Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 11.355
Filtrer
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-39000100

RÉSUMÉ

Phosphorus (P) and iron (Fe) are two essential mineral nutrients in plant growth. It is widely observed that interactions of P and Fe could influence their availability in soils and affect their homeostasis in plants, which has received significant attention in recent years. This review presents a summary of latest advances in the activation of insoluble Fe-P complexes by soil properties, microorganisms, and plants. Furthermore, we elucidate the physiological and molecular mechanisms underlying how plants adapt to Fe-P interactions. This review also discusses the current limitations and presents potential avenues for promoting sustainable agriculture through the optimization of P and Fe utilization efficiency in crops.


Sujet(s)
Fer , Phosphore , Plantes , Sol , Phosphore/métabolisme , Fer/métabolisme , Sol/composition chimique , Plantes/métabolisme , Nutriments/métabolisme , Produits agricoles/métabolisme , Produits agricoles/croissance et développement , Microbiologie du sol
2.
Environ Geochem Health ; 46(9): 328, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39012544

RÉSUMÉ

Alpine ecosystems are important terrestrial carbon (C) pools, and microbial decomposers play a key role in litter decomposition. Microbial metabolic limitations in these ecosystems, however, remain unclear. The objectives of this study aim to elucidate the characteristics of microbial nutrient limitation and their C use efficiency (CUE), and to evaluate their response to environmental factors. Five ecological indicators were utilized to assess and compare the degree of microbial elemental homeostasis and the nutrient limitations of the microbial communities among varying stages of litter decomposition (L, F, and H horizon) along an altitudinal gradient (2800, 3000, 3250, and 3500 m) under uniform vegetation (Abies fabri) on Gongga Mountain, eastern Tibetan Plateau. In this study, microorganisms in the litter reached a strictly homeostatic of C content exclusively during the middle stage of litter decomposition (F horizon). Based on the stoichiometry of soil enzymes, we observed that microbial N- and P-limitation increased during litter degradation, but that P-limitation was stronger than N-limitation at the late stages of degradation (H horizon). Furthermore, an increase in microbial CUE corresponded with a reduction in microbial C-limitation. Additionally, redundancy analysis (RDA) based on forward selection further showed that microbial biomass C (MBC) is closely associated with the enzyme activities and their ratios, and MBC was also an important factor in characterizing changes in microbial nutrient limitation and CUE. Our findings suggest that variations in MBC, rather than N- and P-related components, predominantly influence microbial metabolic processes during litter decomposition on Gongga Mountain, eastern Tibetan Plateau.


Sujet(s)
Carbone , Microbiologie du sol , Carbone/métabolisme , Azote/métabolisme , Tibet , Phosphore/métabolisme , Nutriments/métabolisme , Feuilles de plante/métabolisme , Sol/composition chimique , Biomasse , Écosystème , Bactéries/métabolisme
3.
Glob Chang Biol ; 30(7): e17413, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38982678

RÉSUMÉ

Tasmanian eucalypt forests are among the most carbon-dense in the world, but projected climate change could destabilize this critical carbon sink. While the impact of abiotic factors on forest ecosystem carbon dynamics have received considerable attention, biotic factors such as the input of animal scat are less understood. Tasmanian devils (Sarcophilus harrisii)-an osteophageous scavenger that can ingest and solubilize nutrients locked in bone material-may subsidize plant and microbial productivity by concentrating bioavailable nutrients (e.g., nitrogen and phosphorus) in scat latrines. However, dramatic declines in devil population densities, driven by the spread of a transmissible cancer, may have underappreciated consequences for soil organic carbon (SOC) storage and forest productivity by altering nutrient cycling. Here, we fuse experimental data and modeling to quantify and predict future changes to forest productivity and SOC under various climate and scat-quality futures. We find that devil scat significantly increases concentrations of nitrogen, ammonium, phosphorus, and phosphate in the soil and shifts soil microbial communities toward those dominated by r-selected (e.g., fast-growing) phyla. Further, under expected increases in temperature and changes in precipitation, devil scat inputs are projected to increase above- and below-ground net primary productivity and microbial biomass carbon through 2100. In contrast, when devil scat is replaced by lower-quality scat (e.g., from non-osteophageous scavengers and herbivores), forest carbon pools are likely to increase more slowly, or in some cases, decline. Together, our results suggest often overlooked biotic factors will interact with climate change to drive current and future carbon pool dynamics in Tasmanian forests.


Sujet(s)
Changement climatique , Forêts , Marsupialia , Sol , Animaux , Carbone/métabolisme , Carbone/analyse , Marsupialia/physiologie , Azote/métabolisme , Azote/analyse , Phosphore/analyse , Phosphore/métabolisme , Dynamique des populations , Sol/composition chimique , Microbiologie du sol , Tasmanie
4.
NPJ Biofilms Microbiomes ; 10(1): 56, 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39003275

RÉSUMÉ

Dental calculus severely affects the oral health of humans and animal pets. Calculus deposition affects the gingival appearance and causes inflammation. Failure to remove dental calculus from the dentition results in oral diseases such as periodontitis. Apart from adversely affecting oral health, some systemic diseases are closely related to dental calculus deposition. Hence, identifying the mechanisms of dental calculus formation helps protect oral and systemic health. A plethora of biological and physicochemical factors contribute to the physiological equilibrium in the oral cavity. Bacteria are an important part of the equation. Calculus formation commences when the bacterial equilibrium is broken. Bacteria accumulate locally and form biofilms on the tooth surface. The bacteria promote increases in local calcium and phosphorus concentrations, which triggers biomineralization and the development of dental calculus. Current treatments only help to relieve the symptoms caused by calculus deposition. These symptoms are prone to relapse if calculus removal is not under control. There is a need for a treatment regime that combines short-term and long-term goals in addressing calculus formation. The present review introduces the mechanisms of dental calculus formation, influencing factors, and the relationship between dental calculus and several systemic diseases. This is followed by the presentation of a conceptual solution for improving existing treatment strategies and minimizing recurrence.


Sujet(s)
Biofilms , Tartre dentaire , Tartre dentaire/microbiologie , Tartre dentaire/prévention et contrôle , Humains , Animaux , Biofilms/croissance et développement , Bactéries/classification , Santé buccodentaire , Bouche/microbiologie , Calcium/métabolisme , Phosphore/métabolisme
5.
Mar Genomics ; 76: 101123, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39009499

RÉSUMÉ

Kushneria phosphatilytica YCWA18T (= CGMCC 1.9149T = NCCB 100306T) was isolated from sediment collected in a saltern on the eastern coast of Yellow Sea in China. The genome was sequenced and comprised of one circular chromosome with the size of 3,624,619 bp and DNA G + C content of 59.13%. A total of 3267 protein-coding genes, 64 tRNA genes and 12 rRNA genes were obtained. Genomic annotation indicated that the genome of K. phosphatilytica YCWA18T had 34 genes involved in phosphorus (P) solubilization/metabolism, e.g., gdh, pqq, phoA, phoD and phoX, which products can convert insoluble P-containing compounds to more bio-available dissolved inorganic P. Comparative genomic analysis of Kushneria strains revealed that gdh, pqq, phoA, phoD and phoX were widely distributed in these strains, indicating the genus Kushneria may play an important role in the P cycle. Additionally, a multitude of salt tolerance genes were detected in the genome of K. phosphatilytica YCWA18T. This study and the genome sequence data will be available for further research and will provide insights into potential biotechnological and agricultural applications of Kushneria strains.


Sujet(s)
Génome bactérien , Phosphore , Séquençage du génome entier , Phosphore/métabolisme , Chine
6.
PLoS One ; 19(7): e0304004, 2024.
Article de Anglais | MEDLINE | ID: mdl-38959254

RÉSUMÉ

Due to low adoption and sub-optimal fertilizer use and planting density recommendation in maize, redesigning and testing these technologies are required. The study was conducted to evaluate redesigned fertilizer use of maize in two pant densities (32,443 and 53,333 plants ha-1 in Central Rift Valley (CRV); 27724 and 62,000 plants ha-1 in Jimma) on farmers' fields in contrasting agro-ecologies of Ethiopia. The on-farm study was conducted in the 2017 and 2018 cropping seasons with 3 × 2 fertilizer and plant density, factors in both regions of Ethiopia. In redesigned fertilizer use, nutrients were estimated based on the target yield. In this study, 40.8, 0.0, and 12.2 kg ha-1 N, P, and K were estimated for the redesigned fertilizer use in CRV (50% of water-limited potential yield (Yw) = 3.1 t ha-1) whereas in Jimma (50% of Yw = 7.5 t ha-1) 149.8, 9, 130.6 kg ha-1 N, P and K were estimated to produce the 50% of Yw. Linear mixed modeling was used to assess the effect of fertilizer-plant density treatments on maize yield and nutrient use efficiency. The result revealed that the average estimated maize yield for WOF, FFU, and RDFU fertilizer treatments were 2.6, 3.6, and 4.5 t ha-1 under current plant density (32,443 plants ha-1) in CRV whereas the average yields of these treatments were 3.2, 4.5 and 4.5 t ha-1 respectively when maize was grown with redesigned plant density (53,333 plants ha-1) in the same location. The average maize yield with WOF, FFU, and RDFU were 3.0, 4.6, and 4.6 t ha-1 with 27,774 plants ha-1 plant density in Jimma whereas the average maize yields over the two seasons with the same treatments were 4.3, 6.0 and 8.0 t ha-1 respectively when the crop is planted with 62,000 plants ha-1 plant density. The RDFU and redesigned plant density resulted in significantly higher yield compared to their respective control CRV but RDFU significantly increased maize yield when it was planted at redesigned (62,000 plant ha-1) in Jimma. FFU and RDFU were economically viable and redesigned plant density was also a cheaper means of improving maize productivity, especially in the Jimma region. Soil organic carbon and N were closely related to the grain yield response of maize compared to other soil factors. In conclusion, this investigation gives an insight into the importance of redesigned fertilizer use and redesigned plant density for improving maize productivity and thereby narrowing the yield gaps of the crop in high maize potential regions in Ethiopia like Jimma.


Sujet(s)
Engrais , Zea mays , Zea mays/croissance et développement , Engrais/analyse , Éthiopie , Agriculture/méthodes , Azote/analyse , Azote/métabolisme , Produits agricoles/croissance et développement , Sol/composition chimique , Production végétale/méthodes , Phosphore/analyse , Phosphore/métabolisme
7.
Sci Adv ; 10(27): eadl5822, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38959317

RÉSUMÉ

The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO2-driven carbon sink is overestimated by models.


Sujet(s)
Cycle du carbone , Dioxyde de carbone , Eucalyptus , Forêts , Phosphore , Eucalyptus/métabolisme , Dioxyde de carbone/métabolisme , Phosphore/métabolisme , Photosynthèse , Changement climatique , Écosystème , Carbone/métabolisme , Modèles théoriques , Séquestration du carbone
8.
Sci Rep ; 14(1): 16007, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38992147

RÉSUMÉ

This study addresses the effect of using animal excreta on the nutritional content of forages, focusing on macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu, zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental]).


Sujet(s)
Aliment pour animaux , Fèces , Sol , Urine , Animaux , Fèces/composition chimique , Bovins , Sol/composition chimique , Ovis , Urine/composition chimique , Aliment pour animaux/analyse , Nutriments/analyse , Nutriments/métabolisme , Ruminants/physiologie , Azote/métabolisme , Azote/urine , Azote/analyse , Phosphore/urine , Phosphore/analyse , Phosphore/métabolisme
9.
BMC Plant Biol ; 24(1): 635, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38971717

RÉSUMÉ

Excessive phosphorus (P) levels can disrupt nutrient balance in plants, adversely affecting growth. The molecular responses of Pennisetum species to high phosphorus stress remain poorly understood. This study examined two Pennisetum species, Pennisetum americanum × Pennisetum purpureum and Pennisetum americanum, under varying P concentrations (200, 600 and 1000 µmol·L- 1 KH2PO4) to elucidate transcriptomic alterations under high-P conditions. Our findings revealed that P. americanum exhibited stronger adaption to high-P stress compared to P. americanum× P. purpureum. Both species showed an increase in plant height and leaf P content under elevated P levels, with P. americanum demonstrating greater height and higher P content than P. americanum× P. purpureum. Transcriptomic analysis identified significant up- and down-regulation of key genes (e.g. SAUR, GH3, AHP, PIF4, PYL, GST, GPX, GSR, CAT, SOD1, CHS, ANR, P5CS and PsbO) involved in plant hormone signal transduction, glutathione metabolism, peroxisomes, flavonoid biosynthesis, amino acid biosynthesis and photosynthesis pathways. Compared with P. americanum× P. purpureum, P. americanum has more key genes in the KEGG pathway, and some genes have higher expression levels. These results contribute valuable insights into the molecular mechanisms governing high-P stress in Pennisetum species and offer implications for broader plant stress research.


Sujet(s)
Analyse de profil d'expression de gènes , Pennisetum , Phosphore , Feuilles de plante , Stress physiologique , Pennisetum/génétique , Pennisetum/métabolisme , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Phosphore/métabolisme , Stress physiologique/génétique , Régulation de l'expression des gènes végétaux , Transcriptome , Gènes de plante
10.
Vet Q ; 44(1): 1-16, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38965863

RÉSUMÉ

This study investigated the differences in bone growth and turnover and calcium (Ca) and phosphorus (P) uptake among three different breeds of growing-finishing pigs. Ninety healthy Duroc, Xiangcun black (XCB), and Taoyuan black (TYB) pigs (30 pigs per breed) at 35 day-old (D) with the average body weight (BW) of their respective breed were assigned and raised to 185 D. The results showed that Duroc pigs had higher bone weight and length than the XCB and TYB pigs at 80, 125, and 185 D and the bone index at 185 D (p < 0.05). Duroc pigs had higher bone mineral densities (femur and tibia) compared with the other two breeds at 80 D and 125 D, whereas TYB pigs had higher mineral content and bone breaking load (rib) compared with the other two breeds at 185 D (p < 0.05). The bone morphogenetic protein-2 and osteocalcin concentrations were higher, and TRACP5b concentration was lower in serum of TYB pigs at 125 D (p < 0.05). Meanwhile, 1,25-dihydroxyvitamin D3, parathyroid hormone, thyroxine, and fibroblast growth factor 23 concentrations were higher in serum of TYB pigs at 185 D (p < 0.05). The TYB pigs had higher apparent total tract digestibility of P at 80 D and 185 D and bone Ca and P contents at 185 D in comparison to the Duroc pigs (p < 0.05). Furthermore, gene expressions related to renal uptake of Ca and P differed among the three breeds of pigs. Collectively, Duroc pigs have higher bone growth, whereas TYB pigs have a higher potential for mineral deposition caused by more active Ca uptake.


Sujet(s)
Densité osseuse , Calcium , Rein , Phosphore , Animaux , Calcium/sang , Calcium/métabolisme , Suidae/métabolisme , Phosphore/métabolisme , Phosphore/sang , Rein/métabolisme , Mâle , Développement osseux/génétique , Femelle
11.
Theor Appl Genet ; 137(7): 172, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38935162

RÉSUMÉ

Phosphorus (P) is an essential element for plant growth, and its deficiency can cause decreased crop yield. This study systematically evaluated the low-phosphate (Pi) response traits in a large population at maturity and seedling stages, and explored candidate genes and their interrelationships with specific traits. The results revealed a greater sensitivity of seedling maize to low-Pi stress compared to that at maturity stage. The phenotypic response patterns to low-Pi stress at different stages were independent. Chlorophyll content was found to be a potential indicator for screening low-Pi-tolerant materials in the field. A total of 2900 and 1446 significantly associated genes at the maturity and seedling stages were identified, respectively. Among these genes, 972 were uniquely associated with maturity traits, while 330 were specifically detected at the seedling stage under low-Pi stress. Moreover, 768 and 733 genes were specifically associated with index values (low-Pi trait/normal-Pi trait) at maturity and seedling stage, respectively. Genetic network diagrams showed that the low-Pi response gene Zm00001d022226 was specifically associated with multiple primary P-related traits under low-Pi conditions. A total of 963 out of 2966 genes specifically associated with traits under low-Pi conditions or index values were found to be induced by low-Pi stress. Notably, ZmSPX4.1 and ZmSPX2 were sharply up-regulated in response to low-Pi stress across different lines or tissues. These findings advance our understanding of maize's response to low-Pi stress at different developmental stages, shedding light on the genes and pathways implicated in this response.


Sujet(s)
Phénotype , Phosphore , Plant , Stress physiologique , Zea mays , Zea mays/génétique , Zea mays/croissance et développement , Plant/génétique , Plant/croissance et développement , Stress physiologique/génétique , Phosphore/métabolisme , Gènes de plante , Étude d'association pangénomique , Chlorophylle/métabolisme , Locus de caractère quantitatif , Régulation de l'expression des gènes végétaux , Études d'associations génétiques , Polymorphisme de nucléotide simple
12.
J Anim Sci ; 1022024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-38855930

RÉSUMÉ

A total of 882 pigs (PIC TR4 × [Fast LW × PIC L02]; initially 33.2 ±â€…0.31 kg) were used in a 112-d study to evaluate the effects of different bones and analytical methods on the assessment of bone mineralization response to changes in dietary P, phytase, and vitamin D in growing pigs. Pens of pigs (20 pigs per pen) were randomized to one of five dietary treatments with nine pens per treatment. Dietary treatments were designed to create differences in bone mineralization and included: 1) P at 80% of NRC (2012) standardized total tract digestible (STTD) P requirement, 2) NRC STTD P with no phytase, 3) NRC STTD P with phytase providing an assumed release of 0.14% STTD P from 2,000 FYT/kg, 4) high STTD P (128% of the NRC P) using monocalcium phosphate and phytase, and 5) diet 4 with additional vitamin D3 from 25(OH)D3. On day 112, one pig per pen was euthanized for bone, blood, and urine analysis. Additionally, 11 pigs identified as having poor body condition which indicated a history of low feed intake (unhealthy) were sampled. There were no differences between treatments for final body weight, average daily gain, average daily feed intake, gain to feed, or bone ash measurements (treatment × bone interaction) regardless of bone ash method. The response to treatment for bone density and bone mineral content was dependent upon the bone sampled (density interaction, P = 0.053; mineral interaction, P = 0.078). For 10th rib bone density, pigs fed high levels of P had increased (P < 0.05) bone density compared with pigs fed NRC levels with phytase, with pigs fed deficient P, NRC levels of P with no phytase, and high STTD P with extra 25(OH)D3 intermediate, with no differences for metacarpals, fibulas, or 2nd ribs. Pigs fed extra vitamin D from 25(OH)D3 had increased (P < 0.05) 10th rib bone mineral content compared with pigs fed deficient P and NRC levels of P with phytase, with pigs fed industry P and vitamin D, and NRC P with monocalcium intermediate. Healthy pigs had greater (P < 0.05) serum Ca, P, vitamin D concentrations, and defatted bone ash than those unhealthy, with no difference between the two health statuses for non-defatted bone ash. In summary, differences between bone ash procedures were more apparent than differences between diets. Differences in bone density and mineral content in response to dietary P and vitamin D were most apparent with 10th ribs.


Lameness is defined as impaired movement or deviation from normal gait. The evaluation of bone mineralization can be an important component of a diagnostic investigation of lameness. Lameness in growing pigs can cause an increase in morbidity and mortality, which leads to economic losses and animal welfare concerns for producers. Calcium and P are the primary minerals in skeletal tissue and their deficiency is considered to be one of the causes of lameness. To evaluate bone mineralization, it is important to know the differences between methodologies used to determine bone ash and the expected differences between the bones analyzed. Furthermore, there has been limited data comparing bone mineralization and serum Ca and P concentrations between healthy pigs and those exhibiting clinical signs of illness (unhealthy). By removing the lipid in the bone (defatting) before the bone is ashed, variation across bones is decreased compared with not removing lipid before ashing (non-defatted). The reduction in variation across bones allows for more differences to be detected among dietary treatments and health statuses of pigs. The 10th rib is more sensitive to detect dietary differences using bone density than metacarpals, fibulas, and 2nd ribs. When comparing healthy vs. unhealthy pigs exhibiting clinical signs of illness, healthy pigs have increased defatted percentage bone ash and serum Ca, P, and vitamin D.


Sujet(s)
Phytase , Aliment pour animaux , Calcification physiologique , Régime alimentaire , Phosphore alimentaire , Vitamine D , Animaux , Phytase/administration et posologie , Phytase/pharmacologie , Phytase/métabolisme , Aliment pour animaux/analyse , Régime alimentaire/médecine vétérinaire , Suidae/physiologie , Suidae/croissance et développement , Calcification physiologique/effets des médicaments et des substances chimiques , Vitamine D/administration et posologie , Vitamine D/sang , Phosphore alimentaire/métabolisme , Mâle , Phénomènes physiologiques nutritionnels chez l'animal , Os et tissu osseux/effets des médicaments et des substances chimiques , Os et tissu osseux/métabolisme , Femelle , Compléments alimentaires/analyse , Densité osseuse/effets des médicaments et des substances chimiques , Phosphore/métabolisme , Phosphore/sang , Répartition aléatoire
13.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38864891

RÉSUMÉ

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Sujet(s)
Phosphore , Amidon , Transcriptome , Zea mays , Zea mays/génétique , Zea mays/métabolisme , Amidon/métabolisme , Phosphore/métabolisme , Grains comestibles/génétique , Grains comestibles/métabolisme , Régulation de l'expression des gènes végétaux , Étude d'association pangénomique , Locus de caractère quantitatif , Phénotype
14.
PeerJ ; 12: e17341, 2024.
Article de Anglais | MEDLINE | ID: mdl-38827281

RÉSUMÉ

Phosphorus is one of the lowest elements absorbed and utilized by plants in the soil. SPX domain-containing genes family play an important role in plant response to phosphate deficiency signaling pathway, and related to seed development, disease resistance, absorption and transport of other nutrients. However, there are no reports on the mechanism of SPX domain-containing genes in response to phosphorus deficiency in eggplant. In this study, the whole genome identification and functional analysis of SPX domain-containing genes family in eggplant were carried out. Sixteen eggplant SPX domain-containing genes were identified and divided into four categories. Subcellular localization showed that these proteins were located in different cell compartments, including nucleus and membrane system. The expression patterns of these genes in different tissues as well as under phosphate deficiency with auxin were explored. The results showed that SmSPX1, SmSPX5 and SmSPX12 were highest expressed in roots. SmSPX1, SmSPX4, SmSPX5 and SmSPX14 were significantly induced by phosphate deficiency and may be the key candidate genes in response to phosphate starvation in eggplant. Among them, SmSPX1 and SmSPX5 can be induced by auxin under phosphate deficiency. In conclusion, our study preliminary identified the SPX domain genes in eggplant, and the relationship between SPX domain-containing genes and auxin was first analyzed in response to phosphate deficiency, which will provide theoretical basis for improving the absorption of phosphorus in eggplants through molecular breeding technology.


Sujet(s)
Régulation de l'expression des gènes végétaux , Protéines végétales , Solanum melongena , Solanum melongena/génétique , Solanum melongena/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Acides indolacétiques/métabolisme , Génome végétal/génétique , Famille multigénique , Phosphore/métabolisme , Phosphore/déficit , Gènes de plante , Phosphates/métabolisme , Phosphates/déficit
15.
Sci Rep ; 14(1): 13154, 2024 06 07.
Article de Anglais | MEDLINE | ID: mdl-38849444

RÉSUMÉ

Nutrient limitations play a key regulatory role in plant growth, thereby affecting ecosystem productivity and carbon uptake. Experimental observations identifying the most limiting nutrients are lacking, particularly in Afrotropical forests. We conducted an ecosystem-scale, full factorial nitrogen (N)-phosphorus (P)-potassium (K) addition experiment consisting 32 40 × 40 m plots (eight treatments × four replicates) in Uganda to investigate which (if any) nutrient limits fine root growth. After two years of observations, added N rapidly decreased fine root biomass by up to 36% in the first and second years of the experiment. Added K decreased fine root biomass by 27% and fine root production by 30% in the second year. These rapid reductions in fine root growth highlight a scaled-back carbon investment in the costly maintenance of large fine root network as N and K limitations become alleviated. No fine root growth response to P addition was observed. Fine root turnover rate was not significantly affected by nutrient additions but tended to be higher in N added than non-N added treatments. These results suggest that N and K availability may restrict the ecosystem's capacity for CO2 assimilation, with implications for ecosystem productivity and resilience to climate change.


Sujet(s)
Forêts , Azote , Racines de plante , Potassium , Racines de plante/croissance et développement , Racines de plante/métabolisme , Azote/métabolisme , Potassium/métabolisme , Biomasse , Ouganda , Phosphore/métabolisme , Écosystème , Climat tropical , Dioxyde de carbone/métabolisme
16.
BMC Plant Biol ; 24(1): 602, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38926662

RÉSUMÉ

BACKGROUND: Anisodus tanguticus (Maxim.) Pascher (A. tanguticus) is a valuable botanical for extracting tropane alkaloids, which are widely used in the pharmaceutical industry. Implementing appropriate cultivation methods can improve both the quality and yield of A. tanguticus. A two-year field experiment was conducted from 2021 to 2023 using a single-factor randomized complete block design replicated three times. The study examined the effects of different nutrient levels (nitrogen: 0, 75, 150, 225, 300, 375 kg/ha; phosphorus: 0, 600, 750, 900, 1050, 1200 kg/ha; potassium: 0, 75, 112.5, 150, 187.5, 225 kg/ha) on the growth, primary alkaloid contents, and alkaloid yield of A. tanguticus at different growth stages (S-Greening, S-Growing, S-Wilting; T-Greening, T-Growing, and T-Wilting) in both the roots and aboveground portions. RESULTS: Our results demonstrate that nutrient levels significantly affect the growth and alkaloid accumulation in A. tanguticus. High nitrogen levels (375 kg/ha) notably increased both root and aboveground biomass, while phosphorus had a minimal effect, especially on aboveground biomass. For alkaloid content (scopolamine, anisodamine, anisodine, atropine), a moderate nitrogen level (225 kg/ha) was most effective, followed by low potassium (75 kg/ha), with phosphorus showing a limited impact. Increased phosphorus levels led to a decrease in scopolamine content. During the T-Growing period, moderate nitrogen addition (225 kg/ha) yielded the highest alkaloid levels per unit area (205.79 kg/ha). In the T-Wilting period, low potassium (75 kg/ha) and low phosphorus (750 kg/ha) resulted in alkaloid levels of 146.91 kg/ha and 142.18 kg/ha, respectively. This indicates nitrogen has the most substantial effect on alkaloid accumulation, followed by potassium and phosphorus. The Douglas production function analysis suggests focusing on root biomass and the accumulation of scopolamine and atropine in roots to maximize alkaloid yield in A. tanguticus cultivation. CONCLUSIONS: Our findings show that the optimum harvesting period for A. tanguticus is the T-Wilting period, and that the optimal nitrogen addition is 225 kg/ha, the optimal potassium addition is 75 kg/ha, and the optimal phosphorus addition is 600 kg/ha or less.


Sujet(s)
Alcaloïdes , Azote , Nutriments , Phosphore , Phosphore/métabolisme , Azote/métabolisme , Alcaloïdes/métabolisme , Nutriments/métabolisme , Potassium/métabolisme , Racines de plante/métabolisme , Racines de plante/croissance et développement , Ranonculaceae/métabolisme
17.
Sci Total Environ ; 945: 173912, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38871329

RÉSUMÉ

Coral reef ecosystems have been severely ravaged by global warming and eutrophication. Eutrophication often originates from nitrogen (N) overloading that creates stoichiometric phosphorus (P) limitation, which can be aggravated by sea surface temperature rises that enhances stratification. However, how P-limitation interacts with thermal stress to impact coral-Symbiodiniaceae mutualism is poorly understood and underexplored. Here, we investigated the effect of P-limitation (P-depleted vs. P-replete) superimposed on heat stress (31 °C vs. 25 °C) on a Symbiodinium strain newly isolated from the coral host by a 14-day incubation experiment. The heat and P-limitation co-stress induced an increase in alkaline phosphatase activity and reppressed cell division, photosynthetic efficiency, and expression of N uptake and assimilation genes. Moreover, P limitation intensified downregulation of carbon fixation (light and dark reaction) and metabolism (glycolysis) pathways in heat stressed Symbiodinium. Notably, co-stress elicited a marked transcriptional downregulation of genes encoding photosynthates transporters and microbe-associated molecular patterns, potentially undermining the mutualism potential. This work sheds light on the interactive effects of P-limitation and heat stress on coral symbionts, indicating that nutrient imbalance in the coral reef ecosystem can intensify heat-stress effects on the mutualistic capacity of Symbiodiniaceae.


Sujet(s)
Anthozoa , Récifs de corail , Dinoflagellida , Réaction de choc thermique , Phosphore , Symbiose , Phosphore/métabolisme , Anthozoa/physiologie , Animaux , Dinoflagellida/physiologie , Réaction de choc thermique/physiologie , Température élevée , Réchauffement de la planète
18.
Sci Total Environ ; 945: 174088, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38908587

RÉSUMÉ

Vegetation degradation in arid and semi-arid regions reduces plant C inputs to the soil, which can impede soil nutrient cycling because of the limited C source for microbial metabolism. However, whether vegetation degradation aggravates microbial nutrient limitation in degraded ecosystems in arid and semi-arid regions is not fully understood. Here, we investigated changes in soil enzyme activity and microbial nutrient limitation along a well-documented gradient of degraded seabuckthorn (Hippophae rhamnoides L.) (slightly degraded, canopy dieback <25 %, moderately degraded, canopy dieback 25 %-75 %, and severely degraded, canopy dieback >75 %) in Liang (long ridge) and gully channel locations in the Pisha Sandstone region of the Loess Plateau, China. We found that as the magnitude of seabuckthorn degradation increased, activities of C-acquiring enzymes and ratios of C:N and C:P enzymes (0.54-0.80 and 0.52-0.77, respectively) increased whereas the N:P enzyme ratio (0.93-0.99) decreased. Stoichiometric modelling further indicated that microorganisms were limited by soil C and P (vector angle >45°) in the seabuckthorn plantation region, and the degradation of seabuckthorn plantation aggravated microbial C and P limitations. Partial least squares path modelling revealed that seabuckthorn degradation (canopy dieback) was the main factor explaining microbial C limitation variations, while soil physicochemical properties (pH and soil moisture content) and understory plant parameters (litter biomass) were the major factors underlying microbial P limitation of long ridge and gully channel formations, respectively. Our findings highlight synergistic changes between aboveground and belowground processes, suggesting an unexpected negative effect of vegetation degradation on soil microbial community and nutrient cycling. These insights offer a direction for the development of plantation nutrients management strategies in semi-arid and arid areas.


Sujet(s)
Hippophae , Phosphore , Microbiologie du sol , Sol , Chine , Phosphore/analyse , Phosphore/métabolisme , Sol/composition chimique , Carbone/métabolisme , Écosystème , Azote/métabolisme , Azote/analyse
19.
Nat Commun ; 15(1): 5346, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38914561

RÉSUMÉ

Global patterns of leaf nitrogen (N) and phosphorus (P) stoichiometry have been interpreted as reflecting phenotypic plasticity in response to the environment, or as an overriding effect of the distribution of species growing in their biogeochemical niches. Here, we balance these contrasting views. We compile a global dataset of 36,413 paired observations of leaf N and P concentrations, taxonomy and 45 environmental covariates, covering 7,549 sites and 3,700 species, to investigate how species identity and environmental variables control variations in mass-based leaf N and P concentrations, and the N:P ratio. We find within-species variation contributes around half of the total variation, with 29%, 31%, and 22% of leaf N, P, and N:P variation, respectively, explained by environmental variables. Within-species plasticity along environmental gradients varies across species and is highest for leaf N:P and lowest for leaf N. We identified effects of environmental variables on within-species variation using random forest models, whereas effects were largely missed by widely used linear mixed-effect models. Our analysis demonstrates a substantial influence of the environment in driving plastic responses of leaf N, P, and N:P within species, which challenges reports of a fixed biogeochemical niche and the overriding importance of species distributions in shaping global patterns of leaf N and P.


Sujet(s)
Azote , Phosphore , Phylogenèse , Feuilles de plante , Phosphore/métabolisme , Feuilles de plante/métabolisme , Azote/métabolisme , Écosystème , Plantes/métabolisme , Plantes/classification , Environnement , Spécificité d'espèce
20.
Water Res ; 259: 121865, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38851111

RÉSUMÉ

The phototrophic capability of Candidatus Accumulibacter (Accumulibacter), a common polyphosphate accumulating organism (PAO) in enhanced biological phosphorus removal (EBPR) systems, was investigated in this study. Accumulibacter is phylogenetically related to the purple bacteria Rhodocyclus from the family Rhodocyclaceae, which belongs to the class Betaproteobacteria. Rhodocyclus typically exhibits both chemoheterotrophic and phototrophic growth, however, limited studies have evaluated the phototrophic potential of Accumulibacter. To address this gap, short and extended light cycle tests were conducted using a highly enriched Accumulibacter culture (95%) to evaluate its responses to illumination. Results showed that, after an initial period of adaptation to light conditions (approximately 4-5 h), Accumulibacter exhibited complete phosphorus (P) uptake by utilising polyhydroxyalkanoates (PHA), and additionally by consuming glycogen, which contrasted with its typical aerobic metabolism. Mass, energy, and redox balance analyses demonstrated that Accumulibacter needed to employ phototrophic metabolism to meet its energy requirements. Calculations revealed that the light reactions contributed to the generation of, at least more than 67% of the ATP necessary for P uptake and growth. Extended light tests, spanning 21 days with dark/light cycles, suggested that Accumulibacter generated ATP through light during initial operation, however, it likely reverted to conventional anaerobic/aerobic metabolism under dark/light conditions due to microalgal growth in the mixed culture, contributing to oxygen production. In contrast, extended light tests with an enriched Tetrasphaera culture, lacking phototrophic genes in its genome, clearly demonstrated that phototrophic P uptake did not occur. These findings highlight the adaptive metabolic capabilities of Accumulibacter, enabling it to utilise phototrophic pathways for energy generation during oxygen deprivation, which holds the potential to advance phototrophic-EBPR technology development.


Sujet(s)
Phosphore , Processus phototrophes , Phosphore/métabolisme , Betaproteobacteria/métabolisme , Rhodocyclaceae/métabolisme , Lumière , Polyhydroxyalcanoates/métabolisme , Glycogène/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...