Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 15.081
Filtrer
1.
Cell Death Dis ; 15(7): 475, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961053

RÉSUMÉ

Deregulated apoptosis signaling is characteristic for many cancers and contributes to leukemogenesis and treatment failure in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Apoptosis is controlled by different pro- and anti-apoptotic molecules. Inhibition of anti-apoptotic molecules like B-cell lymphoma 2 (BCL-2) has been developed as therapeutic strategy. Venetoclax (VEN), a selective BCL-2 inhibitor has shown clinical activity in different lymphoid malignancies and is currently evaluated in first clinical trials in BCP-ALL. However, insensitivity to VEN has been described constituting a major clinical concern. Here, we addressed and modeled VEN-resistance in BCP-ALL, investigated the underlying mechanisms in cell lines and patient-derived xenograft (PDX) samples and identified potential strategies to overcome VEN-insensitivity. Leukemia lines with VEN-specific resistance were generated in vitro and further characterized using RNA-seq analysis. Interestingly, gene sets annotated to the citric/tricarboxylic acid cycle and the respiratory electron transport chain were significantly enriched and upregulated, indicating increased mitochondrial metabolism in VEN-resistant ALL. Metabolic profiling showed sustained high mitochondrial metabolism in VEN-resistant lines as compared to control lines. Accordingly, primary PDX-ALL samples with intrinsic VEN-insensitivity showed higher oxygen consumption and ATP production rates, further highlighting that increased mitochondrial activity is a characteristic feature of VEN-resistant ALL. VEN-resistant PDX-ALL showed significant higher mitochondrial DNA content and differed in mitochondria morphology with significantly larger and elongated structures, further corroborating our finding of augmented mitochondrial metabolism upon VEN-resistance. Using Oligomycin, an inhibitor of the complex V/ATPase subunit, we found synergistic activity and apoptosis induction in VEN-resistant BCP-ALL cell lines and PDX samples, demonstrating that acquired and intrinsic VEN-insensitivity can be overcome by co-targeting BCL-2 and the OxPhos pathway. These findings of reprogrammed, high mitochondrial metabolism in VEN-resistance and synergistic activity upon co-targeting BCL-2 and oxidative phosphorylation strongly suggest further preclinical and potential clinical evaluation in VEN-resistant BCP-ALL.


Sujet(s)
Composés hétérocycliques bicycliques , Résistance aux médicaments antinéoplasiques , Mitochondries , Phosphorylation oxydative , Leucémie-lymphome lymphoblastique à précurseurs B et T , Sulfonamides , Composés hétérocycliques bicycliques/pharmacologie , Humains , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/génétique , Sulfonamides/pharmacologie , Leucémie-lymphome lymphoblastique à précurseurs B et T/métabolisme , Leucémie-lymphome lymphoblastique à précurseurs B et T/anatomopathologie , Leucémie-lymphome lymphoblastique à précurseurs B et T/traitement médicamenteux , Leucémie-lymphome lymphoblastique à précurseurs B et T/génétique , Animaux , Lignée cellulaire tumorale , Souris , Apoptose/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Tests d'activité antitumorale sur modèle de xénogreffe , Protéines proto-oncogènes c-bcl-2/métabolisme , Protéines proto-oncogènes c-bcl-2/génétique
2.
Nat Commun ; 15(1): 5759, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982116

RÉSUMÉ

Type I interferons have been well recognized for their roles in various types of immune cells during tumor immunotherapy. However, their direct effects on tumor cells are less understood. Oxidative phosphorylation is typically latent in tumor cells. Whether oxidative phosphorylation can be targeted for immunotherapy remains unclear. Here, we find that tumor cell responsiveness to type I, but not type II interferons, is essential for CD47-SIRPα blockade immunotherapy in female mice. Mechanistically, type I interferons directly reprogram tumor cell metabolism by activating oxidative phosphorylation for ATP production in an ISG15-dependent manner. ATP extracellular release is also promoted by type I interferons due to enhanced secretory autophagy. Functionally, tumor cells with genetic deficiency in oxidative phosphorylation or autophagy are resistant to CD47-SIRPα blockade. ATP released upon CD47-SIRPα blockade is required for antitumor T cell response induction via P2X7 receptor-mediated dendritic cell activation. Based on this mechanism, combinations with inhibitors of ATP-degrading ectoenzymes, CD39 and CD73, are designed and show synergistic antitumor effects with CD47-SIRPα blockade. Together, these data reveal an important role of type I interferons on tumor cell metabolic reprograming for tumor immunotherapy and provide rational strategies harnessing this mechanism for enhanced efficacy of CD47-SIRPα blockade.


Sujet(s)
Adénosine triphosphate , Antigènes CD47 , Interféron de type I , Phosphorylation oxydative , Récepteurs immunologiques , Transduction du signal , Animaux , Antigènes CD47/métabolisme , Antigènes CD47/génétique , Interféron de type I/métabolisme , Récepteurs immunologiques/métabolisme , Récepteurs immunologiques/génétique , Femelle , Souris , Adénosine triphosphate/métabolisme , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Souris de lignée C57BL , Immunothérapie/méthodes , Humains , Cellules dendritiques/immunologie , Cellules dendritiques/métabolisme , Récepteurs purinergiques P2X7/métabolisme , Récepteurs purinergiques P2X7/génétique , Autophagie/effets des médicaments et des substances chimiques , Apyrase/métabolisme , Souris knockout , Tumeurs/immunologie , Tumeurs/métabolisme , Tumeurs/anatomopathologie , Cytokines/métabolisme
3.
Nat Commun ; 15(1): 5664, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38969660

RÉSUMÉ

Mitochondrial gene expression relies on mitoribosomes to translate mitochondrial mRNAs. The biogenesis of mitoribosomes is an intricate process involving multiple assembly factors. Among these factors, GTP-binding proteins (GTPBPs) play important roles. In bacterial systems, numerous GTPBPs are required for ribosome subunit maturation, with EngB being a GTPBP involved in the ribosomal large subunit assembly. In this study, we focus on exploring the function of GTPBP8, the human homolog of EngB. We find that ablation of GTPBP8 leads to the inhibition of mitochondrial translation, resulting in significant impairment of oxidative phosphorylation. Structural analysis of mitoribosomes from GTPBP8 knock-out cells shows the accumulation of mitoribosomal large subunit assembly intermediates that are incapable of forming functional monosomes. Furthermore, fPAR-CLIP analysis reveals that GTPBP8 is an RNA-binding protein that interacts specifically with the mitochondrial ribosome large subunit 16 S rRNA. Our study highlights the role of GTPBP8 as a component of the mitochondrial gene expression machinery involved in mitochondrial large subunit maturation.


Sujet(s)
Protéines G , Mitochondries , Ribosomes mitochondriaux , Phosphorylation oxydative , Humains , Ribosomes mitochondriaux/métabolisme , Mitochondries/métabolisme , Protéines G/métabolisme , Protéines G/génétique , ARN ribosomique 16S/génétique , ARN ribosomique 16S/métabolisme , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Cellules HEK293 , Biosynthèse des protéines , ARN messager/métabolisme , ARN messager/génétique , Cellules HeLa
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-39000148

RÉSUMÉ

The metabolism of glioma cells exhibits significant heterogeneity and is partially responsible for treatment outcomes. Given this variability, we hypothesized that the effectiveness of treatments targeting various metabolic pathways depends on the bioenergetic profiles and mitochondrial status of glioma cells. To this end, we analyzed mitochondrial biomass, mitochondrial protein density, oxidative phosphorylation (OXPHOS), and glycolysis in a panel of eight glioma cell lines. Our findings revealed considerable variability: mitochondrial biomass varied by up to 3.2-fold, the density of mitochondrial proteins by up to 2.1-fold, and OXPHOS levels by up to 7.3-fold across the cell lines. Subsequently, we stratified glioma cell lines based on their mitochondrial status, OXPHOS, and bioenergetic fitness. Following this stratification, we utilized 16 compounds targeting key bioenergetic, mitochondrial, and related pathways to analyze the associations between induced changes in cell numbers, proliferation, and apoptosis with respect to their steady-state mitochondrial and bioenergetic metrics. Remarkably, a significant fraction of the treatments showed strong correlations with mitochondrial biomass and the density of mitochondrial proteins, suggesting that mitochondrial status may reflect glioma cell sensitivity to specific treatments. Overall, our results indicate that mitochondrial status and bioenergetics are linked to the efficacy of treatments targeting metabolic pathways in glioma.


Sujet(s)
Biomasse , Métabolisme énergétique , Gliome , Mitochondries , Protéines mitochondriales , Phosphorylation oxydative , Gliome/métabolisme , Gliome/anatomopathologie , Humains , Lignée cellulaire tumorale , Mitochondries/métabolisme , Protéines mitochondriales/métabolisme , Prolifération cellulaire , Glycolyse , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/traitement médicamenteux , Apoptose
5.
Proc Natl Acad Sci U S A ; 121(30): e2319782121, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39008664

RÉSUMÉ

Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.


Sujet(s)
Rythme circadien , Glycolyse , Phosphorylation oxydative , Tumeurs du pancréas , Animaux , Humains , Souris , Rythme circadien/physiologie , Lignée cellulaire tumorale , Tumeurs du pancréas/métabolisme , Tumeurs du pancréas/anatomopathologie , Tumeurs du pancréas/génétique , Fibroblastes/métabolisme , Adénosine triphosphate/métabolisme
6.
Proc Natl Acad Sci U S A ; 121(30): e2321972121, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39008677

RÉSUMÉ

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection inhibits mitochondrial oxidative phosphorylation (OXPHOS) and elevates mitochondrial reactive oxygen species (ROS, mROS) which activates hypoxia-inducible factor-1alpha (HIF-1α), shifting metabolism toward glycolysis to drive viral biogenesis but also causing the release of mitochondrial DNA (mtDNA) and activation of innate immunity. To determine whether mitochondrially targeted antioxidants could mitigate these viral effects, we challenged mice expressing human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2 and intervened using transgenic and pharmacological mitochondrially targeted catalytic antioxidants. Transgenic expression of mitochondrially targeted catalase (mCAT) or systemic treatment with EUK8 decreased weight loss, clinical severity, and circulating levels of mtDNA; as well as reduced lung levels of HIF-1α, viral proteins, and inflammatory cytokines. RNA-sequencing of infected lungs revealed that mCAT and Eukarion 8 (EUK8) up-regulated OXPHOS gene expression and down-regulated HIF-1α and its target genes as well as innate immune gene expression. These data demonstrate that SARS-CoV-2 pathology can be mitigated by catalytically reducing mROS, potentially providing a unique host-directed pharmacological therapy for COVID-19 which is not subject to viral mutational resistance.


Sujet(s)
Antioxydants , COVID-19 , Souris transgéniques , Mitochondries , Phosphorylation oxydative , SARS-CoV-2 , Animaux , Souris , COVID-19/virologie , COVID-19/métabolisme , COVID-19/immunologie , COVID-19/anatomopathologie , Antioxydants/métabolisme , Antioxydants/pharmacologie , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , SARS-CoV-2/effets des médicaments et des substances chimiques , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Humains , Angiotensin-converting enzyme 2/métabolisme , Angiotensin-converting enzyme 2/génétique , Poumon/virologie , Poumon/anatomopathologie , Poumon/métabolisme , Espèces réactives de l'oxygène/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , Catalase/métabolisme , Catalase/génétique , Traitements médicamenteux de la COVID-19 , Modèles animaux de maladie humaine , Immunité innée
7.
Biochem Biophys Res Commun ; 727: 150317, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38959733

RÉSUMÉ

Abnormalities in osteoclastic generation or activity disrupt bone homeostasis and are highly involved in many pathologic bone-related diseases, including rheumatoid arthritis, osteopetrosis, and osteoporosis. Control of osteoclast-mediated bone resorption is crucial for treating these bone diseases. However, the mechanisms of control of osteoclastogenesis are incompletely understood. In this study, we identified that inosine 5'-monophosphate dehydrogenase type II (Impdh2) positively regulates bone resorption. By histomorphometric analysis, Impdh2 deletion in mouse myeloid lineage cells (Impdh2LysM-/- mice) showed a high bone mass due to the reduced osteoclast number. qPCR and western blotting results demonstrated that the expression of osteoclast marker genes, including Nfatc1, Ctsk, Calcr, Acp5, Dcstamp, and Atp6v0d2, was significantly decreased in the Impdh2LysM-/- mice. Furthermore, the Impdh inhibitor MPA treatment inhibited osteoclast differentiation and induced Impdh2-cytoophidia formation. The ability of osteoclast differentiation was recovered after MPA deprivation. Interestingly, genome-wide analysis revealed that the osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation, were impaired in the Impdh2LysM-/- mice. Moreover, the deletion of Impdh2 alleviated ovariectomy-induced bone loss. In conclusion, our findings revealed a previously unrecognized function of Impdh2, suggesting that Impdh2-mediated mechanisms represent therapeutic targets for osteolytic diseases.


Sujet(s)
IMP dehydrogenase , Mitochondries , Ostéoclastes , Ostéogenèse , Ostéoporose , Ovariectomie , Phosphorylation oxydative , Animaux , Ostéoporose/métabolisme , Ostéoporose/étiologie , Ostéoporose/génétique , Ostéoporose/anatomopathologie , Souris , Femelle , Ostéoclastes/métabolisme , Ostéoclastes/anatomopathologie , Mitochondries/métabolisme , Mitochondries/anatomopathologie , IMP dehydrogenase/métabolisme , IMP dehydrogenase/génétique , IMP dehydrogenase/déficit , Souris knockout , Souris de lignée C57BL , Différenciation cellulaire , Résorption osseuse/métabolisme , Résorption osseuse/génétique , Résorption osseuse/anatomopathologie , Résorption osseuse/étiologie
8.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-39000167

RÉSUMÉ

Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in vivo. In mouse aging, in vitro cachexia, and mouse cachexia models, skeletal muscles showed similar changes in aging markers including oxidative stress, fibrosis, reduced muscle differentiation potential, and telomere shortening. Furthermore, examination of mitochondrial DNA from skeletal muscle revealed a 5 kb deletion in the major arc; truncation of complexes I, IV, and V in the electron transport chain; and reduced oxidative phosphorylation (OXPHOS). The mouse cachexia model demonstrated high levels of high-mobility group box-1 (HMGB1) and tumor necrosis factor-α (TNFα) in cancer ascites. Continuous administration of neutralizing antibodies against HMGB1 and TNFα in this model reduced oxidative stress and abrogated mitochondrial DNA deletion. These results suggest that in cancer sarcopenia, mitochondrial oxidative stress caused by inflammatory cytokines leads to mitochondrial DNA damage, which in turn leads to decreased OXPHOS and the promotion of aging.


Sujet(s)
Vieillissement , Altération de l'ADN , ADN mitochondrial , Protéine HMGB1 , Muscles squelettiques , Stress oxydatif , Sarcopénie , Animaux , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , Muscles squelettiques/métabolisme , Muscles squelettiques/anatomopathologie , Souris , Vieillissement/métabolisme , Vieillissement/génétique , Sarcopénie/métabolisme , Sarcopénie/anatomopathologie , Sarcopénie/génétique , Protéine HMGB1/métabolisme , Protéine HMGB1/génétique , Facteur de nécrose tumorale alpha/métabolisme , Facteur de nécrose tumorale alpha/génétique , Cachexie/métabolisme , Cachexie/anatomopathologie , Cachexie/génétique , Cachexie/étiologie , Phosphorylation oxydative , Tumeurs/métabolisme , Tumeurs/génétique , Tumeurs/anatomopathologie , Mâle , Souris de lignée C57BL
9.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-39000550

RÉSUMÉ

The effect of the modulators of the mitochondrial ATP-dependent potassium channel (mitoKATP) on the structural and biochemical alterations in the substantia nigra and brain tissues was studied in a rat model of Parkinson's disease induced by rotenone. It was found that, in experimental parkinsonism accompanied by characteristic motor deficits, both neurons and the myelin sheath of nerve fibers in the substantia nigra were affected. Changes in energy and ion exchange in brain mitochondria were also revealed. The nucleoside uridine, which is a source for the synthesis of the mitoKATP channel opener uridine diphosphate, was able to dose-dependently decrease behavioral disorders and prevent the death of animals, which occurred for about 50% of animals in the model. Uridine prevented disturbances in redox, energy, and ion exchanges in brain mitochondria, and eliminated alterations in their structure and the myelin sheath in the substantia nigra. Cytochemical examination showed that uridine restored the indicators of oxidative phosphorylation and glycolysis in peripheral blood lymphocytes. The specific blocker of the mitoKATP channel, 5-hydroxydecanoate, eliminated the positive effects of uridine, suggesting that this channel is involved in neuroprotection. Taken together, these findings indicate the promise of using the natural metabolite uridine as a new drug to prevent and, possibly, stop the progression of Parkinson's disease.


Sujet(s)
Mitochondries , Canaux potassiques , Roténone , Uridine , Animaux , Uridine/pharmacologie , Uridine/métabolisme , Rats , Canaux potassiques/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mâle , Modèles animaux de maladie humaine , Maladie de Parkinson/métabolisme , Maladie de Parkinson/traitement médicamenteux , Maladie de Parkinson/étiologie , Maladie de Parkinson/anatomopathologie , Substantia nigra/métabolisme , Substantia nigra/effets des médicaments et des substances chimiques , Substantia nigra/anatomopathologie , Neuroprotecteurs/pharmacologie , Phosphorylation oxydative/effets des médicaments et des substances chimiques , Rat Wistar , Acides capriques/pharmacologie , Hydroxyacides/pharmacologie
10.
Mini Rev Med Chem ; 24(12): 1187-1202, 2024.
Article de Anglais | MEDLINE | ID: mdl-39004839

RÉSUMÉ

Accelerated aerobic glycolysis is one of the main metabolic alterations in cancer, associated with malignancy and tumor growth. Although glycolysis is one of the most studied properties of tumor cells, recent studies demonstrate that oxidative phosphorylation (OxPhos) is the main ATP provider for the growth and development of cancer. In this last regard, the levels of mRNA and protein of OxPhos enzymes and transporters (including glutaminolysis, acetate and ketone bodies catabolism, free fatty acid ß-oxidation, Krebs Cycle, respiratory chain, phosphorylating system- ATP synthase, ATP/ADP translocator, Pi carrier) are altered in tumors and cancer cells in comparison to healthy tissues and organs, and non-cancer cells. Both energy metabolism pathways are tightly regulated by transcriptional factors, oncogenes, and tumor-suppressor genes, all of which dictate their protein levels depending on the micro-environmental conditions and the type of cancer cell, favoring cancer cell adaptation and growth. In the present review paper, variation in the mRNA and protein levels as well as in the enzyme/ transporter activities of the OxPhos machinery is analyzed. An integral omics approach to mitochondrial energy metabolism pathways may allow for identifying their use as suitable, reliable biomarkers for early detection of cancer development and metastasis, and for envisioned novel, alternative therapies.


Sujet(s)
Marqueurs biologiques tumoraux , Protéines mitochondriales , Tumeurs , Humains , Tumeurs/métabolisme , Tumeurs/anatomopathologie , Tumeurs/traitement médicamenteux , Marqueurs biologiques tumoraux/métabolisme , Protéines mitochondriales/métabolisme , Phosphorylation oxydative , Métabolisme énergétique , Animaux , Métastase tumorale
11.
Cancer Res ; 84(14): 2297-2312, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39005053

RÉSUMÉ

Metabolic reprogramming is a hallmark of cancer and is crucial for cancer progression, making it an attractive therapeutic target. Understanding the role of metabolic reprogramming in cancer initiation could help identify prevention strategies. To address this, we investigated metabolism during acinar-to-ductal metaplasia (ADM), the first step of pancreatic carcinogenesis. Glycolytic markers were elevated in ADM lesions compared with normal tissue from human samples. Comprehensive metabolic assessment in three mouse models with pancreas-specific activation of KRAS, PI3K, or MEK1 using Seahorse measurements, nuclear magnetic resonance metabolome analysis, mass spectrometry, isotope tracing, and RNA sequencing analysis revealed a switch from oxidative phosphorylation to glycolysis in ADM. Blocking the metabolic switch attenuated ADM formation. Furthermore, mitochondrial metabolism was required for de novo synthesis of serine and glutathione (GSH) but not for ATP production. MYC mediated the increase in GSH intermediates in ADM, and inhibition of GSH synthesis suppressed ADM development. This study thus identifies metabolic changes and vulnerabilities in the early stages of pancreatic carcinogenesis. Significance: Metabolic reprogramming from oxidative phosphorylation to glycolysis mediated by MYC plays a crucial role in the development of pancreatic cancer, revealing a mechanism driving tumorigenesis and potential therapeutic targets. See related commentary by Storz, p. 2225.


Sujet(s)
Métaplasie , Tumeurs du pancréas , Animaux , Humains , Tumeurs du pancréas/métabolisme , Tumeurs du pancréas/anatomopathologie , Tumeurs du pancréas/génétique , Souris , Métaplasie/métabolisme , Métaplasie/anatomopathologie , Glycolyse , Carcinogenèse/métabolisme , Cellules acineuses/métabolisme , Cellules acineuses/anatomopathologie , Phosphorylation oxydative , Glutathion/métabolisme , Reprogrammation cellulaire , Protéines proto-oncogènes c-myc/métabolisme , Protéines proto-oncogènes c-myc/génétique , Mâle , Mitochondries/métabolisme , Mitochondries/anatomopathologie ,
12.
Proc Natl Acad Sci U S A ; 121(28): e2319994121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38959032

RÉSUMÉ

Upon encountering allergens, CD4+ T cells differentiate into IL-4-producing Th2 cells in lymph nodes, which later transform into polyfunctional Th2 cells producing IL-5 and IL-13 in inflamed tissues. However, the precise mechanism underlying their polyfunctionality remains elusive. In this study, we elucidate the pivotal role of NRF2 in polyfunctional Th2 cells in murine models of allergic asthma and in human Th2 cells. We found that an increase in reactive oxygen species (ROS) in immune cells infiltrating the lungs is necessary for the development of eosinophilic asthma and polyfunctional Th2 cells in vivo. Deletion of the ROS sensor NRF2 specifically in T cells, but not in dendritic cells, significantly abolished eosinophilia and polyfunctional Th2 cells in the airway. Mechanistically, NRF2 intrinsic to T cells is essential for inducing optimal oxidative phosphorylation and glycolysis capacity, thereby driving Th2 cell polyfunctionality independently of IL-33, partially by inducing PPARγ. Treatment with an NRF2 inhibitor leads to a substantial decrease in polyfunctional Th2 cells and subsequent eosinophilia in mice and a reduction in the production of Th2 cytokines from peripheral blood mononuclear cells in asthmatic patients. These findings highlight the critical role of Nrf2 as a spatial and temporal metabolic hub that is essential for polyfunctional Th2 cells, suggesting potential therapeutic implications for allergic diseases.


Sujet(s)
Asthme , Facteur-2 apparenté à NF-E2 , Espèces réactives de l'oxygène , Lymphocytes auxiliaires Th2 , Facteur-2 apparenté à NF-E2/métabolisme , Lymphocytes auxiliaires Th2/immunologie , Lymphocytes auxiliaires Th2/métabolisme , Animaux , Souris , Asthme/immunologie , Asthme/métabolisme , Humains , Espèces réactives de l'oxygène/métabolisme , Récepteur PPAR gamma/métabolisme , Phosphorylation oxydative , Glycolyse , Poumon/immunologie , Poumon/métabolisme , Souris knockout , Modèles animaux de maladie humaine , Femelle , Cytokines/métabolisme , Souris de lignée C57BL , Interleukine-33/métabolisme , Éosinophilie/immunologie , Éosinophilie/métabolisme
13.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-39000280

RÉSUMÉ

Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.


Sujet(s)
Métabolisme énergétique , Polykystose rénale autosomique dominante , Biologie des systèmes , Humains , Biologie des systèmes/méthodes , Polykystose rénale autosomique dominante/métabolisme , Polykystose rénale autosomique dominante/génétique , Canaux cationiques TRPP/métabolisme , Canaux cationiques TRPP/génétique , Mitochondries/métabolisme , Mitochondries/génétique , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Complexe-1 cible mécanistique de la rapamycine/génétique , Phosphorylation oxydative , Régulation de l'expression des gènes
14.
Nat Commun ; 15(1): 4954, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38862516

RÉSUMÉ

Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.


Sujet(s)
Analyse sur cellule unique , Vol spatial , Transcriptome , Animaux , Femelle , Mâle , Humains , Souris , Astronaute , Cytokines/métabolisme , Lymphocytes T/immunologie , Facteurs sexuels , Analyse de profil d'expression de gènes , Phosphorylation oxydative
15.
Nat Commun ; 15(1): 4969, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38862489

RÉSUMÉ

Metabolic remodeling is a strategy for tumor survival under stress. However, the molecular mechanisms during the metabolic remodeling of colorectal cancer (CRC) remain unclear. Melanocyte proliferating gene 1 (MYG1) is a 3'-5' RNA exonuclease and plays a key role in mitochondrial functions. Here, we uncover that MYG1 expression is upregulated in CRC progression and highly expressed MYG1 promotes glycolysis and CRC progression independent of its exonuclease activity. Mechanistically, nuclear MYG1 recruits HSP90/GSK3ß complex to promote PKM2 phosphorylation, increasing its stability. PKM2 transcriptionally activates MYC and promotes MYC-medicated glycolysis. Conversely, c-Myc also transcriptionally upregulates MYG1, driving the progression of CRC. Meanwhile, mitochondrial MYG1 on the one hand inhibits oxidative phosphorylation (OXPHOS), and on the other hand blocks the release of Cyt c from mitochondria and inhibits cell apoptosis. Clinically, patients with KRAS mutation show high expression of MYG1, indicating a high level of glycolysis and a poor prognosis. Targeting MYG1 may disturb metabolic balance of CRC and serve as a potential target for the diagnosis and treatment of CRC.


Sujet(s)
Tumeurs colorectales , Glycolyse , Mitochondries , Phosphorylation oxydative , Animaux , Femelle , Humains , Mâle , Souris , Apoptose/génétique , Protéines de transport/métabolisme , Protéines de transport/génétique , Lignée cellulaire tumorale , Noyau de la cellule/métabolisme , Tumeurs colorectales/métabolisme , Tumeurs colorectales/génétique , Tumeurs colorectales/anatomopathologie , Régulation de l'expression des gènes tumoraux , Glycogen synthase kinase 3 beta/métabolisme , Glycogen synthase kinase 3 beta/génétique , Protéines du choc thermique HSP90/métabolisme , Protéines du choc thermique HSP90/génétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Souris nude , Mitochondries/métabolisme , Protéines proto-oncogènes c-myc/métabolisme , Protéines proto-oncogènes c-myc/génétique , Protéines proto-oncogènes p21(ras)/métabolisme , Protéines proto-oncogènes p21(ras)/génétique , , Hormones thyroïdiennes/métabolisme , Hormones thyroïdiennes/génétique
16.
BMC Genomics ; 25(1): 632, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38914933

RÉSUMÉ

BACKGROUND: Although, oocytes from prepubertal donors are known to be less developmentally competent than those from adult donors it does not restrain their ability to produce full-term pregnancies. The transcriptomic profile of embryos could be used as a predictor for embryo's individual developmental competence. The aim of the study was to compare transcriptomic profile of blastocysts derived from prepubertal and pubertal heifers oocytes. Bovine cumulus-oocyte complexes (COCs) were obtained by ovum pick- up method from prepubertal and pubertal heifers. After in vitro maturation COCs were fertilized and cultured to the blastocyst stage. Total RNA was isolated from both groups of blastocysts and RNA-seq was performed. Gene ontology analysis was performed by DAVID (Database for Annotation, Visualization and Integrated Discovery). RESULTS: A higher average blastocyst rate was obtained in the pubertal than in the pre-pubertal group. There were no differences in the quality of blastocysts between the examined groups. We identified 436 differentially expressed genes (DEGs) between blastocysts derived from researched groups, of which 247 DEGs were downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes, and 189 DEGs were upregulated. The genes involved in mitochondrial function, including oxidative phosphorylation (OXPHOS) were found to be different in studied groups using Kyoto Encyclopedia of Genes (KEGG) pathway analysis and 8 of those DEGs were upregulated and 1 was downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes. DEGs associated with mitochondrial function were found: ATP synthases (ATP5MF-ATP synthase membrane subunit f, ATP5PD- ATP synthase peripheral stalk subunit d, ATP12A- ATPase H+/K + transporting non-gastric alpha2 subunit), NADH dehydrogenases (NDUFS3- NADH: ubiquinone oxidoreductase subunit core subunit S3, NDUFA13- NADH: ubiquinone oxidoreductase subunit A13, NDUFA3- NADH: ubiquinone oxidoreductase subunit A3), cytochrome c oxidase (COX17), cytochrome c somatic (CYCS) and ubiquinol cytochrome c reductase core protein 1 (UQCRC1). We found lower number of apoptotic cells in blastocysts derived from oocytes collected from prepubertal than those obtained from pubertal donors. CONCLUSIONS: Despite decreased expression of genes associated with OXPHOS pathway in blastocysts from prepubertal heifers oocytes, the increased level of ATP12A together with the lower number of apoptotic cells in these blastocysts might support their survival after transfer.


Sujet(s)
Blastocyste , Analyse de profil d'expression de gènes , Phosphorylation oxydative , Animaux , Bovins , Femelle , Blastocyste/métabolisme , Transcriptome , Maturation sexuelle/génétique , Ovocytes/métabolisme , Régulation de l'expression des gènes au cours du développement , Fécondation in vitro/médecine vétérinaire
17.
Adv Exp Med Biol ; 1441: 365-396, 2024.
Article de Anglais | MEDLINE | ID: mdl-38884721

RÉSUMÉ

The heart is composed of a heterogeneous mixture of cellular components perfectly intermingled and able to integrate common environmental signals to ensure proper cardiac function and performance. Metabolism defines a cell context-dependent signature that plays a critical role in survival, proliferation, or differentiation, being a recognized master piece of organ biology, modulating homeostasis, disease progression, and adaptation to tissue damage. The heart is a highly demanding organ, and adult cardiomyocytes require large amount of energy to fulfill adequate contractility. However, functioning under oxidative mitochondrial metabolism is accompanied with a concomitant elevation of harmful reactive oxygen species that indeed contributes to the progression of several cardiovascular pathologies and hampers the regenerative capacity of the mammalian heart. Cardiac metabolism is dynamic along embryonic development and substantially changes as cardiomyocytes mature and differentiate within the first days after birth. During early stages of cardiogenesis, anaerobic glycolysis is the main energetic program, while a progressive switch toward oxidative phosphorylation is a hallmark of myocardium differentiation. In response to cardiac injury, different signaling pathways participate in a metabolic rewiring to reactivate embryonic bioenergetic programs or the utilization of alternative substrates, reflecting the flexibility of heart metabolism and its central role in organ adaptation to external factors. Despite the well-established metabolic pattern of fetal, neonatal, and adult cardiomyocytes, our knowledge about the bioenergetics of other cardiac populations like endothelial cells, cardiac fibroblasts, or immune cells is limited. Considering the close intercellular communication and the influence of nonautonomous cues during heart development and after cardiac damage, it will be fundamental to better understand the metabolic programs in different cardiac cells in order to develop novel interventional opportunities based on metabolic rewiring to prevent heart failure and improve the limited regenerative capacity of the mammalian heart.


Sujet(s)
Métabolisme énergétique , Myocarde , Myocytes cardiaques , Humains , Animaux , Myocytes cardiaques/métabolisme , Myocarde/métabolisme , Coeur , Différenciation cellulaire , Glycolyse , Phosphorylation oxydative , Transduction du signal , Mitochondries du myocarde/métabolisme
18.
Sci Adv ; 10(25): eadn0014, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38905346

RÉSUMÉ

The central nervous system coordinates peripheral cellular stress responses, including the unfolded protein response of the mitochondria (UPRMT); however, the contexts for which this regulatory capability evolved are unknown. UPRMT is up-regulated upon pathogenic infection and in metabolic flux, and the olfactory nervous system has been shown to regulate pathogen resistance and peripheral metabolic activity. Therefore, we asked whether the olfactory nervous system in Caenorhabditis elegans controls the UPRMT cell nonautonomously. We found that silencing a single inhibitory olfactory neuron pair, AWC, led to robust induction of UPRMT and reduction of oxidative phosphorylation dependent on serotonin signaling and parkin-mediated mitophagy. Further, AWC ablation confers resistance to the pathogenic bacteria Pseudomonas aeruginosa partially dependent on the UPRMT transcription factor atfs-1 and fully dependent on mitophagy machinery. These data illustrate a role for the olfactory nervous system in regulating whole-organism mitochondrial dynamics, perhaps in preparation for postprandial metabolic stress or pathogenic infection.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Mitochondries , Mitophagie , Odorat , Animaux , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/physiologie , Mitochondries/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Odorat/physiologie , Réponse aux protéines mal repliées , Pseudomonas aeruginosa/physiologie , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Phosphorylation oxydative , Transduction du signal , Sérotonine/métabolisme , Facteurs de transcription
19.
Science ; 384(6701): 1247-1253, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38870289

RÉSUMÉ

Respiratory complex I is an efficient driver for oxidative phosphorylation in mammalian mitochondria, but its uncontrolled catalysis under challenging conditions leads to oxidative stress and cellular damage. Ischemic conditions switch complex I from rapid, reversible catalysis into a dormant state that protects upon reoxygenation, but the molecular basis for the switch is unknown. We combined precise biochemical definition of complex I catalysis with high-resolution cryo-electron microscopy structures in the phospholipid bilayer of coupled vesicles to reveal the mechanism of the transition into the dormant state, modulated by membrane interactions. By implementing a versatile membrane system to unite structure and function, attributing catalytic and regulatory properties to specific structural states, we define how a conformational switch in complex I controls its physiological roles.


Sujet(s)
Complexe I de la chaîne respiratoire , Ischémie , Animaux , Cryomicroscopie électronique , Complexe I de la chaîne respiratoire/métabolisme , Complexe I de la chaîne respiratoire/composition chimique , Ischémie/enzymologie , Double couche lipidique/métabolisme , Mitochondries/enzymologie , Phosphorylation oxydative , Bovins , Ubiquinones/composition chimique , Ubiquinones/métabolisme , Structure en hélice alpha
20.
JCI Insight ; 9(11)2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38855868

RÉSUMÉ

Lactate elevation is a well-characterized biomarker of mitochondrial dysfunction, but its role in diabetic kidney disease (DKD) is not well defined. Urine lactate was measured in patients with type 2 diabetes (T2D) in 3 cohorts (HUNT3, SMART2D, CRIC). Urine and plasma lactate were measured during euglycemic and hyperglycemic clamps in participants with type 1 diabetes (T1D). Patients in the HUNT3 cohort with DKD had elevated urine lactate levels compared with age- and sex-matched controls. In patients in the SMART2D and CRIC cohorts, the third tertile of urine lactate/creatinine was associated with more rapid estimated glomerular filtration rate decline, relative to first tertile. Patients with T1D demonstrated a strong association between glucose and lactate in both plasma and urine. Glucose-stimulated lactate likely derives in part from proximal tubular cells, since lactate production was attenuated with sodium-glucose cotransporter-2 (SGLT2) inhibition in kidney sections and in SGLT2-deficient mice. Several glycolytic genes were elevated in human diabetic proximal tubules. Lactate levels above 2.5 mM potently inhibited mitochondrial oxidative phosphorylation in human proximal tubule (HK2) cells. We conclude that increased lactate production under diabetic conditions can contribute to mitochondrial dysfunction and become a feed-forward component to DKD pathogenesis.


Sujet(s)
Diabète de type 1 , Diabète de type 2 , Néphropathies diabétiques , Glycolyse , Acide lactique , Humains , Néphropathies diabétiques/métabolisme , Néphropathies diabétiques/anatomopathologie , Animaux , Souris , Acide lactique/métabolisme , Acide lactique/sang , Femelle , Mâle , Adulte d'âge moyen , Diabète de type 2/métabolisme , Diabète de type 2/complications , Diabète de type 1/métabolisme , Diabète de type 1/complications , Mitochondries/métabolisme , Adulte , Débit de filtration glomérulaire , Sujet âgé , Tubules contournés proximaux/métabolisme , Glucose/métabolisme , Phosphorylation oxydative , Marqueurs biologiques/métabolisme , Transporteur-2 sodium-glucose/métabolisme , Transporteur-2 sodium-glucose/génétique , Inhibiteurs du cotransporteur sodium-glucose de type 2/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE