Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 891
Filtrer
1.
Redox Rep ; 29(1): 2382943, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39092597

RÉSUMÉ

OBJECTIVES: Diabetes is closely linked to hearing loss, yet the exact mechanisms remain unclear. Cochlear stria vascularis and pericytes (PCs) are crucial for hearing. This study investigates whether high glucose induces apoptosis in the cochlear stria vascularis and pericytes via elevated ROS levels due to oxidative stress, impacting hearing loss. METHODS: We established a type II diabetes model in C57BL/6J mice and used auditory brainstem response (ABR), Evans blue staining, HE staining, immunohistochemistry, and immunofluorescence to observe changes in hearing, blood-labyrinth barrier (BLB) permeability, stria vascularis morphology, and apoptosis protein expression. Primary cultured stria vascularis pericytes were subjected to high glucose, and apoptosis levels were assessed using flow cytometry, Annexin V-FITC, Hoechst 33342 staining, Western blot, Mitosox, and JC-1 probes. RESULTS: Diabetic mice showed decreased hearing thresholds, reduced stria vascularis density, increased oxidative stress, cell apoptosis, and decreased antioxidant levels. High glucose exposure increased apoptosis and ROS content in pericytes, while mitochondrial membrane potential decreased, with AIF and cytochrome C (CytC) released from mitochondria to the cytoplasm. Adding oxidative scavengers reduced AIF and CytC release, decreasing pericyte apoptosis. DISCUSSION: Hyperglycemia may induce mitochondrial apoptosis of cochlear stria vascularis pericytes through oxidative stress.


Sujet(s)
Facteur inducteur d'apoptose , Apoptose , Cytochromes c , Hyperglycémie , Souris de lignée C57BL , Mitochondries , Stress oxydatif , Péricytes , Protéines proto-oncogènes c-bcl-2 , Espèces réactives de l'oxygène , Strie vasculaire , Animaux , Péricytes/métabolisme , Péricytes/effets des médicaments et des substances chimiques , Péricytes/anatomopathologie , Strie vasculaire/métabolisme , Strie vasculaire/anatomopathologie , Souris , Espèces réactives de l'oxygène/métabolisme , Mitochondries/métabolisme , Cytochromes c/métabolisme , Facteur inducteur d'apoptose/métabolisme , Hyperglycémie/métabolisme , Protéines proto-oncogènes c-bcl-2/métabolisme , Mâle , Diabète expérimental/métabolisme , Diabète expérimental/anatomopathologie , Cochlée/métabolisme , Cochlée/anatomopathologie
3.
Nat Commun ; 15(1): 6321, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39060269

RÉSUMÉ

Spinal cord injury (SCI) leads to fibrotic scar formation at the lesion site, yet the heterogeneity of fibrotic scar remains elusive. Here we show the heterogeneity in distribution, origin, and function of fibroblasts within fibrotic scars after SCI in mice and female monkeys. Utilizing lineage tracing and single-cell RNA sequencing (scRNA-seq), we found that perivascular fibroblasts (PFs), and meningeal fibroblasts (MFs), rather than pericytes/vascular smooth cells (vSMCs), primarily contribute to fibrotic scar in both transection and crush SCI. Crabp2 + /Emb+ fibroblasts (CE-F) derived from meninges primarily localize in the central region of fibrotic scars, demonstrating enhanced cholesterol synthesis and secretion of type I collagen and fibronectin. In contrast, perivascular/pial Lama1 + /Lama2+ fibroblasts (LA-F) are predominantly found at the periphery of the lesion, expressing laminin and type IV collagen and functionally involved in angiogenesis and lipid transport. These findings may provide a comprehensive understanding for remodeling heterogeneous fibrotic scars after SCI.


Sujet(s)
Cicatrice , Fibroblastes , Fibrose , Laminine , Traumatismes de la moelle épinière , Animaux , Traumatismes de la moelle épinière/anatomopathologie , Traumatismes de la moelle épinière/métabolisme , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Cicatrice/anatomopathologie , Cicatrice/métabolisme , Souris , Femelle , Laminine/métabolisme , Méninges/anatomopathologie , Méninges/métabolisme , Fibronectines/métabolisme , Modèles animaux de maladie humaine , Collagène de type I/métabolisme , Souris de lignée C57BL , Péricytes/métabolisme , Péricytes/anatomopathologie , Collagène de type IV/métabolisme , Cholestérol/métabolisme
4.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38902234

RÉSUMÉ

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Sujet(s)
Maladie d'Alzheimer , Astrocytes , Barrière hémato-encéphalique , Péricytes , Protéine Smad-3 , Facteur de croissance endothéliale vasculaire de type A , Danio zébré , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Humains , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/anatomopathologie , Protéine Smad-3/métabolisme , Protéine Smad-3/génétique , Astrocytes/métabolisme , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Facteur de croissance endothéliale vasculaire de type A/génétique , Animaux , Péricytes/métabolisme , Péricytes/anatomopathologie , Mâle , Cellules souches pluripotentes induites/métabolisme , Femelle , Sujet âgé , Transcriptome , Encéphale/métabolisme , Encéphale/anatomopathologie , Encéphale/vascularisation , Sujet âgé de 80 ans ou plus , Modèles animaux de maladie humaine
5.
Sci Prog ; 107(2): 368504241257126, 2024.
Article de Anglais | MEDLINE | ID: mdl-38863331

RÉSUMÉ

Pericytes (PCs) are versatile cells integral to the microcirculation wall, exhibiting specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, maintaining homeostasis, and aiding tissue repair process. Given their involvement in numerous disease-related pathological and physiological processes, the regulation of PCs has emerged as a focal point of research. Adenomyosis is characterized by the presence of active endometrial glands and stroma encased by an enlarged and proliferative myometrial layer, further accompanied by fibrosis and new blood vessel formation. This distinct pathological condition might be intricately linked with PCs. This article comprehensively reviews the markers associated with PCs, their contributions to angiogenesis, blood flow modulation, and fibrotic processes. Moreover, it provides a comprehensive overview of the current research on adenomyosis pathophysiology, emphasizing the potential correlation and future implications regarding PCs and the development of adenomyosis.


Sujet(s)
Endométriose intra-utérine , Péricytes , Endométriose intra-utérine/anatomopathologie , Endométriose intra-utérine/physiopathologie , Péricytes/anatomopathologie , Humains , Femelle , Néovascularisation pathologique/anatomopathologie , Animaux , Fibrose/anatomopathologie , Endomètre/anatomopathologie , Endomètre/vascularisation , Myomètre/anatomopathologie , Marqueurs biologiques/métabolisme
6.
Commun Biol ; 7(1): 693, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38844781

RÉSUMÉ

Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.


Sujet(s)
Prolifération cellulaire , GMP cyclique , Protéine O3 à motif en tête de fourche , Peptide natriurétique de type C , Péricytes , Transduction du signal , Humains , Péricytes/métabolisme , Péricytes/anatomopathologie , Peptide natriurétique de type C/métabolisme , GMP cyclique/métabolisme , Protéine O3 à motif en tête de fourche/métabolisme , Protéine O3 à motif en tête de fourche/génétique , Mâle , Femelle , Hypertension artérielle pulmonaire/métabolisme , Hypertension artérielle pulmonaire/anatomopathologie , Adulte d'âge moyen , Hypertension pulmonaire/métabolisme , Hypertension pulmonaire/anatomopathologie , Adulte , Récepteur facteur natriurétique auriculaire/métabolisme , Récepteur facteur natriurétique auriculaire/génétique , Cellules cultivées
7.
Nat Neurosci ; 27(7): 1285-1298, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38849523

RÉSUMÉ

Fibrotic scar tissue formation occurs in humans and mice. The fibrotic scar impairs tissue regeneration and functional recovery. However, the origin of scar-forming fibroblasts is unclear. Here, we show that stromal fibroblasts forming the fibrotic scar derive from two populations of perivascular cells after spinal cord injury (SCI) in adult mice of both sexes. We anatomically and transcriptionally identify the two cell populations as pericytes and perivascular fibroblasts. Fibroblasts and pericytes are enriched in the white and gray matter regions of the spinal cord, respectively. Both cell populations are recruited in response to SCI and inflammation. However, their contribution to fibrotic scar tissue depends on the location of the lesion. Upon injury, pericytes and perivascular fibroblasts become activated and transcriptionally converge on the generation of stromal myofibroblasts. Our results show that pericytes and perivascular fibroblasts contribute to the fibrotic scar in a region-dependent manner.


Sujet(s)
Cicatrice , Fibroblastes , Fibrose , Péricytes , Traumatismes de la moelle épinière , Animaux , Fibroblastes/anatomopathologie , Fibroblastes/métabolisme , Fibrose/anatomopathologie , Traumatismes de la moelle épinière/anatomopathologie , Souris , Péricytes/anatomopathologie , Péricytes/métabolisme , Mâle , Femelle , Cicatrice/anatomopathologie , Souris de lignée C57BL , Cellules stromales/anatomopathologie
8.
Open Biol ; 14(6): 230349, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38862017

RÉSUMÉ

Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.


Sujet(s)
COVID-19 , Cellules endothéliales , Péricytes , SARS-CoV-2 , Péricytes/virologie , Péricytes/métabolisme , Péricytes/anatomopathologie , Humains , Animaux , SARS-CoV-2/physiologie , SARS-CoV-2/pathogénicité , COVID-19/virologie , COVID-19/anatomopathologie , Souris , Cellules endothéliales/virologie , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , Facteurs de risque , Lipopolysaccharides/pharmacologie , Apolipoprotéine E4/génétique , Apolipoprotéine E4/métabolisme , Apolipoprotéine E3/génétique , Apolipoprotéine E3/métabolisme , Inflammation/virologie , Inflammation/anatomopathologie
9.
Biomed Pharmacother ; 176: 116870, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38850658

RÉSUMÉ

Intracranial atherosclerotic stenosis (ICAS) is a pathological condition characterized by progressive narrowing or complete blockage of intracranial blood vessels caused by plaque formation. This condition leads to reduced blood flow to the brain, resulting in cerebral ischemia and hypoxia. Ischemic stroke (IS) resulting from ICAS poses a significant global public health challenge, especially among East Asian populations. However, the underlying causes of the notable variations in prevalence among diverse populations, as well as the most effective strategies for preventing and treating the rupture and blockage of intracranial plaques, remain incompletely comprehended. Rupture of plaques, bleeding, and thrombosis serve as precipitating factors in the pathogenesis of luminal obstruction in intracranial arteries. Pericytes play a crucial role in the structure and function of blood vessels and face significant challenges in regulating the Vasa Vasorum (VV)and preventing intraplaque hemorrhage (IPH). This review aims to explore innovative therapeutic strategies that target the pathophysiological mechanisms of vulnerable plaques by modulating pericyte biological function. It also discusses the potential applications of pericytes in central nervous system (CNS) diseases and their prospects as a therapeutic intervention in the field of biological tissue engineering regeneration.


Sujet(s)
Péricytes , Péricytes/anatomopathologie , Humains , Animaux , Artériosclérose intracrânienne/anatomopathologie , Artériosclérose intracrânienne/physiopathologie , Vasa vasorum/anatomopathologie , Vasa vasorum/physiopathologie , Artères cérébrales/anatomopathologie
10.
J Clin Invest ; 134(14)2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38885342

RÉSUMÉ

While inflammation is beneficial for insulin secretion during homeostasis, its transformation adversely affects ß cells and contributes to diabetes. However, the regulation of islet inflammation for maintaining glucose homeostasis remains largely unknown. Here, we identified pericytes as pivotal regulators of islet immune and ß cell function in health. Islets and pancreatic pericytes express various cytokines in healthy humans and mice. To interfere with the pericytic inflammatory response, we selectively inhibited the TLR/MyD88 pathway in these cells in transgenic mice. The loss of MyD88 impaired pericytic cytokine production. Furthermore, MyD88-deficient mice exhibited skewed islet inflammation with fewer cells, an impaired macrophage phenotype, and reduced IL-1ß production. This aberrant pericyte-orchestrated islet inflammation was associated with ß cell dedifferentiation and impaired glucose response. Additionally, we found that Cxcl1, a pericytic MyD88-dependent cytokine, promoted immune IL-1ß production. Treatment with either Cxcl1 or IL-1ß restored the mature ß cell phenotype and glucose response in transgenic mice, suggesting a potential mechanism through which pericytes and immune cells regulate glucose homeostasis. Our study revealed pericyte-orchestrated islet inflammation as a crucial element in glucose regulation, implicating this process as a potential therapeutic target for diabetes.


Sujet(s)
Inflammation , Interleukine-1 bêta , Facteur de différenciation myéloïde-88 , Péricytes , Transduction du signal , Animaux , Facteur de différenciation myéloïde-88/génétique , Facteur de différenciation myéloïde-88/métabolisme , Souris , Péricytes/métabolisme , Péricytes/anatomopathologie , Péricytes/immunologie , Humains , Inflammation/anatomopathologie , Inflammation/métabolisme , Inflammation/génétique , Inflammation/immunologie , Interleukine-1 bêta/métabolisme , Interleukine-1 bêta/génétique , Interleukine-1 bêta/immunologie , Souris transgéniques , Récepteurs de type Toll/métabolisme , Récepteurs de type Toll/génétique , Chimiokine CXCL1/métabolisme , Chimiokine CXCL1/génétique , Ilots pancréatiques/immunologie , Ilots pancréatiques/métabolisme , Ilots pancréatiques/anatomopathologie , Souris knockout , Cellules à insuline/métabolisme , Cellules à insuline/anatomopathologie , Cellules à insuline/immunologie , Mâle , Glucose/métabolisme
11.
ACS Nano ; 18(22): 14348-14366, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38768086

RÉSUMÉ

Pericyte dysfunction severely undermines cerebrovascular integrity and exacerbates neurodegeneration in Alzheimer's disease (AD). However, pericyte-targeted therapy is a yet-untapped frontier for AD. Inspired by the elevation of vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species (ROS) levels in pericyte lesions, we fabricated a multifunctional nanoprodrug by conjugating the hybrid peptide VLC, a fusion of the VCAM-1 high-affinity peptide VHS and the neuroprotective apolipoprotein mimetic peptide COG1410, to curcumin (Cur) through phenylboronic ester bond (VLC@Cur-NPs) to alleviate complex pericyte-related pathological changes. Importantly, VLC@Cur-NPs effectively homed to pericyte lesions via VLC and released their contents upon ROS stimulation to maximize their regulatory effects. Consequently, VLC@Cur-NPs markedly increased pericyte regeneration to form a positive feedback loop and thus improved neurovascular function and ultimately alleviated memory defects in APP/PS1 transgenic mice. We present a promising therapeutic strategy for AD that can precisely modulate pericytes and has the potential to treat other cerebrovascular diseases.


Sujet(s)
Maladie d'Alzheimer , Souris transgéniques , Péricytes , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Animaux , Péricytes/effets des médicaments et des substances chimiques , Péricytes/métabolisme , Péricytes/anatomopathologie , Souris , Espèces réactives de l'oxygène/métabolisme , Curcumine/pharmacologie , Curcumine/composition chimique , Promédicaments/pharmacologie , Promédicaments/composition chimique , Nanoparticules/composition chimique , Molécule-1 d'adhérence des cellules vasculaires/métabolisme , Humains , Peptides/composition chimique , Peptides/pharmacologie , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/composition chimique
12.
Alzheimer Dis Assoc Disord ; 38(2): 107-111, 2024.
Article de Anglais | MEDLINE | ID: mdl-38752577

RÉSUMÉ

BACKGROUND: Blood-brain barrier (BBB) dysfunction is emerging as an important pathophysiologic factor in Alzheimer disease (AD). Cerebrospinal fluid (CSF) platelet-derived growth factor receptor-ß (PDGFRß) is a biomarker of BBB pericyte injury and has been implicated in cognitive impairment and AD. METHODS: We aimed to study CSF PDGFRß protein levels, along with CSF biomarkers of brain amyloidosis and tau pathology in a well-characterized population of cognitively unimpaired individuals and correlated CSF findings with amyloid-PET positivity. We performed an institutional review board (IRB)-approved cross-sectional analysis of a prospectively enrolled cohort of 36 cognitively normal volunteers with available CSF, Pittsburgh compound B PET/CT, Mini-Mental State Exam score, Global Deterioration Scale, and known apolipoprotein E ( APOE ) ε4 status. RESULTS: Thirty-six subjects were included. Mean age was 63.3 years; 31 of 36 were female, 6 of 36 were amyloid-PET-positive and 12 of 36 were APOE ε4 carriers. We found a moderate positive correlation between CSF PDGFRß and both total Tau (r=0.45, P =0.006) and phosphorylated Tau 181 (r=0.51, P =0.002). CSF PDGFRß levels were not associated with either the CSF Aß42 or the amyloid-PET. CONCLUSIONS: We demonstrated a moderate positive correlation between PDGFRß and both total Tau and phosphorylated Tau 181 in cognitively normal individuals. Our data support the hypothesis that BBB dysfunction represents an important early pathophysiologic step in AD, warranting larger prospective studies. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00094939.


Sujet(s)
Maladie d'Alzheimer , Marqueurs biologiques , Péricytes , Protéines tau , Humains , Femelle , Maladie d'Alzheimer/liquide cérébrospinal , Maladie d'Alzheimer/imagerie diagnostique , Mâle , Marqueurs biologiques/liquide cérébrospinal , Adulte d'âge moyen , Études transversales , Sujet âgé , Protéines tau/liquide cérébrospinal , Péricytes/anatomopathologie , Tomographie par émission de positons , Peptides bêta-amyloïdes/liquide cérébrospinal , Barrière hémato-encéphalique , Récepteur au PDGF bêta/liquide cérébrospinal , Études prospectives , Études de cohortes
13.
Int J Mol Sci ; 25(10)2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38791110

RÉSUMÉ

Vascular co-option is a consequence of the direct interaction between perivascular cells, known as pericytes (PCs), and glioblastoma multiforme (GBM) cells (GBMcs). This process is essential for inducing changes in the pericytes' anti-tumoral and immunoreactive phenotypes. Starting from the initial stages of carcinogenesis in GBM, PCs conditioned by GBMcs undergo proliferation, acquire a pro-tumoral and immunosuppressive phenotype by expressing and secreting immunosuppressive molecules, and significantly hinder the activation of T cells, thereby facilitating tumor growth. Inhibiting the pericyte (PC) conditioning mechanisms in the GBM tumor microenvironment (TME) results in immunological activation and tumor disappearance. This underscores the pivotal role of PCs as a key cell in the TME, responsible for tumor-induced immunosuppression and enabling GBM cells to evade the immune system. Other cells within the TME, such as tumor-associated macrophages (TAMs) and microglia, have also been identified as contributors to this immunomodulation. In this paper, we will review the role of these three cell types in the immunosuppressive properties of the TME. Our conclusion is that the cellular heterogeneity of immunocompetent cells within the TME may lead to the misinterpretation of cellular lineage identification due to different reactive stages and the identification of PCs as TAMs. Consequently, novel therapies could be developed to disrupt GBM-PC interactions and/or PC conditioning through vascular co-option, thereby exposing GBMcs to the immune system.


Sujet(s)
Tumeurs du cerveau , Péricytes , Microenvironnement tumoral , Péricytes/immunologie , Péricytes/anatomopathologie , Péricytes/métabolisme , Humains , Microenvironnement tumoral/immunologie , Animaux , Tumeurs du cerveau/immunologie , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/métabolisme , Gliome/immunologie , Gliome/anatomopathologie , Gliome/métabolisme , Glioblastome/immunologie , Glioblastome/anatomopathologie , Glioblastome/métabolisme , Évolution de la maladie , Macrophages associés aux tumeurs/immunologie , Macrophages associés aux tumeurs/métabolisme , Macrophages associés aux tumeurs/anatomopathologie
14.
Cell Mol Life Sci ; 81(1): 225, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38769116

RÉSUMÉ

Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)ß controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRß is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.


Sujet(s)
Cellules endothéliales , Accident vasculaire cérébral ischémique , Lymphokines , Péricytes , Facteur de croissance dérivé des plaquettes , Péricytes/métabolisme , Péricytes/anatomopathologie , Animaux , Accident vasculaire cérébral ischémique/métabolisme , Accident vasculaire cérébral ischémique/anatomopathologie , Souris , Lymphokines/métabolisme , Lymphokines/génétique , Facteur de croissance dérivé des plaquettes/métabolisme , Humains , Cellules endothéliales/métabolisme , Mâle , Souris de lignée C57BL , Encéphale/métabolisme , Encéphale/anatomopathologie , Modèles animaux de maladie humaine , Néovascularisation physiologique , Mouvement cellulaire
15.
Am J Pathol ; 194(8): 1443-1457, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38705380

RÉSUMÉ

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome that is most commonly triggered by infection-related inflammation. Lung pericytes can respond to infection and act as immune and proangiogenic cells; moreover, these cells can differentiate into myofibroblasts in nonresolving ARDS and contribute to the development of pulmonary fibrosis. Here, we aimed to characterize the role of lung cells, which present characteristics of pericytes, such as peri-endothelial location and expression of a panel of specific markers. A murine model of lipopolysaccharide (LPS)-induced resolving ARDS was used to study their role in ARDS. The development of ARDS was confirmed after LPS instillation, which was resolved 14 days after onset. Immunofluorescence and flow cytometry showed early expansion of neural-glial antigen 2+ ß-type platelet-derived growth factor receptor+ pericytes in murine lungs with loss of CD31+ ß-type platelet-derived growth factor receptor+ endothelial cells. These changes were accompanied by specific changes in lung structure and loss of vascular integrity. On day 14 after ARDS onset, the composition of pericytes and endothelial cells returned to baseline values. LPS-induced ARDS activated NOTCH signaling in lung pericytes, the inhibition of which during LPS stimulation reduced the expression of its downstream target genes, pericyte markers, and angiogenic factors. Together, these data indicate that lung pericytes in response to inflammatory injury activate NOTCH signaling that supports their maintenance and in turn can contribute to recovery of the microvascular endothelium.


Sujet(s)
Lipopolysaccharides , Péricytes , , Animaux , Péricytes/anatomopathologie , Péricytes/métabolisme , /anatomopathologie , /induit chimiquement , /métabolisme , Lipopolysaccharides/pharmacologie , Souris , Poumon/anatomopathologie , Poumon/métabolisme , Souris de lignée C57BL , Mâle , Modèles animaux de maladie humaine , Transduction du signal , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie
16.
Exp Neurol ; 379: 114825, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38777251

RÉSUMÉ

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that leads to progressive cognitive decline and neuropathological changes. Pericytes, which are vessel mural cells on the basement membrane of capillaries, play a crucial role in regulating cerebrovascular functions and maintaining neurovascular unit integrity. Emerging research substantiates the involvement of pericytes in AD. This review provides a comprehensive overview of pericytes, including their structure, origin, and markers and various functions within the central nervous system. Emphatically, the review explores the intricate mechanisms through which pericytes contribute to AD, including their interactions with amyloid beta and apolipoprotein E, as well as various signaling pathways. The review also highlights potential for targeted pericyte therapy for AD, with a focus on stem cell therapy and drug treatments. Future research directions include the classification of pericyte subtypes, studies related to aging, and the role of pericytes in exosome-related mechanisms in AD pathology. In conclusion, this review consolidates current knowledge on the pivotal roles of pericytes in AD and their potential as therapeutic targets, providing valuable insights for future research and clinical interventions aimed at addressing the impact of AD on patients' lives.


Sujet(s)
Maladie d'Alzheimer , Péricytes , Péricytes/anatomopathologie , Péricytes/métabolisme , Péricytes/physiologie , Humains , Maladie d'Alzheimer/thérapie , Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/métabolisme , Animaux , Peptides bêta-amyloïdes/métabolisme
17.
J Med Virol ; 96(5): e29671, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38747003

RÉSUMÉ

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Sujet(s)
Barrière hémato-encéphalique , COVID-19 , Plexus choroïde , SARS-CoV-2 , Barrière hémato-encéphalique/virologie , Animaux , Plexus choroïde/virologie , Plexus choroïde/anatomopathologie , COVID-19/virologie , COVID-19/anatomopathologie , COVID-19/complications , COVID-19/physiopathologie , Souris , Jonctions serrées/virologie , Modèles animaux de maladie humaine , Angiotensin-converting enzyme 2/métabolisme , Inflammation/virologie , Humains , Péricytes/virologie , Péricytes/anatomopathologie
18.
Front Biosci (Landmark Ed) ; 29(4): 141, 2024 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-38682199

RÉSUMÉ

Pericytes, a specific type of mesenchymal cell that surround the basement membrane of pulmonary venules and capillaries. They are crucial pathological features observed in individuals with the severe lung disease of pulmonary fibrosis (PF). The presence of pericytes leads to inflammation and fibrosis in the lung interstitium and alveolar space due to the release of various cytokines and chemokines. Pericytes also stimulate the proliferation and activation of fibroblasts, thereby promoting the progression of PF. Previous studies examining the mechanism of action of pericytes have primarily focused on cell signal transduction pathways, cell growth and death processes, and the synthesis and breakdown of extracellular matrix (ECM). Notably, the transforming growth factor-ß (TGF-ß) and Wnt signaling pathways have been associated with the action of pericytes in driving the progression of PF. It is therefore clear that pericytes play an essential role in the development of PF, while also offering possible avenues for targeted therapeutic intervention against this condition. The current article provides a comprehensive review on how pericytes contribute to inflammatory responses, as well as their importance for understanding the mechanism of PF. In addition, this review discusses the potential use of pericyte-targeted approaches for the treatment of patients affected by this debilitating lung disease.


Sujet(s)
Péricytes , Fibrose pulmonaire , Péricytes/anatomopathologie , Péricytes/métabolisme , Humains , Fibrose pulmonaire/anatomopathologie , Fibrose pulmonaire/métabolisme , Animaux , Facteur de croissance transformant bêta/métabolisme , Transduction du signal , Matrice extracellulaire/métabolisme , Voie de signalisation Wnt
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167169, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38631408

RÉSUMÉ

Mitochondrial dysregulation is pivotal in Alzheimer's disease (AD) pathogenesis. Calcium governs vital mitochondrial processes impacting energy conversion, oxidative stress, and cell death signaling. Disruptions in mitochondrial calcium (mCa2+) handling induce calcium overload and trigger the opening of mitochondrial permeability transition pore, ensuing energy deprivation and resulting in AD-related neuronal cell death. However, the role of mCa2+ in non-neuronal cells (microglia, astrocytes, oligodendrocytes, endothelial cells, and pericytes) remains elusive. This review provides a comprehensive exploration of mitochondrial heterogeneity and calcium signaling, offering insights into specific differences among various brain cell types in AD.


Sujet(s)
Maladie d'Alzheimer , Signalisation calcique , Calcium , Mitochondries , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Humains , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Signalisation calcique/physiologie , Animaux , Calcium/métabolisme , Astrocytes/métabolisme , Astrocytes/anatomopathologie , Péricytes/métabolisme , Péricytes/anatomopathologie , Microglie/métabolisme , Microglie/anatomopathologie , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , Stress oxydatif , Oligodendroglie/métabolisme , Oligodendroglie/anatomopathologie , Pore de transition de perméabilité mitochondriale/métabolisme , Neurones/métabolisme , Neurones/anatomopathologie
20.
Circ Res ; 134(10): 1240-1255, 2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38563133

RÉSUMÉ

BACKGROUND: Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. Although aging is one of the main risk factors for cardiovascular disease, the consequences of aging on cardiac pericytes are unknown. METHODS: In this study, we have combined single-nucleus RNA sequencing and histological analysis to determine the effects of aging on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 (regulator of G-protein signaling 5) loss of function and finally have performed pericytes-fibroblasts coculture studies to understand the effect of RGS5 deletion in pericytes on the neighboring fibroblasts. RESULTS: Aging reduced the pericyte area and capillary coverage in the murine heart. Single-nucleus RNA sequencing analysis further revealed that the expression of Rgs5 was reduced in cardiac pericytes from aged mice. In vivo and in vitro studies showed that the deletion of RGS5 impaired cardiac function, induced fibrosis, and morphological changes in pericytes characterized by a profibrotic gene expression signature and the expression of different ECM (extracellular matrix) components and growth factors, for example, TGFB2 and PDGFB. Indeed, culturing fibroblasts with the supernatant of RGS5-deficient pericytes induced their activation as evidenced by the increased expression of αSMA (alpha smooth muscle actin) in a TGFß (transforming growth factor beta)2-dependent mechanism. CONCLUSIONS: Our results have identified RGS5 as a crucial regulator of pericyte function during cardiac aging. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac aging.


Sujet(s)
Fibroblastes , Fibrose , Péricytes , Protéines RGS , Péricytes/métabolisme , Péricytes/anatomopathologie , Animaux , Protéines RGS/génétique , Protéines RGS/métabolisme , Protéines RGS/déficit , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Souris , Cellules cultivées , Vieillissement/métabolisme , Vieillissement/anatomopathologie , Souris de lignée C57BL , Souris knockout , Myocarde/métabolisme , Myocarde/anatomopathologie , Mâle , Techniques de coculture
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE