as cough, dyspnea, mental fatigue, etc., but these symptoms were obviously mitigated in "Zisu" and "Luole" groups. H&E staining analysis, including score, MLI, MAN, wt% and WA%, showed that "Zisu" and "Luole" significantly alleviated lung injury and the degree of airway remodeling and emphysema compared to "HHY". In BALF, the number of total leukocyte and the percent neutrophils in "Zisu" and "Luole" groups were evidently lower than "HHY" group. The levels of inflammatory mediators, such as IL-8, MPO, MIP-2, LTB4, TNF-α and neutrophil elastase, in "HHY" group were obviously higher than "Zisu" and "Luole" groups. The ROS-mediated NF-κB p65 and p38MAPK pathways may play an important role. Results indicated that tobacco introduced perilla and basil genes could remarkably attenuate recruitment, infiltration and activation of neutrophils and intervene in airway inflammation, retarding disease progression, especially "Zisu". Changes in chemical composition via breeding techniques may be a novel way for tobacco harm reduction.


Sujet(s)
Ocimum basilicum , Perilla frutescens , Broncho-pneumopathie chronique obstructive , Humains , Rats , Animaux , Ocimum basilicum/génétique , Ocimum basilicum/métabolisme , Perilla frutescens/génétique , Perilla frutescens/métabolisme , Broncho-pneumopathie chronique obstructive/génétique , Facteur de transcription NF-kappa B/métabolisme , Liquide de lavage bronchoalvéolaire , Amélioration des plantes , Poumon/métabolisme , Inflammation/génétique , Inflammation/métabolisme , Nicotiana , Fumée/effets indésirables , Médiateurs de l'inflammation/métabolisme
11.
Gene ; 896: 148041, 2024 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-38036074

RÉSUMÉ

The newly released interspecific hybrid variety CIM-Shishir, resulting from a cross between Ocimum basilicum and Ocimum kilimandscharicum claims to be a multicut, lodging resistant, cold tolerant, high essential oil yielding with linalool rich variety. It has a purple-green stem and has a unique feature and advantage of better survival in the winter season than other O. basilicum varieties, illustrating its physiological mechanisms for cold tolerance. In this study, we subjected both the CIM-Shishir variety and a control plant to cold stress to investigate the impact of low temperatures on various physiological, trichome developments, secondary metabolite constitution aspects related to essential oil production, and gene expression. The analysis revealed a significantly higher density and altered morphology of trichomes on the leaf surface of the variety subjected to low temperatures, indicating its adaptation to cold conditions. Furthermore, when comparing the treated plants under low-temperature stress, it was observed that the relative electrolyte leakage and Malondialdehyde (MDA) contents substantially increased in the control in contrast to the CIM-Shishir variety. This finding suggests that CIM-Shishir exhibits superior cold tolerance. Additionally, an increase in proline content was noted in the variety exposed to low temperatures compared to the control. Moreover, the chlorophyll and anthocyanin content gradually increased with prolonged exposure to low-temperature stress in the newly developed variety, indicating its ability to maintain photosynthetic capacity and adapt to cold conditions. The activities of superoxide dismutase (SOD) also increased under low-temperature conditions in the CIM-Shishir variety, further highlighting its cold tolerance behaviour. In our research, we investigated the comprehensive molecular mechanisms of cold response in Ocimum. We analyzed the expression of key genes associated with cold tolerance in two plant groups: the newly developed hybrid variety known as CIM-Shishir Ocimum, which exhibits cold tolerance, and the control plants susceptible to cold climates that include WRKY53, ICE1, HOS1, COR47, LOS15, DREB5, CBF4, LTI6, KIN, and ERD2. These genes exhibited significantly higher expression levels in the CIM-Shishir variety compared to the control, shedding light on the genetic basis of its cold tolerance. The need for climate-smart, resilient high-yielding genotype is of high importance due to varied climatic conditions as this will hit the yield drastically and further to the economic sectors including farmers and many industries that are dependent on the bioactive constituents of Ocimum.


Sujet(s)
Ocimum basilicum , Ocimum , Huile essentielle , Résilience psychologique , Ocimum basilicum/génétique , Ocimum basilicum/métabolisme , Température , Ocimum/génétique , Ocimum/métabolisme , Huile essentielle/analyse , Huile essentielle/métabolisme , Perception , Basse température
12.
Environ Sci Pollut Res Int ; 30(56): 119187-119203, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37919503

RÉSUMÉ

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) holds a pivotal role within the glycolytic pathway of higher plants. It has garnered attention as a significant target protein in instances of oxidative stress, where it can engage in thiolation reactions within its active site. Numerous genes encoding cytosolic iterations of GAPDH have been identified and analyzed in specific plant species. This investigation was conducted to gain insights into GAPDH's function amidst drought-induced stress. Within this framework, the basil plant (Ocimum basilicum) was chosen for focused exploration, encompassing the cloning of the comprehensive cDNA of basil GAPDH (ObGAPDH) and scrutinizing its patterns of expression. The complete sequence of Ob-GAPDH spanned 1315 base pairs. The resultant protein derived from this sequence comprised 399 amino acids, projecting a molecular weight of approximately 42.54 kDa and an isoelectric point (pI) of 6.01. An examination of the evolutionary connections among various GAPDH proteins unveiled ObGAPDH's shared lineage with GAPDH proteins sourced from other plants, such as Salvia splendens and Sesamum indicum. Furthermore, computational methodologies were harnessed to predict the potential oxidative role of ObGAPDH in response to external signals. Molecular docking simulations illuminated the interaction between ObGAPDH and hydrogen peroxide (H2O2) as a ligand. Scrutinizing the expression patterns of the ObGAPDH gene under conditions of water scarcity stress brought to light diverse levels of transcriptional activity. Collectively, these findings underscore the notion that the regulation of ObGAPDH expression is contingent upon both the specific plant cultivar and the presence of stress stemming from drought conditions.


Sujet(s)
Ocimum basilicum , Ocimum basilicum/génétique , Ocimum basilicum/métabolisme , Sécheresses , Peroxyde d'hydrogène/métabolisme , Simulation de docking moléculaire , Glyceraldehyde 3-phosphate dehydrogenases/génétique , Glyceraldehyde 3-phosphate dehydrogenases/métabolisme , Expression des gènes
13.
Phytochemistry ; 213: 113777, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37385363

RÉSUMÉ

The undifferentiated cambial meristematic cell (CMC) has been recognized as a value-added production platform for plant natural products in comparison to the dedifferentiated plant cell line (DDC). In a time-based approach at 0, 24, 48, and 72 h, the present study aimed at investigating the phytochemical metabolome of methyl jasmonate (MeJA)-elicited CMC cultures derived from sweet basil (Ocimum basilicum L.), including primary and secondary metabolites analyzed using GC/TOF-MS post-silylation and RP-UPLC-C18-FT-MS/MS, respectively, as well as the analysis of aroma composition using headspace SPME-GC-MS. The results revealed a stress response in primary metabolism manifested by an increase in amino and organic acids reaching their maximum levels after 48 (1.3-fold) and 72 (1.7-fold) h, respectively. In addition, phenolic acids (e.g., sagerinic acid, rosmarinic acid, and 3-O-methylrosmarinic acid) followed by flavonoid aglycones (e.g., salvigenin and 5,6,4'-trihydroxy-7,3'-dimethoxyflavone) were the most abundant with prominent increases at 48 (1.2-fold) and 72 (2.1-fold) h, respectively. The aroma was intensified by the elicitation along the time, especially after 48 and 72 h. Furthermore, multivariate data analyses, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) confirmed elicitation effect, especially post 48 and 72 h. The study further assessed the effect of MeJA elicitation on the antioxidant and polyphenolic content. The cultures at 48 h demonstrated a significant (p < 0.05) antioxidant activity concurrently with correlation with total polyphenolic content using Pearson's correlation. Our study provides new insights to the elicitation impact on primary and secondary metabolism, in addition to aroma profile, to orchestrate the stress response and in relation to antioxidant effect.


Sujet(s)
Ocimum basilicum , Ocimum basilicum/métabolisme , Antioxydants/pharmacologie , Antioxydants/métabolisme , Spectrométrie de masse en tandem , Métabolomique , Métabolome
14.
Fish Shellfish Immunol ; 131: 1006-1018, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-36379445

RÉSUMÉ

Two experiments were conducted in this study, using 250 Oreochromis niloticus (O. niloticus) (average weight 30.28 ± 0.27 g). The first experiment was conducted to investigate the 96-h lethal concentration 50 (LC50) of copper chloride (CuCl2) using the probit analysis, seventy fish was divided into seven different concentration of CuCl2 (0, 22, 23, 24, 25, 26, and 27 mg/L), the accurate Cu concentrations were (1.23, 5.36, 6.02, 6.98, 7.05, 7.93, 8.12 mg/L Cu). The second experiment was conducted for investigating the effect of dietary supplementation with thyme (Thymus vulgaris, T. vulgaris) and sweet basil (Ocimum basilicum, O. basilicum) essential oils (TEO and BEO respectively) against sub-lethal Cu exposure (1/10 96-h LC50 of CuCl2). About 180 fish was divided into six groups in triplicate (10 fish/replicate, 30 fish/group). Group 1 (C) was kept as a control group with no Cu exposure and was fed the control basal diet. Group 2 (C-Cu) was fed the control basal diet and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L) as a sub-lethal concentration of Cu, where the realistic Cu concentration was 3.976 mg/L. Group 3 (TEO) and group 4 (BEO) were fed the diets fortified with 1%TEO and BEO, respectively without exposure to Cu. Group 5 (TEO-Cu) and group 6 (BEO-Cu) were fed the diets fortified with 1%TEO and 1%BEO, respectively, and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L). The growth and behavioral performance, immunological response and its related gene expression, antioxidant status, stress biomarker indicators, apoptosis biomarkers, and histopathological alteration were investigated. The results of the first experiment showed that the 96-h LC50 of CuCl2 in O. niloticus was 25.740 mg/L with lower and upper confidence limits of 25.152 and 26.356 mg/L, respectively. The results of the second experiment showed that sub-lethal Cu exposure induced growth retardation (lowered final body weight, total weight gain, and specific growth rate %), behavioral abnormalities (slower swimming activity and feeding performance), immunosuppression (lowered nitric oxide, complement-3, lysozyme, total proteins, albumin, and globulin), and lowering the hepatic antioxidant functions (higher MDA, and lower SOD, CAT, and GPx) in the exposed fish. Furthermore, alteration in the immune-related genes expression (down-regulation of IL-10 and TGF-ß and up-regulation of IL-1ß, IL-6, IL-8, and TRL-4), hepato-renal dysfunction (elevated ALT, AST, urea, and creatinine), and high levels of serum stress indicators (cortisol and glucose) were markedly evident. sub-lethal Cu toxicity induced significant up-regulation of apoptosis biomarkers involving, nuclear factor-κß (NF-κß), Bcl-2 Associated X-protein (BAX), meanwhile, the expression of B-cell lymphoma 2 (BCL2) and Proliferating cell nuclear antigen (PCNA) was remarkably down-regulated. In addition, apoptosis was also evident by histopathological investigation of branchial, hepatic, and renal sections. TEO and/or BEO dietary supplementation mitigate the destructive impacts of sub-lethal Cu exposure in O. niloticus, depending on the results of our study, it could be concluded that TEO and BEO with a 1% dietary level could be a promising antioxidant, immunostimulant, anti-stress factors, and anti-apoptosis mediators against heavy metal contaminants (Cu) in O. niloticus, providing a solution to the problem of aquatic bodies pollution, consequently aiding in the development of aquaculture industry.


Sujet(s)
Cichlides , Ocimum basilicum , Huile essentielle , Thymus (plante) , Animaux , Antioxydants/métabolisme , Ocimum basilicum/métabolisme , Cuivre/toxicité , Cuivre/métabolisme , Huile essentielle/toxicité , Huile essentielle/métabolisme , Cytokines/génétique , Compléments alimentaires/analyse , Régime alimentaire/médecine vétérinaire , Marqueurs biologiques/métabolisme , Aliment pour animaux/analyse
15.
Fish Shellfish Immunol ; 128: 425-435, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35985625

RÉSUMÉ

Several studies have looked into the use of basil, Ocimum basilicum (L.) in aquaculture as a dietary additive; however, more research is needed to see the possibility of it's including in nanocarriers in aquafeeds. An experiment was undertaken to highlight the efficacy chitosan-Ocimum basilicum nanocomposite (COBN), for the first time, on Nile tilapia (Oreochromis niloticus) growth, stress and antioxidant status, immune-related parameters, and gene expression. For 60 days, fish (average weight: 23.55 ± 0.08 g) were fed diets provided with different concentrations of COBN (g/kg): 0 g [COBN0], 1 g [COBN1], 2 g [COBN2], and 3 g [COBN3], where COBN0 was kept as control diet. Following the trial, the fish were challenged with pathogenic bacteria (Aeromonas sobria) and yeast (Candida albicans) infection. In comparison to the control (COBN0), a notable increase in growth parameters (weight gain, feed intake, and specific growth rate) and intestinal morphometric indices (average intestinal goblet cells count, villous width, and length) in all COBN groups was observed, where COBN2 and COBN3 groups had the highest values. The COBN diets significantly (p < 0.05) declined levels of serum triglycerides, glucose, cholesterol, and hepatic malondialdehyde. Moreover, the higher levels of serum biochemical biomarkers (growth hormone, total protein, globulin, and albumin), immunological parameters (phagocytic activity%, nitric oxide, and lysozyme), and hepatic antioxidant parameters (superoxide dismutase, total antioxidant capacity, and glutathione peroxidase) were obvious in the COBN2 and COBN3 groups followed by COBN1. The immune-antioxidant genes (TNF-α, IL-10, IL-1ß, TGF-ß, GPx, and SOD) were found to be considerably up-regulated in all COBN groups (COBN2 and COBN3 followed by COBN1). Fifteen days post-challenge with A. sobria and C. albicans, the highest survival rate was recorded in the COBN2 group (83.33 and 91.67%) followed by the COBN3 group (75 and 83.33%), respectively. The findings showed that a dietary intervention with COBN can promote growth, intestinal architecture, immunity, and antioxidant markers as well as protect O. niloticus against A. sobria and C. albicans infection. As a result, the COBN at a dose of 2 g/kg could be used as a food additive for the sustainable aquaculture industry.


Sujet(s)
Chitosane , Cichlides , Maladies des poissons , Infections bactériennes à Gram négatif , Nanocomposites , Ocimum basilicum , Albumines/métabolisme , Aliment pour animaux/analyse , Animaux , Antioxydants/métabolisme , Chitosane/métabolisme , Régime alimentaire/médecine vétérinaire , Compléments alimentaires , Additifs alimentaires , Expression des gènes , Glucose/métabolisme , Glutathione peroxidase/métabolisme , Hormone de croissance , Rein céphalique/métabolisme , Interleukine-10/métabolisme , Malonaldéhyde/métabolisme , Lysozyme/métabolisme , Monoxyde d'azote/métabolisme , Ocimum basilicum/métabolisme , Superoxide dismutase/métabolisme , Facteur de croissance transformant bêta/métabolisme , Triglycéride/métabolisme , Facteur de nécrose tumorale alpha/métabolisme
16.
J Recept Signal Transduct Res ; 42(5): 521-530, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-35862239

RÉSUMÉ

PURPOSE: Breast cancer (BC) is one of the leading types of cancer found in women. One of the causes reported for BC is improper regulation of epigenetic modifications. Various epigenetic targets such as histone deacetylases (HDAC) and histone acetyltransferases (HAT) regulate many types of cancer, including BC. Basil is known to possess anti-cancer properties; however, the role of its polysaccharides against different epigenetic targets is still not very clear. Therefore, the molecular docking method is used to find out the binding potential of the BPSs against different epigenetic targets responsible for BC. METHODS: All the basil polysaccharides (BPSs) were screened against the diverse epigenetic targets reported for BC (HDAC1-2, 4-8, and HAT) using molecular docking studies alongwith swissADME studies to check the drug likeliness of the BPSs. RESULTS: It was found that glucosamine ring, glucosamine linear, glucuronic acid linear, rhamnose linear, glucuronic acid ring, galactose ring, mannose, glucose, and xylose were exhibited consistent binding potential against the epigenetic targets (HDAC1, HDAC2, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HAT,) responsible for BC. CONCLUSION: This is the first report where BPSs were reported against these epigenetic targets. These studies can help to understand the underlying mechanism of BPSs used against epigenetic targets for BC. These results can be further validated experimentally to confirm their potential as a promising inhibitor against the epigenetic targets (HDAC1-2, 4-8, and HAT) having a role in BC.


Sujet(s)
Tumeurs du sein , Ocimum basilicum , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Dépistage précoce du cancer , Épigenèse génétique , Femelle , Galactose , Glucosamine , Glucose , Acide glucuronique , Histone acetyltransferases/métabolisme , Inhibiteurs de désacétylase d'histone/composition chimique , Inhibiteurs de désacétylase d'histone/pharmacologie , Histone deacetylases/génétique , Humains , Mannose , Simulation de docking moléculaire , Ocimum basilicum/métabolisme , Polyosides/pharmacologie , Protéines de répression , Rhamnose , Xylose
17.
Molecules ; 27(9)2022 Apr 28.
Article de Anglais | MEDLINE | ID: mdl-35566151

RÉSUMÉ

Diabetes mellitus (DM) is a complicated condition that is accompanied by a plethora of metabolic symptoms, including disturbed serum glucose and lipid profiles. Several herbs are reputed as traditional medicine to improve DM. The current study was designed to explore the chemical composition and possible ameliorative effects of Ocimum forskolei on blood glucose and lipid profile in high-fat diet/streptozotocin-induced diabetic rats and in 3T3-L1 cell lines as a first report of its bioactivity. Histopathological study of pancreatic and adipose tissues was performed in control and treatment groups, along with quantification of glucose and lipid profiles and the assessment of NF-κB, cleaved caspase-3, BAX, and BCL2 markers in rat pancreatic tissue. Glucose uptake, adipogenic markers, DGAT1, CEBP/α, and PPARγ levels were evaluated in the 3T3-L1 cell line. Hesperidin was isolated from total methanol extract (TME). TME and hesperidin significantly controlled the glucose and lipid profile in DM rats. Glibenclamide was used as a positive control. Histopathological assessment showed that TME and hesperidin averted necrosis and infiltration in pancreatic tissues, and led to a substantial improvement in the cellular structure of adipose tissue. TME and hesperidin distinctly diminished the mRNA and protein expression of NF-κB, cleaved caspase-3, and BAX, and increased BCL2 expression (reflecting its protective and antiapoptotic actions). Interestingly, TME and hesperidin reduced glucose uptake and oxidative lipid accumulation in the 3T3-L1 cell line. TME and hesperidin reduced DGAT1, CEBP/α, and PPARγ mRNA and protein expression in 3T3-L1 cells. Moreover, docking studies supported the results via deep interaction of hesperidin with the tested biomarkers. Taken together, the current study demonstrates Ocimum forskolei and hesperidin as possible candidates for treating diabetes mellitus.


Sujet(s)
Diabète expérimental , Hespéridine , Ocimum basilicum , Ocimum , Cellules 3T3-L1 , Animaux , Marqueurs biologiques/métabolisme , Caspase-3 , Diabète expérimental/métabolisme , Glucose/effets indésirables , Hespéridine/pharmacologie , Lipides , Souris , Facteur de transcription NF-kappa B/métabolisme , Ocimum basilicum/métabolisme , Récepteur PPAR gamma/métabolisme , ARN messager , Rats , Protéine Bax
18.
Protoplasma ; 259(6): 1567-1583, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-35318557

RÉSUMÉ

In the present study, we evaluated a pretreatment with four LED light sources (red, blue, red + blue, and white) in two genotypes (green and purple) of basil on the growth parameters, stress oxidative markers, non-enzymatic antioxidants, osmoprotectant compounds, ion content, and polyphenolic profile under both control and salinity stress conditions. The results indicated that 150 mM of NaCl decreased biomass, RWC, and K+/Na+ ratio but increased the content of proline and antioxidant capacity in the leaves of both genotypes of basil grown under GH (greenhouse) conditions. The results suggested that RB LED-exposed plants in the green genotype and R LED-exposed plants in the purple genotype improved accumulation of shoot biomass, K+/Na+ ratio, proline and soluble sugars, glutathione and ascorbate, polyphenolic profile, and thioredoxin reductase activity in the leaves of basil under both control and salinity stress conditions. NaCl stress (150 mM) increased oxidative markers, which are responsible for disturbance of routine functions of various plant cellular modules. LED light pretreatments diminished these markers under both control and salinity stress conditions. It could be concluded that intensification of non-enzymatic antioxidant systems during light-mediated priming can diminish the deleterious effects of ROS induced by NaCl stress (150 mM) through preventing the lipid peroxidation, scavenging cytotoxic H2O2, and enhancement of antioxidant potentials. Therefore, usage of LED lighting systems as a pretreatment or to supplement natural photoperiods under both control and salinity stress conditions may be advantageous for increasing biomass and phytochemical accumulation in basil.


Sujet(s)
Antioxydants , Ocimum basilicum , Antioxydants/métabolisme , Génotype , Glutathion/métabolisme , Peroxyde d'hydrogène/pharmacologie , Ocimum basilicum/génétique , Ocimum basilicum/métabolisme , Stress oxydatif , Composés phytochimiques , Proline/métabolisme , Espèces réactives de l'oxygène , Salinité , Stress salin , Chlorure de sodium/pharmacologie , Sucres , Thioredoxin-disulfide reductase/pharmacologie
19.
Bol. latinoam. Caribe plantas med. aromát ; 21(1): 94-107, ene. 2022. ilus
Article de Anglais | LILACS | ID: biblio-1372487

RÉSUMÉ

Basil (Ocimum basilicumL.) is a medicinal species used in several areas, such as food, medicines and cosmetics, and the understanding of its physiological behavior under environmental conditions is of paramount importance for the improvement of cultivation methods. The objective of this study was to evaluate the influence of different water availability under physiological, biochemical and metabolic characteristics, in three distinct genotypes: 'Alfavaca basilicão', 'Gennaro de menta' and 'Grecco à palla', during two different phenological stages (vegetative and reproductive). It was found that the water deficit promotes physiological changes to tolerate water stress, and the studied genotypes have different routes to achieve this physiological tolerance, which culminates in a distinct accumulation of metabolites in plants, and can be considered interesting if the final product is the production of essential oils.


La albahaca (Ocimum basilicum L.) es una planta medicinal utilizada en varias áreas: alimenticia, medicinal e industria cosmética; es de suma importancia el entendimiento de su comportamiento fisiológico bajo diferentes condiciones ambientales con el fin de mejorar los procesos del cultivo. El objetivo de este estudio fue evaluar la influencia de diferentes disponibilidades hídricas en las características fisiológicas, bioquímicas y metabólicas en tres genotipos de albahaca: "Alfavaca basilicão", "Gennaro de menta" y "Grecco à palla" durante dos etapas fenológicas (vegetativa y reproductiva). Fue encontrado que el déficit hídrico promueve cambios fisiológicos con el fin de tolerar el estrés hídrico. Los genotipos estudiados presentaron diferentes rutas para alcanzar esta tolerancia fisiológica, la cual culmina con distintas acumulaciones de metabolitos en las plantas, y puede ser considerado interesante si el producto final es la producción de aceites esenciales.


Sujet(s)
Plantes médicinales/métabolisme , Huile essentielle/métabolisme , Ocimum basilicum/métabolisme , Plantes médicinales/physiologie , Eau/métabolisme , Ocimum basilicum/physiologie , Humidité du Sol
20.
Sci Rep ; 11(1): 23876, 2021 12 13.
Article de Anglais | MEDLINE | ID: mdl-34903776

RÉSUMÉ

This research evaluates the effect on herbal crops of mechanical stress induced by two specially developed robotic platforms. The changes in plant morphology, metabolite profiles, and element content are evaluated in a series of three empirical experiments, conducted in greenhouse and CNC growing bed conditions, for the case of basil plant growth. Results show significant changes in morphological features, including shortening of overall stem length by up to 40% and inter-node distances by up to 80%, for plants treated with a robotic mechanical stress-induction protocol, compared to control groups. Treated plants showed a significant increase in element absorption, by 20-250% compared to controls, and changes in the metabolite profiles suggested an improvement in plants' nutritional profiles. These results suggest that repetitive, robotic, mechanical stimuli could be potentially beneficial for plants' nutritional and taste properties, and could be performed with no human intervention (and therefore labor cost). The changes in morphological aspects of the plant could potentially replace practices involving chemical treatment of the plants, leading to more sustainable crop production.


Sujet(s)
Phénomènes physiologiques des plantes , Robotique/instrumentation , Contrainte mécanique , Stress physiologique , Ocimum basilicum/anatomie et histologie , Ocimum basilicum/métabolisme , Ocimum basilicum/physiologie , Robotique/méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE