Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.523
Filtrer
1.
J Vis Exp ; (208)2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38912821

RÉSUMÉ

Retinal organoids (ROs) are a three-dimensional culture system mimicking human retinal features that have differentiated from induced pluripotent stem cells (iPSCs) under specific conditions. Synapse development and maturation in ROs have been studied immunocytochemically and functionally. However, the direct evidence of the synaptic contact ultrastructure is limited, containing both special ribbon synapses and conventional chemical synapses. Transmission electron microscopy (TEM) is characterized by high resolution and a respectable history elucidating retinal development and synapse maturation in humans and various species. It is a powerful tool to explore synaptic structure in ROs and is widely used in the research field of ROs. Therefore, to better explore the structure of RO synaptic contacts at the nanoscale and obtain high-quality microscopic evidence, we developed a simple and repeatable method of RO TEM sample preparation. This paper describes the protocol, reagents used, and detailed steps, including RO fixation preparation, post fixation, embedding, and visualization.


Sujet(s)
Microscopie électronique à transmission , Organoïdes , Rétine , Organoïdes/ultrastructure , Organoïdes/cytologie , Rétine/cytologie , Rétine/ultrastructure , Microscopie électronique à transmission/méthodes , Humains , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/ultrastructure , Animaux , Synapses/ultrastructure
2.
Dev Cell ; 58(7): 616-632.e6, 2023 04 10.
Article de Anglais | MEDLINE | ID: mdl-36990090

RÉSUMÉ

3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.


Sujet(s)
Techniques de cultures cellulaires tridimensionnelles , Microscopie , Organoïdes , Animaux , Humains , Souris , Techniques de cultures cellulaires tridimensionnelles/méthodes , Microscopie électronique , Organoïdes/imagerie diagnostique , Organoïdes/physiologie , Organoïdes/ultrastructure , Tumeurs colorectales/anatomopathologie
3.
Cell Rep ; 38(7): 110379, 2022 02 15.
Article de Anglais | MEDLINE | ID: mdl-35172130

RÉSUMÉ

Pluripotent-stem-cell-derived human intestinal organoids (HIOs) model some aspects of intestinal development and disease, but current culture methods do not fully recapitulate the diverse cell types and complex organization of the human intestine and are reliant on 3D extracellular matrix or hydrogel systems, which limit experimental control and translational potential for regenerative medicine. We describe suspension culture as a simple, low-maintenance method for culturing HIOs and for promoting in vitro differentiation of an organized serosal mesothelial layer that is similar to primary human intestinal serosal mesothelium based on single-cell RNA sequencing and histological analysis. Functionally, HIO serosal mesothelium has the capacity to differentiate into smooth-muscle-like cells and exhibits fibrinolytic activity. An inhibitor screen identifies Hedgehog and WNT signaling as regulators of human serosal mesothelial differentiation. Collectively, suspension HIOs represent a three-dimensional model to study the human serosal mesothelium.


Sujet(s)
Épithélium/croissance et développement , Intestins/croissance et développement , Organoïdes/croissance et développement , Séreuse/croissance et développement , Techniques de culture de tissus , Alginates/pharmacologie , Adhérence cellulaire/effets des médicaments et des substances chimiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire , Collagène/pharmacologie , Association médicamenteuse , Épithélium/effets des médicaments et des substances chimiques , Protéines Hedgehog/métabolisme , Humains , Intestins/ultrastructure , Laminine/pharmacologie , Muscles lisses/cytologie , Organoïdes/effets des médicaments et des substances chimiques , Organoïdes/ultrastructure , Protéoglycanes/pharmacologie , Séreuse/effets des médicaments et des substances chimiques , Séreuse/ultrastructure , Transduction du signal/effets des médicaments et des substances chimiques , Suspensions , Protéines de type Wingless/métabolisme
4.
Stem Cell Reports ; 16(11): 2690-2702, 2021 11 09.
Article de Anglais | MEDLINE | ID: mdl-34653402

RÉSUMÉ

Cases of Leber congenital amaurosis caused by mutations in CRX (LCA7) exhibit an early form of the disease and show signs of significant photoreceptor dysfunction and eventual loss. To establish a translational in vitro model system to study gene-editing-based therapies, we generated LCA7 retinal organoids harboring a dominant disease-causing mutation in CRX. Our LCA7 retinal organoids develop signs of immature and dysfunctional photoreceptor cells, providing us with a reliable in vitro model to recapitulate LCA7. Furthermore, we performed a proof-of-concept study in which we utilize allele-specific CRISPR/Cas9-based gene editing to knock out mutant CRX and saw moderate rescue of photoreceptor phenotypes in our organoids. This work provides early evidence for an effective approach to treat LCA7, which can be applied more broadly to other dominant genetic diseases.


Sujet(s)
Édition de gène/méthodes , Prédisposition génétique à une maladie/génétique , Protéines à homéodomaine/génétique , Amaurose congénitale de Leber/génétique , Mutation , Transactivateurs/génétique , Allèles , Séquence nucléotidique , Lignée cellulaire , Analyse de profil d'expression de gènes/méthodes , Gènes dominants , Protéines à homéodomaine/métabolisme , Humains , Cellules souches pluripotentes induites/métabolisme , Amaurose congénitale de Leber/métabolisme , Amaurose congénitale de Leber/anatomopathologie , Microscopie électronique à transmission , Modèles biologiques , Organoïdes/cytologie , Organoïdes/métabolisme , Organoïdes/ultrastructure , Phénotype , Polymorphisme de nucléotide simple , RNA-Seq/méthodes , Rétine/métabolisme , Transactivateurs/métabolisme
5.
Elife ; 102021 10 26.
Article de Anglais | MEDLINE | ID: mdl-34698018

RÉSUMÉ

During brain development, axons must extend over great distances in a relatively short amount of time. How the subcellular architecture of the growing axon sustains the requirements for such rapid build-up of cellular constituents has remained elusive. Human axons have been particularly poorly accessible to imaging at high resolution in a near-native context. Here, we present a method that combines cryo-correlative light microscopy and electron tomography with human cerebral organoid technology to visualize growing axon tracts. Our data reveal a wealth of structural details on the arrangement of macromolecules, cytoskeletal components, and organelles in elongating axon shafts. In particular, the intricate shape of the endoplasmic reticulum is consistent with its role in fulfilling the high demand for lipid biosynthesis to support growth. Furthermore, the scarcity of ribosomes within the growing shaft suggests limited translational competence during expansion of this compartment. These findings establish our approach as a powerful resource for investigating the ultrastructure of defined neuronal compartments.


Sujet(s)
Axones/ultrastructure , Tomographie en microscopie électronique , Organoïdes/cytologie , Encéphale/cytologie , Encéphale/ultrastructure , Cryomicroscopie électronique , Cellules HeLa , Humains , Structures macromoléculaires/métabolisme , Microscopie , Microscopie de fluorescence , Organoïdes/ultrastructure
6.
Cells ; 10(7)2021 07 05.
Article de Anglais | MEDLINE | ID: mdl-34359871

RÉSUMÉ

The creation of a testis organoid (artificial testis tissue) with sufficient resemblance to the complex form and function of the innate testis remains challenging, especially using non-rodent donor cells. Here, we report the generation of an organoid culture system with striking biomimicry of the native immature testis tissue, including vasculature. Using piglet testis cells as starting material, we optimized conditions for the formation of cell spheroids, followed by long-term culture in an air-liquid interface system. Both fresh and frozen-thawed cells were fully capable of self-reassembly into stable testis organoids consisting of tubular and interstitial compartments, with all major cell types and structural details expected in normal testis tissue. Surprisingly, our organoids also developed vascular structures; a phenomenon that has not been reported in any other culture system. In addition, germ cells do not decline over time, and Leydig cells release testosterone, hence providing a robust, tunable system for diverse basic and applied applications.


Sujet(s)
Matériaux biomimétiques/pharmacologie , Organoïdes/physiologie , Testicule/vascularisation , Animaux , Numération cellulaire , Cryoconservation , Cellules de Leydig/cytologie , Cellules de Leydig/effets des médicaments et des substances chimiques , Hormone lutéinisante/métabolisme , Mâle , Néovascularisation physiologique/effets des médicaments et des substances chimiques , Spécificité d'organe , Organoïdes/cytologie , Organoïdes/effets des médicaments et des substances chimiques , Organoïdes/ultrastructure , Suidae , Testicule/cytologie , Testicule/ultrastructure , Testostérone/métabolisme
7.
BMC Mol Cell Biol ; 22(1): 37, 2021 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-34225662

RÉSUMÉ

BACKGROUND: Organ culture models have been used over the past few decades to study development and disease. The in vitro three-dimensional (3D) culture system of organoids is well known, however, these 3D systems are both costly and difficult to culture and maintain. As such, less expensive, faster and less complex methods to maintain 3D cell culture models would complement the use of organoids. Chick embryos have been used as a model to study human biology for centuries, with many fundamental discoveries as a result. These include cell type induction, cell competence, plasticity and contact inhibition, which indicates the relevance of using chick embryos when studying developmental biology and disease mechanisms. RESULTS: Here, we present an updated protocol that enables time efficient, cost effective and long-term expansion of fetal organ spheroids (FOSs) from chick embryos. Utilizing this protocol, we generated FOSs in an anchorage-independent growth pattern from seven different organs, including brain, lung, heart, liver, stomach, intestine and epidermis. These three-dimensional (3D) structures recapitulate many cellular and structural aspects of their in vivo counterpart organs and serve as a useful developmental model. In addition, we show a functional application of FOSs to analyze cell-cell interaction and cell invasion patterns as observed in cancer. CONCLUSION: The establishment of a broad ranging and highly effective method to generate FOSs from different organs was successful in terms of the formation of healthy, proliferating 3D organ spheroids that exhibited organ-like characteristics. Potential applications of chick FOSs are their use in studies of cell-to-cell contact, cell fusion and tumor invasion under defined conditions. Future studies will reveal whether chick FOSs also can be applicable in scientific areas such as viral infections, drug screening, cancer diagnostics and/or tissue engineering.


Sujet(s)
Techniques de cultures cellulaires tridimensionnelles , Modèles biologiques , Invasion tumorale/anatomopathologie , Organoïdes/cytologie , Sphéroïdes de cellules/cytologie , Animaux , Communication cellulaire , Lignée cellulaire tumorale , Embryon de poulet , Poulets , Humains , Organoïdes/ultrastructure , Sphéroïdes de cellules/ultrastructure , Techniques de culture de tissus
8.
Cell Rep ; 36(3): 109351, 2021 07 20.
Article de Anglais | MEDLINE | ID: mdl-34289360

RÉSUMÉ

Recurrence of uropathogenic Escherichia coli (UPEC) infections has been attributed to reactivation of quiescent intracellular reservoirs (QIRs) in deep layers of the bladder wall. QIRs are thought to arise late during infection following dispersal of bacteria from intracellular bacterial communities (IBCs) in superficial umbrella cells. Here, we track the formation of QIR-like bacteria in a bladder organoid model that recapitulates the stratified uroepithelium within a volume suitable for high-resolution live-cell imaging. Bacteria injected into the organoid lumen enter umbrella-like cells and proliferate to form IBC-like bodies. In parallel, single bacteria penetrate deeper layers of the organoid wall, where they localize within or between uroepithelial cells. These "solitary" bacteria evade killing by antibiotics and neutrophils and are morphologically distinct from bacteria in IBCs. We conclude that bacteria with QIR-like properties may arise at early stages of infection, independent of IBC formation and rupture.


Sujet(s)
Antibactériens/pharmacologie , Modèles biologiques , Granulocytes neutrophiles/anatomopathologie , Organoïdes/microbiologie , Vessie urinaire/microbiologie , Escherichia coli uropathogène/physiologie , Animaux , Différenciation cellulaire/effets des médicaments et des substances chimiques , Infections à Escherichia coli/microbiologie , Infections à Escherichia coli/anatomopathologie , Femelle , Humains , Imagerie tridimensionnelle , Souris de lignée C57BL , Viabilité microbienne/effets des médicaments et des substances chimiques , Mouvement , Granulocytes neutrophiles/effets des médicaments et des substances chimiques , Organoïdes/effets des médicaments et des substances chimiques , Organoïdes/ultrastructure , Vessie urinaire/anatomopathologie , Escherichia coli uropathogène/effets des médicaments et des substances chimiques , Escherichia coli uropathogène/croissance et développement , Escherichia coli uropathogène/ultrastructure
9.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Article de Anglais | MEDLINE | ID: mdl-34314701

RÉSUMÉ

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Sujet(s)
Cerveau/anatomopathologie , Protéine-4 similaire à ELAV/génétique , Acide glutamique/métabolisme , Mutation/génétique , Neurones/anatomopathologie , Organoïdes/métabolisme , Épissage des ARN/génétique , Protéines tau/génétique , Autophagie/effets des médicaments et des substances chimiques , Autophagie/génétique , Marqueurs biologiques/métabolisme , Plan d'organisation du corps/effets des médicaments et des substances chimiques , Plan d'organisation du corps/génétique , Mort cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire , Humains , Hydrazones/pharmacologie , Lysosomes/effets des médicaments et des substances chimiques , Lysosomes/métabolisme , Morpholines/pharmacologie , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Organoïdes/effets des médicaments et des substances chimiques , Organoïdes/ultrastructure , Phosphorylation/effets des médicaments et des substances chimiques , Pyrimidines/pharmacologie , Épissage des ARN/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Granules de stress/effets des médicaments et des substances chimiques , Granules de stress/métabolisme , Synapses/métabolisme , Régulation positive/effets des médicaments et des substances chimiques , Régulation positive/génétique
10.
J Cell Biol ; 220(9)2021 09 06.
Article de Anglais | MEDLINE | ID: mdl-34160561

RÉSUMÉ

Cells are 3D objects. Therefore, volume EM (vEM) is often crucial for correct interpretation of ultrastructural data. Today, scanning EM (SEM) methods such as focused ion beam (FIB)-SEM are frequently used for vEM analyses. While they allow automated data acquisition, precise targeting of volumes of interest within a large sample remains challenging. Here, we provide a workflow to target FIB-SEM acquisition of fluorescently labeled cells or subcellular structures with micrometer precision. The strategy relies on fluorescence preservation during sample preparation and targeted trimming guided by confocal maps of the fluorescence signal in the resin block. Laser branding is used to create landmarks on the block surface to position the FIB-SEM acquisition. Using this method, we acquired volumes of specific single cells within large tissues such as 3D cultures of mouse mammary gland organoids, tracheal terminal cells in Drosophila melanogaster larvae, and ovarian follicular cells in adult Drosophila, discovering ultrastructural details that could not be appreciated before.


Sujet(s)
Drosophila melanogaster/ultrastructure , Cellules de la granulosa/ultrastructure , Glandes mammaires animales/ultrastructure , Microscopie électronique à balayage/méthodes , Coloration et marquage/méthodes , Cellules thécales/ultrastructure , Trachée/ultrastructure , Animaux , Drosophila melanogaster/métabolisme , Cellules épithéliales/métabolisme , Cellules épithéliales/ultrastructure , Femelle , Expression des gènes , Gènes rapporteurs , Cellules de la granulosa/métabolisme , Protéines à fluorescence verte/génétique , Protéines à fluorescence verte/métabolisme , Cellules HeLa , Humains , Larve/métabolisme , Larve/ultrastructure , Protéines luminescentes/génétique , Protéines luminescentes/métabolisme , Glandes mammaires animales/métabolisme , Souris , Microscopie électronique à balayage/instrumentation , Organoïdes/métabolisme , Organoïdes/ultrastructure , Analyse sur cellule unique/instrumentation , Analyse sur cellule unique/méthodes , Cellules thécales/métabolisme , Trachée/métabolisme , Flux de travaux ,
11.
Dev Cell ; 56(9): 1346-1358.e6, 2021 05 03.
Article de Anglais | MEDLINE | ID: mdl-33945785

RÉSUMÉ

Myelination is essential for central nervous system (CNS) formation, health, and function. Emerging evidence of oligodendrocyte heterogeneity in health and disease and divergent CNS gene expression profiles between mice and humans supports the development of experimentally tractable human myelination systems. Here, we developed human iPSC-derived myelinating organoids ("myelinoids") and quantitative tools to study myelination from oligodendrogenesis through to compact myelin formation and myelinated axon organization. Using patient-derived cells, we modeled a monogenetic disease of myelinated axons (Nfasc155 deficiency), recapitulating impaired paranodal axo-glial junction formation. We also validated the use of myelinoids for pharmacological assessment of myelination-both at the level of individual oligodendrocytes and globally across whole myelinoids-and demonstrated reduced myelination in response to suppressed synaptic vesicle release. Our study provides a platform to investigate human myelin development, disease, and adaptive myelination.


Sujet(s)
Cellules souches pluripotentes induites/cytologie , Gaine de myéline/physiologie , Organoïdes/physiologie , Axones/métabolisme , Axones/ultrastructure , Humains , Gaine de myéline/ultrastructure , Facteurs de croissance nerveuse/déficit , Facteurs de croissance nerveuse/métabolisme , Organoïdes/ultrastructure , Toxine tétanique/pharmacologie , Facteurs temps
12.
Stem Cells Dev ; 30(8): 399-417, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-33677999

RÉSUMÉ

Progressive vision loss, caused by retinal degenerative (RD) diseases such as age-related macular degeneration, retinitis pigmentosa, and Leber congenital amaurosis, severely impacts quality of life and affects millions of people. Finding efficient treatment for blinding diseases is among the greatest unmet clinical needs. The evagination of optic vesicles from developing pluripotent stem cell-derived neuroepithelium and self-organization, lamination, and differentiation of retinal tissue in a dish generated considerable optimism for developing innovative approaches for treating RD diseases, which previously were not feasible. Retinal organoids may be a limitless source of multipotential retinal progenitors, photoreceptors (PRs), and the whole retinal tissue, which are productive approaches for developing RD disease therapies. In this study we compared the distribution and expression level of molecular markers (genetic and epigenetic) in human fetal retina (age 8-16 weeks) and human embryonic stem cell (hESC)-derived retinal tissue (organoids) by immunohistochemistry, RNA-seq, flow cytometry, and mass-spectrometry (to measure methylated and hydroxymethylated cytosine level), with a focus on PRs to evaluate the clinical application of hESC-retinal tissue for vision restoration. Our results revealed high correlation in gene expression profiles and histological profiles between human fetal retina (age 8-13 weeks) and hESC-derived retinal tissue (10-12 weeks). The transcriptome signature of hESC-derived retinal tissue from retinal organoids maintained for 24 weeks in culture resembled the transcriptome of human fetal retina of more advanced developmental stages. The histological profiles of 24 week-old hESC-derived retinal tissue displayed mature PR immunophenotypes and presence of developing inner and outer segments. Collectively, our work highlights the similarity of hESC-derived retinal tissue at early stages of development (10 weeks), and human fetal retina (age 8-13 weeks) and it supports the development of regenerative medicine therapies aimed at using tissue from hESC-derived retinal organoids (hESC-retinal implants) for mitigating vision loss.


Sujet(s)
Différenciation cellulaire/génétique , Cellules souches embryonnaires humaines/métabolisme , Organoïdes/métabolisme , Cellules souches pluripotentes/métabolisme , Rétine/métabolisme , Transcriptome/génétique , Lignée cellulaire , Méthylation de l'ADN , Protéines à homéodomaine/métabolisme , Cellules souches embryonnaires humaines/cytologie , Humains , Immunohistochimie , Antigène KI-67/métabolisme , Microscopie confocale , Microscopie électronique à transmission , Organoïdes/cytologie , Organoïdes/ultrastructure , Facteur de transcription PAX6/métabolisme , Cellules souches pluripotentes/cytologie , RNA-Seq/méthodes , Rétine/cytologie , Rétine/embryologie , Facteurs temps , Facteurs de transcription/métabolisme
13.
Cells ; 10(2)2021 01 28.
Article de Anglais | MEDLINE | ID: mdl-33525555

RÉSUMÉ

Humans with biallelic inactivating mutations in Epithelial Cell Adhesion Molecule (EpCAM) develop congenital tufting enteropathy (CTE). To gain mechanistic insights regarding EpCAM function in this disorder, we prepared intestinal epithelial cell (IEC) organoids and spheroids. IEC organoids and spheroids were generated from ROSA-CreERT2 EpCAMfl/fl mice. Proliferation, tight junctions, cell polarity and epithelial integrity were assessed in tamoxifen-induced EpCAM-deficient organoids via confocal immunofluorescence microscopy and Western blotting. Olfm4-expressing stem cells were assessed in IEC cells in vitro and in vivo via fluorescence in situ hybridization. To determine if existing drugs could ameliorate effects of EpCAM deficiency in IEC cells, a variety of pharmacologic inhibitors were screened. Deletion of EpCAM resulted in increased apoptosis and attenuated growth of organoids and spheroids. Selected claudins were destabilized and epithelial integrity was severely compromised. Epithelial integrity was improved by treatment with Rho-associated coiled-coil kinase (ROCK) inhibitors without restoration of claudin expression. Correspondingly, enhanced phosphorylation of myosin light chain, a serine/threonine ROCK substrate, was observed in EpCAM-deficient organoids. Strikingly, frequencies of Olfm4-expressing stem cells in EpCAM-deficient IEC cells in vitro and in vivo were decreased. Treatment with ROCK inhibitors increased numbers of stem cells in EpCAM-deficient organoids and spheroids. Thus, EpCAM regulates intestinal epithelial homeostasis via a signaling pathway that includes ROCK.


Sujet(s)
Molécule d'adhérence des cellules épithéliales/métabolisme , Cellules épithéliales/métabolisme , Intestins/cytologie , Cellules souches/métabolisme , rho-Associated Kinases/métabolisme , Animaux , Apoptose/effets des médicaments et des substances chimiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Polarité de la cellule/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Claudines/métabolisme , Cellules épithéliales/effets des médicaments et des substances chimiques , Extinction de l'expression des gènes , Muqueuse intestinale/métabolisme , Souris knockout , Chaînes légères de myosine/métabolisme , Organoïdes/effets des médicaments et des substances chimiques , Organoïdes/métabolisme , Organoïdes/ultrastructure , Phosphorylation/effets des médicaments et des substances chimiques , Inhibiteurs de protéines kinases/pharmacologie , Sphéroïdes de cellules/effets des médicaments et des substances chimiques , Sphéroïdes de cellules/métabolisme , Cellules souches/effets des médicaments et des substances chimiques , rho-Associated Kinases/antagonistes et inhibiteurs
14.
Sci Rep ; 11(1): 1944, 2021 01 21.
Article de Anglais | MEDLINE | ID: mdl-33479301

RÉSUMÉ

The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attributed to the highly fibrotic stroma and complex multi-cellular microenvironment that is difficult to fully recapitulate in pre-clinical models. To fast-track translation of therapies and to inform personalised medicine, we aimed to develop a whole-tissue ex vivo explant model that maintains viability, 3D multicellular architecture, and microenvironmental cues of human pancreatic tumours. Patient-derived surgically-resected PDAC tissue was cut into 1-2 mm explants and cultured on gelatin sponges for 12 days. Immunohistochemistry revealed that human PDAC explants were viable for 12 days and maintained their original tumour, stromal and extracellular matrix architecture. As proof-of-principle, human PDAC explants were treated with Abraxane and we observed different levels of response between patients. PDAC explants were also transfected with polymeric nanoparticles + Cy5-siRNA and we observed abundant cytoplasmic distribution of Cy5-siRNA throughout the PDAC explants. Overall, our novel model retains the 3D architecture of human PDAC and has advantages over standard organoids: presence of functional multi-cellular stroma and fibrosis, and no tissue manipulation, digestion, or artificial propagation of organoids. This provides unprecedented opportunity to study PDAC biology including tumour-stromal interactions and rapidly assess therapeutic response to drive personalised treatment.


Sujet(s)
Adénocarcinome/génétique , Carcinome du canal pancréatique/génétique , Techniques de culture cellulaire , Organoïdes/anatomopathologie , Adénocarcinome/anatomopathologie , Carcinome du canal pancréatique/anatomopathologie , Lignée cellulaire tumorale , Matrice extracellulaire/anatomopathologie , Matrice extracellulaire/ultrastructure , Humains , Organoïdes/ultrastructure , Pancréas/anatomopathologie , Pancréas/ultrastructure , Microenvironnement tumoral/génétique
15.
Nat Protoc ; 16(1): 239-262, 2021 01.
Article de Anglais | MEDLINE | ID: mdl-33247285

RÉSUMÉ

Advances in light-sheet and confocal microscopy now allow imaging of cleared large biological tissue samples and enable the 3D appreciation of cell and protein localization in their native organ environment. However, the sample preparations for such imaging are often onerous, and their capability for antigen detection is limited. Here, we describe FLASH (fast light-microscopic analysis of antibody-stained whole organs), a simple, rapid, fully customizable technique for molecular phenotyping of intact tissue volumes. FLASH utilizes non-degradative epitope recovery and membrane solubilization to enable the detection of a multitude of membranous, cytoplasmic and nuclear antigens in whole mouse organs and embryos, human biopsies, organoids and Drosophila. Retrieval and immunolabeling of epithelial markers, an obstacle for previous clearing techniques, can be achieved with FLASH. Upon volumetric imaging, FLASH-processed samples preserve their architecture and integrity and can be paraffin-embedded for subsequent histopathological analysis. The technique can be performed by scientists trained in light microscopy and yields results in <1 week.


Sujet(s)
Antigènes/analyse , Technique d'immunofluorescence/méthodes , Imagerie tridimensionnelle/méthodes , Microscopie confocale/méthodes , Animaux , Drosophila , Épitopes/analyse , Femelle , Humains , Rein/ultrastructure , Appareil lacrymal/ultrastructure , Foie/ultrastructure , Poumon/ultrastructure , Mâle , Glandes mammaires humaines/ultrastructure , Souris , Organoïdes/ultrastructure , Pancréas/ultrastructure , Estomac/ultrastructure
16.
J Mol Med (Berl) ; 99(4): 449-462, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-33221939

RÉSUMÉ

Organoids constitute biological systems which are used to model organ development, homeostasis, regeneration, and disease in vitro and hold promise for use in therapy. Reflecting in vivo development, organoids form from tissue cells or pluripotent stem cells. Cues provided from the media and individual cells promote self-organization of these uniform starting cells into a structure, with emergent differentiated cells, morphology, and often functionality that resemble the tissue of origin. Therefore, organoids provide a complement to two-dimensional in vitro culture and in vivo animal models of development, providing the experimental control and flexibility of in vitro methods with the three-dimensional context of in vivo models, with fewer ethical restraints than human or animal work. However, using organoids, we are only just beginning to understand on the cellular level how the external conditions and signaling between individual cells promote the emergence of cells and structures. In this review, we focus specifically on organoids derived from endodermal tissues: the starting conditions of the cells, signaling mechanisms, and external media that allow the emergence of higher order self-organization.


Sujet(s)
Endoderme/cytologie , Organoïdes/cytologie , Cellules souches adultes/cytologie , Animaux , Communication cellulaire , Techniques de culture cellulaire/méthodes , Différenciation cellulaire , Rétrocontrôle physiologique , Humains , Cellules souches pluripotentes induites/cytologie , Intestins/cytologie , Souris , Morphogenèse , Spécificité d'organe , Organogenèse , Organoïdes/ultrastructure , Transduction du signal
17.
Cell ; 183(7): 1913-1929.e26, 2020 12 23.
Article de Anglais | MEDLINE | ID: mdl-33333020

RÉSUMÉ

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.


Sujet(s)
Cortex cérébral/physiologie , Cortex moteur/physiologie , Organoïdes/physiologie , Animaux , Calcium/métabolisme , Différenciation cellulaire , Cellules cultivées , Vertèbres cervicales , Régulation de l'expression des gènes , Glutamates/métabolisme , Humains , Cellules souches pluripotentes induites/cytologie , Souris , Muscles/physiologie , Myoblastes/métabolisme , Réseau nerveux/physiologie , Optogénétique , Organoïdes/ultrastructure , Rhombencéphale/physiologie , Sphéroïdes de cellules/cytologie , Moelle spinale/cytologie
18.
Sci Rep ; 10(1): 20937, 2020 12 01.
Article de Anglais | MEDLINE | ID: mdl-33262363

RÉSUMÉ

The endoplasmic reticulum (ER) is a complex subcellular organelle composed of diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus (ZIKV) induce reorganization of ER membranes to facilitate viral replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the formation of dense tubular matrices associated with viral replication in the central ER. Viral non-structural proteins NS4B and NS2B associate with replication complexes within the ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region. Deep neural networks trained to distinguish ZIKV-infected versus mock-infected cells successfully identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super resolution microscopy and deep learning are therefore able to identify and localize morphological features of the ER and allow for better understanding of how ER morphology changes due to viral infection.


Sujet(s)
Apprentissage profond , Réticulum endoplasmique/métabolisme , Microscopie/méthodes , Virus Zika/physiologie , Encéphale/anatomopathologie , Encéphale/virologie , Lignée cellulaire tumorale , Réticulum endoplasmique/ultrastructure , Matrice extracellulaire/métabolisme , Humains , Organoïdes/métabolisme , Organoïdes/ultrastructure , Organoïdes/virologie , ARN double brin/métabolisme , Protéines virales non structurales/métabolisme , Virus Zika/ultrastructure , Infection par le virus Zika/virologie
19.
Sci Rep ; 10(1): 20292, 2020 11 20.
Article de Anglais | MEDLINE | ID: mdl-33219246

RÉSUMÉ

To elucidate molecular pharmacology of Rho-associated coiled-coil containing protein kinase inhibitors (ROCK-i, Ripasudil and Y27632) on their efficiency for aqueous outflow, 2D or 3D cultures of a human trabecular meshwork (HTM) were prepared in the presence of TGFß2. Those were examined by transendothelial electrical resistance (TEER, 2D), electronic microscopy (EM, 2D and 3D), expression of the extracellular matrix (ECM) including collagen1 (COL1), COL4 and COL6, and fibronectin (FN) by immunolabeling and/or quantitative PCR (3D), and solidity of 3D organoids by a micro-squeezer. TGFß2 significantly increased the TEER values in 2D cultures, and the ECM expression indicated that the 3D organoids assumed a more densely packed shape. ROCK-i greatly reduced the TGFß2-induced enhancement of TEER and the immunolabeled ECM expression of the 3D organoids. In contrast, the mRNA expression of COL1 was increased, and those of COL4 and FN were unchanged. EM revealed that TGFß2 caused the HTM cells to become more compact and abundant ECM deposits within the 3D organoids were observed. These were significantly inhibited by ROCK-i. The dense solids caused by the presence of TGFß2 were significantly suppressed by ROCK-i. Current study indicates that ROCK-i cause beneficial effects toward the spatial configuration of TGFß2-induced HTM 3D organoids.


Sujet(s)
Antihypertenseurs/pharmacologie , Glaucome à angle ouvert/traitement médicamenteux , Atteintes du nerf optique/prévention et contrôle , Réseau trabéculaire de la sclère/effets des médicaments et des substances chimiques , rho-Associated Kinases/antagonistes et inhibiteurs , Amides/pharmacologie , Amides/usage thérapeutique , Antihypertenseurs/usage thérapeutique , Techniques de culture cellulaire , Lignée cellulaire , Glaucome à angle ouvert/complications , Humains , Pression intraoculaire/effets des médicaments et des substances chimiques , Isoquinoléines/pharmacologie , Isoquinoléines/usage thérapeutique , Microscopie électronique à balayage , Atteintes du nerf optique/étiologie , Organoïdes/effets des médicaments et des substances chimiques , Organoïdes/métabolisme , Organoïdes/ultrastructure , Pyridines/pharmacologie , Pyridines/usage thérapeutique , Sphéroïdes de cellules , Sulfonamides/pharmacologie , Sulfonamides/usage thérapeutique , Réseau trabéculaire de la sclère/cytologie , Réseau trabéculaire de la sclère/métabolisme , Réseau trabéculaire de la sclère/ultrastructure , Facteur de croissance transformant bêta-2/métabolisme , rho-Associated Kinases/métabolisme
20.
Nat Med ; 26(12): 1888-1898, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-32989314

RÉSUMÉ

22q11.2 deletion syndrome (22q11DS) is a highly penetrant and common genetic cause of neuropsychiatric disease. Here we generated induced pluripotent stem cells from 15 individuals with 22q11DS and 15 control individuals and differentiated them into three-dimensional (3D) cerebral cortical organoids. Transcriptional profiling across 100 days showed high reliability of differentiation and revealed changes in neuronal excitability-related genes. Using electrophysiology and live imaging, we identified defects in spontaneous neuronal activity and calcium signaling in both organoid- and 2D-derived cortical neurons. The calcium deficit was related to resting membrane potential changes that led to abnormal inactivation of voltage-gated calcium channels. Heterozygous loss of DGCR8 recapitulated the excitability and calcium phenotypes and its overexpression rescued these defects. Moreover, the 22q11DS calcium abnormality could also be restored by application of antipsychotics. Taken together, our study illustrates how stem cell derived models can be used to uncover and rescue cellular phenotypes associated with genetic forms of neuropsychiatric disease.


Sujet(s)
Signalisation calcique/génétique , Cortex cérébral/ultrastructure , Syndrome de DiGeorge/diagnostic , Neurones/ultrastructure , Adulte , Différenciation cellulaire/génétique , Cortex cérébral/anatomopathologie , Syndrome de DiGeorge/anatomopathologie , Femelle , Humains , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/ultrastructure , Mâle , Neurones/anatomopathologie , Organoïdes/anatomopathologie , Organoïdes/ultrastructure , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...