Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Endocrinology ; 163(3)2022 03 01.
Article de Anglais | MEDLINE | ID: mdl-35086144

RÉSUMÉ

During development of type 2 diabetes (T2D), excessive nutritional load is thought to expose pancreatic islets to toxic effects of lipids and reduce ß-cell function and mass. However, lipids also play a positive role in cellular metabolism and function. Thus, proper trafficking of lipids is critical for ß cells to maximize the beneficial effects of these molecules while preventing their toxic effects. Lipid droplets (LDs) are organelles that play an important role in the storage and trafficking of lipids. In this review, we summarize the discovery of LDs in pancreatic ß cells, LD lifecycle, and the effect of LD catabolism on ß-cell insulin secretion. We discuss factors affecting LD formation such as age, cell type, species, and nutrient availability. We then outline published studies targeting critical LD regulators, primarily in rat and human ß-cell models, to understand the molecular effect of LD formation and degradation on ß-cell function and health. Furthermore, based on the abnormal LD accumulation observed in human T2D islets, we discuss the possible role of LDs during the development of ß-cell failure in T2D. Current knowledge indicates that proper formation and clearance of LDs are critical to normal insulin secretion, endoplasmic reticulum homeostasis, and mitochondrial integrity in ß cells. However, it remains unclear whether LDs positively or negatively affect human ß-cell demise in T2D. Thus, we discuss possible research directions to address the knowledge gap regarding the role of LDs in ß-cell failure.


Sujet(s)
Diabète de type 2/physiopathologie , Cellules à insuline/physiologie , Cellules à insuline/ultrastructure , Gouttelettes lipidiques/physiologie , Animaux , Mort cellulaire , Vieillissement de la cellule , Diabète de type 2/anatomopathologie , Stress du réticulum endoplasmique , Humains , Sécrétion d'insuline/physiologie , Périlipine-2/physiologie , Périlipine-5/physiologie , Rats
2.
Cells ; 10(5)2021 04 25.
Article de Anglais | MEDLINE | ID: mdl-33923083

RÉSUMÉ

An imbalance in the storage and breakdown of hepatic lipid droplet (LD) triglyceride (TAG) leads to hepatic steatosis, a defining feature of non-alcoholic fatty liver disease (NAFLD). The two primary cellular pathways regulating hepatic TAG catabolism are lipolysis, initiated by adipose triglyceride lipase (ATGL), and lipophagy. Each of these processes requires access to the LD surface to initiate LD TAG catabolism. Ablation of perilipin 2 (PLIN2), the most abundant lipid droplet-associated protein in steatotic liver, protects mice from diet-induced NAFLD. However, the mechanisms underlaying this protection are unclear. We tested the contributions of ATGL and lipophagy mediated lipolysis to reduced hepatic TAG in mice with liver-specific PLIN2 deficiency (PLIN2LKO) fed a Western-type diet for 12 weeks. We observed enhanced autophagy in the absence of PLIN2, as determined by ex vivo p62 flux, as well as increased p62- and LC3-positive autophagic vesicles in PLIN2LKO livers and isolated primary hepatocytes. Increased levels of autophagy correlated with significant increases in cellular fatty acid (FA) oxidation in PLIN2LKO hepatocytes. We observed that inhibition of either autophagy or ATGL blunted the increased FA oxidation in PLIN2LKO hepatocytes. Additionally, combined inhibition of ATGL and autophagy reduced FA oxidation to the same extent as treatment with either inhibitor alone. In sum, these studies show that protection against NAFLD in the absence of hepatic PLIN2 is driven by the integrated actions of both ATGL and lipophagy.


Sujet(s)
Tissu adipeux/enzymologie , Autophagie , Régime alimentaire/effets indésirables , Triacylglycerol lipase/métabolisme , Foie/métabolisme , Stéatose hépatique non alcoolique/prévention et contrôle , Périlipine-2/physiologie , Animaux , Triacylglycerol lipase/génétique , Métabolisme lipidique , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Stéatose hépatique non alcoolique/étiologie , Stéatose hépatique non alcoolique/métabolisme , Stéatose hépatique non alcoolique/anatomopathologie , Triglycéride/métabolisme
3.
Mol Nutr Food Res ; 63(20): e1900183, 2019 10.
Article de Anglais | MEDLINE | ID: mdl-31325205

RÉSUMÉ

SCOPE: The effects of sulforaphane (SFN) on the maturation of lipid droplets (LDs)-the storage units for free fatty acids and sterols as triacylglycerides (TAG) and cholesterol esters (CE)-are far from being understood, despite the fact that SFN is known to be beneficial for ameliorating lipid metabolism disorders. METHODS AND RESULTS: High-fat-intake models are established in both HHL-5 hepatocytes and rodents. The numbers and sizes of LDs are decreased by SFN. The accumulation of lipid core components (TAG & CE) is reduced and the expression of their key synthetases, acyl-coenzyme A: diacylglycerol acyltransferases 2 (DGAT2) and acyl-coenzyme A: cholesterol acyltransferases 1 (ACAT1), is also inhibited. Moreover, SFN decreases LD-associated protein PLIN2 and PLIN5 expression, but not that of PLIN1 and PLIN3, both in vivo and in vitro. Furthermore, over-expression of peroxisome proliferator-activated receptor gamma (PPARγ) induces the accumulation of TAG and the up-regulation of PLIN2 and PLIN5, which are not reversed by SFN. These results suggest that PPARγ may be a target of SFN in lipid metabolism. CONCLUSION: SFN disturbs LD maturation by inhibiting the formation of the neutral lipid core and decreases PLIN2 and PLIN5 via down-regulation of PPARγ.


Sujet(s)
Isothiocyanates/pharmacologie , Gouttelettes lipidiques/effets des médicaments et des substances chimiques , Récepteur PPAR gamma/antagonistes et inhibiteurs , Périlipine-2/antagonistes et inhibiteurs , Périlipine-5/antagonistes et inhibiteurs , Animaux , Cellules cultivées , Hépatocytes/effets des médicaments et des substances chimiques , Hépatocytes/métabolisme , Humains , Gouttelettes lipidiques/physiologie , Mâle , Périlipine-2/physiologie , Périlipine-5/physiologie , Rats , Rat Wistar , Sulfoxydes , Triglycéride/métabolisme , Triglycéride/physiologie
4.
Endocrinology ; 159(12): 3937-3949, 2018 12 01.
Article de Anglais | MEDLINE | ID: mdl-30351430

RÉSUMÉ

Trophoblast hypoxia and injury, key components of placental dysfunction, are associated with fetal growth restriction and other complications of pregnancy. Accumulation of lipid droplets has been found in hypoxic nonplacental cells. Unique to pregnancy, lipid accumulation in the placenta might perturb lipid transport to the fetus. We tested the hypothesis that hypoxia leads to accumulation of lipid droplets in human trophoblasts and that trophoblastic PLIN proteins play a key role in this process. We found that hypoxia promotes the accumulation of lipid droplets in primary human trophoblasts. A similar accretion of lipid droplets was found in placental villi in vivo from pregnancies complicated by fetal growth restriction. In both situations, these changes were associated with an increased level of cellular triglycerides. Exposure of trophoblasts to hypoxia led to reduced fatty acid efflux and oxidation with no change in fatty acid uptake or synthesis. We further found that hypoxia markedly stimulated PLIN2 mRNA synthesis and protein expression, which colocalized to lipid droplets. Knockdown of PLIN2, but not PLIN3, enhanced trophoblast apoptotic death, and overexpression of PLIN2 promoted cell viability. Collectively, our data indicate that hypoxia enhances trophoblastic lipid retention in the form of lipid droplets and that PLIN2 plays a key role in this process and in trophoblast defense against apoptotic death. These findings also imply that this protective mechanism may lead to diminished trafficking of lipids to the developing fetus.


Sujet(s)
Hypoxie/génétique , Hypoxie/métabolisme , Gouttelettes lipidiques/métabolisme , Métabolisme lipidique/génétique , Périlipine-2/physiologie , Trophoblastes/métabolisme , Survie cellulaire/génétique , Cellules cultivées , Femelle , Retard de croissance intra-utérin/génétique , Retard de croissance intra-utérin/métabolisme , Retard de croissance intra-utérin/anatomopathologie , Humains , Hypoxie/anatomopathologie , Nouveau-né , Placenta/métabolisme , Placenta/anatomopathologie , Grossesse , Trophoblastes/anatomopathologie
5.
Autophagy ; 13(7): 1130-1144, 2017 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-28548876

RÉSUMÉ

Excess triglyceride (TG) accumulation in the liver underlies fatty liver disease, a highly prevalent ailment. TG occurs in the liver sequestered in lipid droplets, the major lipid storage organelle. Lipid droplets are home to the lipid droplet proteins, the most abundant of which are the perilipins (PLINs), encoded by 5 different genes, Plin1 to Plin5. Of the corresponding gene products, PLIN2 is the only constitutive and ubiquitously expressed lipid droplet protein that has been used as a protein marker for lipid droplets. We and others reported that plin2-/- mice have an ∼60% reduction in TG content, and are protected against fatty liver disease. Here we show that PLIN2 overexpression protects lipid droplets against macroautophagy/autophagy, whereas PLIN2 deficiency enhances autophagy and depletes hepatic TG. The enhanced autophagy in plin2-/- mice protects against severe ER stress-induced hepatosteatosis and hepatocyte apoptosis. In contrast, hepatic TG depletion resulting from other genetic and pharmacological manipulations has no effect on autophagy. Importantly, PLIN2 deficiency lowers cellular TG content in wild-type mouse embryonic fibroblasts (MEFs) via enhanced autophagy, but does not affect cellular TG content in atg7-/- MEFs that are devoid of autophagic function. Conversely, adenovirus-shAtg7-mediated hepatic Atg7 knockdown per se does not alter the hepatic TG level, suggesting a more complex regulation in vivo. In sum, PLIN2 guards its own house, the lipid droplet. PLIN2 overexpression protects against autophagy, and its downregulation stimulates TG catabolism via autophagy.


Sujet(s)
Autophagie , Foie/métabolisme , Périlipine-2/physiologie , Animaux , Protéine-7 associée à l'autophagie/physiologie , Protéines de transport/métabolisme , Cellules cultivées , Stress du réticulum endoplasmique , Hépatocytes/composition chimique , Hépatocytes/ultrastructure , Souris , Souris knockout , Mitophagie , Périlipine-2/génétique , Périlipine-2/métabolisme , Sterol Esterase/métabolisme , Triglycéride/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...