Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.200
Filtrer
1.
Annu Rev Plant Biol ; 75(1): 153-183, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39038250

RÉSUMÉ

Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.


Sujet(s)
Phytochrome , Phytochrome/composition chimique , Phytochrome/métabolisme , Phytochrome/physiologie , Plantes/métabolisme , Plantes/composition chimique , Lumière
2.
Sci Adv ; 10(24): eadn8386, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38865454

RÉSUMÉ

Certain cyanobacteria alter their photosynthetic light absorption between green and red, a phenomenon called complementary chromatic acclimation. The acclimation is regulated by a cyanobacteriochrome-class photosensor that reversibly photoconverts between green-absorbing (Pg) and red-absorbing (Pr) states. Here, we elucidated the structural basis of the green/red photocycle. In the Pg state, the bilin chromophore adopted the extended C15-Z,anti structure within a hydrophobic pocket. Upon photoconversion to the Pr state, the bilin is isomerized to the cyclic C15-E,syn structure, forming a water channel in the pocket. The solvation/desolvation of the bilin causes changes in the protonation state and the stability of π-conjugation at the B ring, leading to a large absorption shift. These results advance our understanding of the enormous spectral diversity of the phytochrome superfamily.


Sujet(s)
Lumière , Cyanobactéries/métabolisme , Cyanobactéries/physiologie , Acclimatation , Photosynthèse , Phytochrome/métabolisme , Phytochrome/composition chimique , Modèles moléculaires , Pigments biliaires/métabolisme , Pigments biliaires/composition chimique , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique ,
3.
Int J Mol Sci ; 25(11)2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38891921

RÉSUMÉ

The involvement of the microRNA miR165a in the light-dependent mechanisms of regulation of target genes in maize (Zea mays) has been studied. The light-induced change in the content of free miR165a was associated with its binding by the AGO10 protein and not with a change in the rate of its synthesis from the precursor. The use of knockout Arabidopsis plants for the phytochrome A and B genes demonstrated that the presence of an active form of phytochrome B causes an increase in the level of the RNA-induced silencing miR165a complex, which triggers the degradation of target mRNAs. The two fractions of vesicles from maize leaves, P40 and P100 that bind miR165a, were isolated by ultracentrifugation. The P40 fraction consisted of larger vesicles of the size >0.170 µm, while the P100 fraction vesicles were <0.147 µm. Based on the quantitative PCR data, the predominant location of miR165a on the surface of extracellular vesicles of both fractions was established. The formation of the active form of phytochrome upon the irradiation of maize plants with red light led to a redistribution of miR165a, resulting in an increase in its proportion inside P40 vesicles and a decrease in P100 vesicles.


Sujet(s)
Lumière , microARN , Phytochrome , Feuilles de plante , Transduction du signal , Zea mays , Zea mays/génétique , Zea mays/métabolisme , Zea mays/effets des radiations , microARN/génétique , microARN/métabolisme , Feuilles de plante/métabolisme , Feuilles de plante/génétique , Feuilles de plante/effets des radiations , Phytochrome/métabolisme , Phytochrome/génétique , Régulation de l'expression des gènes végétaux , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/effets des radiations , Phytochrome A/métabolisme , Phytochrome A/génétique , Vésicules extracellulaires/métabolisme , Vésicules extracellulaires/génétique , Phytochrome B/métabolisme , Phytochrome B/génétique
4.
Nat Commun ; 15(1): 4894, 2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38849338

RÉSUMÉ

Synthetic biology applications require finely tuned gene expression, often mediated by synthetic transcription factors (sTFs) compatible with the human genome and transcriptional regulation mechanisms. While various DNA-binding and activation domains have been developed for different applications, advanced artificially controllable sTFs with improved regulatory capabilities are required for increasingly sophisticated applications. Here, in mammalian cells and mice, we validate the transactivator function and homo-/heterodimerization activity of the plant-derived phytochrome chaperone proteins, FHY1 and FHL. Our results demonstrate that FHY1/FHL form a photosensing transcriptional regulation complex (PTRC) through interaction with the phytochrome, ΔPhyA, that can toggle between active and inactive states through exposure to red or far-red light, respectively. Exploiting this capability, we develop a light-switchable platform that allows for orthogonal, modular, and tunable control of gene transcription, and incorporate it into a PTRC-controlled CRISPRa system (PTRCdcas) to modulate endogenous gene expression. We then integrate the PTRC with small molecule- or blue light-inducible regulatory modules to construct a variety of highly tunable systems that allow rapid and reversible control of transcriptional regulation in vitro and in vivo. Validation and deployment of these plant-derived phytochrome chaperone proteins in a PTRC platform have produced a versatile, powerful tool for advanced research and biomedical engineering applications.


Sujet(s)
Lumière , Chaperons moléculaires , Phytochrome , Animaux , Humains , Souris , Phytochrome/métabolisme , Phytochrome/génétique , Chaperons moléculaires/métabolisme , Chaperons moléculaires/génétique , Régulation de l'expression des gènes/effets des radiations , Transcription génétique/effets des radiations , Cellules HEK293 , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique
5.
Int J Biol Macromol ; 274(Pt 2): 133407, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38925190

RÉSUMÉ

Cyanobacteriochromes (CBCRs) are distinctive tetrapyrrole (bilin)-binding photoreceptors exclusively found in cyanobacteria. Unlike canonical phytochromes, CBCRs require only a GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domain for autolyase activity to form a bilin adduct via a Cys residue and cis-trans photoisomerization. Apart from the canonical Cys, which attaches covalently to C31 in the A-ring of the bilin, some GAF domains of CBCRs contain a second-Cys in the Asp-Xaa-Cys-Phe (DXCF) motif, responsible for isomerization of phycocyanobilin (PCB) to phycoviolobilin (PVB) and/or for the formation of a reversible 2nd thioether linkage to the C10. Unlike green/teal-absorbing GAF proteins lacking ligation activity, the second-Cys in another teal-absorbing lineage (DXCF blue/teal group) exhibits both isomerization and ligation activity due to the presence of the Tyr instead of His next to the canonical Cys. Herein, we discovered an atypical CBCR GAF protein, Tpl7205g1, belonging to the DXCF blue/teal group, but having His instead of Tyr next to the first-Cys. Consistent with its subfamily, the second-Cys of Tpl7205g1 did not form a thioether linkage at C10 of PCB, showing only isomerization activity. Instead of forming 2nd thioether linkage, this novel GAF protein exhibits a pH-dependent photocycle between protonated 15Z and deprotonated 15E. Site-directed mutagenesis to the GAF scaffolds revealed its combined characteristics, including properties of teal-DXCF CBCRs and red/green-absorbing CBCRs (XRG CBCRs), suggesting itself as the evolutionary bridge between the two CBCR groups. Our study thus sheds light on the expanded spectral tuning characteristics of teal-light absorbing CBCRs and enhances feasibility of engineering these photoreceptors.


Sujet(s)
Protéines bactériennes , Cyanobactéries , Optogénétique , Photorécepteurs microbiens , Phytochrome , Phytochrome/composition chimique , Phytochrome/métabolisme , Phytochrome/génétique , Photorécepteurs microbiens/composition chimique , Photorécepteurs microbiens/génétique , Photorécepteurs microbiens/métabolisme , Cyanobactéries/métabolisme , Cyanobactéries/génétique , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Optogénétique/méthodes , Lumière , Phycocyanine/composition chimique , Phycocyanine/métabolisme , Ingénierie des protéines/méthodes , Phycobilines/composition chimique , Phycobilines/métabolisme , Séquence d'acides aminés
6.
Plant Mol Biol ; 114(3): 66, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38816626

RÉSUMÉ

Floral scent emission of petunia flowers is regulated by light conditions, circadian rhythms, ambient temperature and the phytohormones GA and ethylene, but the mechanisms underlying sensitivity to these factors remain obscure. PHYTOCHROME INTERACTING FACTORs (PIFs) have been well studied as components of the regulatory machinery for numerous physiological processes. Acting redundantly, they serve as transmitters of light, circadian, metabolic, thermal and hormonal signals. Here we identified and characterized the phylogenetics of petunia PIF family members (PhPIFs). PhPIF4/5 was revealed as a positive regulator of floral scent: TRV-based transient suppression of PhPIF4/5 in petunia petals reduced emission of volatiles, whereas transient overexpression increased scent emission. The mechanism of PhPIF4/5-mediated regulation of volatile production includes activation of the expression of genes encoding biosynthetic enzymes and a key positive regulator of the pathway, EMISSION OF BENZENOIDS II (EOBII). The PIF-binding motif on the EOBII promoter (G-box) was shown to be needed for this activation. As PhPIF4/5 homologues are sensors of dawn and expression of EOBII also peaks at dawn, the prior is proposed to be part of the diurnal control of the volatile biosynthetic machinery. PhPIF4/5 was also found to transcriptionally activate PhDELLAs; a similar positive effect of PIFs on DELLA expression was further confirmed in Arabidopsis seedlings. The PhPIF4/5-PhDELLAs feedback is proposed to fine-tune GA signaling for regulation of floral scent production.


Sujet(s)
Fleurs , Régulation de l'expression des gènes végétaux , Petunia , Protéines végétales , Petunia/génétique , Petunia/métabolisme , Petunia/physiologie , Fleurs/génétique , Fleurs/métabolisme , Fleurs/physiologie , Protéines végétales/génétique , Protéines végétales/métabolisme , Phylogenèse , Odorisants , Régions promotrices (génétique) , Phytochrome/métabolisme , Phytochrome/génétique , Végétaux génétiquement modifiés
7.
J Biol Chem ; 300(7): 107369, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38750792

RÉSUMÉ

Phytochromes (Phys) are a diverse collection of photoreceptors that regulate numerous physiological and developmental processes in microorganisms and plants through photointerconversion between red-light-absorbing Pr and far-red light-absorbing Pfr states. Light is detected by an N-terminal photo-sensing module (PSM) sequentially comprised of Period/ARNT/Sim (PAS), cGMP-phosphodiesterase/adenylyl cyclase/FhlA (GAF), and Phy-specific (PHY) domains, with the bilin chromophore covalently-bound within the GAF domain. Phys sense light via the Pr/Pfr ratio measured by the light-induced rotation of the bilin D-pyrrole ring that triggers conformational changes within the PSM, which for microbial Phys reaches into an output region. A key step is a ß-stranded to α-helical reconfiguration of a hairpin loop extending from the PHY domain to contact the GAF domain. Besides canonical Phys, cyanobacteria express several variants, including a PAS-less subfamily that harbors just the GAF and PHY domains for light detection. Prior 2D-NMR studies of a model PAS-less Phy from Synechococcus_sp._JA-2-3B'a(2-13) (SyB-Cph1) proposed a unique photoconversion mechanism involving an A-pyrrole ring rotation while magic-angle-spinning NMR probing the chromophore proposed the prototypic D-ring flip. To help solve this conundrum, we determined the crystallographic structure of the GAF-PHY region from SyB-Cph1 as Pr. Surprisingly, this structure differs from canonical Phys by having a Pr ZZZsyn,syn,anti bilin configuration but shifted to the activated position in the binding pocket with consequent folding of the hairpin loop to α-helical, an architecture common for Pfr. Collectively, the PSM of SyB-Cph1 as Pr displayed a mix of dark-adapted and photoactivated features whose co-planar A-C pyrrole rings support a D-ring flip mechanism.


Sujet(s)
Protéines bactériennes , Phytochrome , Phytochrome/composition chimique , Phytochrome/métabolisme , Phytochrome/génétique , Cristallographie aux rayons X , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Cyanobactéries/métabolisme , Lumière , Domaines protéiques , Modèles moléculaires , Conformation des protéines
8.
PLoS Genet ; 20(5): e1011282, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38768261

RÉSUMÉ

Light as a source of information regulates morphological and physiological processes of fungi, including development, primary and secondary metabolism, or the circadian rhythm. Light signaling in fungi depends on photoreceptors and downstream components that amplify the signal to govern the expression of an array of genes. Here, we investigated the effects of red and far-red light in the mycoparasite Trichoderma guizhouense on its mycoparasitic potential. We show that the invasion strategy of T. guizhouense depends on the attacked species and that red and far-red light increased aerial hyphal growth and led to faster overgrowth or invasion of the colonies. Molecular experiments and transcriptome analyses revealed that red and far-red light are sensed by phytochrome FPH1 and further transmitted by the downstream MAPK HOG pathway and the bZIP transcription factor ATF1. Overexpression of the red- and far-red light-induced fluffy gene fluG in the dark resulted in abundant aerial hyphae formation and thereby improvement of its antagonistic ability against phytopathogenic fungi. Hence, light-induced fluG expression is important for the mycoparasitic interaction. The increased aggressiveness of fluG-overexpressing strains was phenocopied by four random mutants obtained after UV mutagenesis. Therefore, aerial hyphae formation appears to be a trait for the antagonistic potential of T. guizhouense.


Sujet(s)
Régulation de l'expression des gènes fongiques , Hyphae , Lumière , Phytochrome , Trichoderma , Hyphae/croissance et développement , Hyphae/génétique , Phytochrome/métabolisme , Phytochrome/génétique , Trichoderma/génétique , Trichoderma/physiologie , Trichoderma/croissance et développement , Maladies des plantes/microbiologie , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Ascomycota/génétique , Ascomycota/croissance et développement , Rhizoctonia/croissance et développement ,
9.
J Phys Chem B ; 128(15): 3614-3620, 2024 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-38581077

RÉSUMÉ

Bacteriophytochrome is a photoreceptor protein that contains the biliverdin (BV) chromophore as its active component. The spectra of BV upon mutation remain remarkably unchanged, as far as spectral positions are concerned. This points toward the minimal effect of electrostatic effects on the electronic structure of the chromophore. However, the relative intensities of the Q and Soret bands of the chromophore change dramatically upon mutation. In this work, we delve into the molecular origin of this unusual intensity modulation. Using extensive classical MD and QM/MM calculations, we show that due to mutation, the conformational population of the chromophore changes significantly. The noncovalent interactions, especially the stacking interactions, lead to extra stabilization of the cyclic form in the D207H mutated species as opposed to the open form in the wild-type BV. Thus, unlike the commonly observed direct electrostatic effect on the spectral shift, in the case of BV the difference observed is in varying intensities, and this in turn is driven by a conformational shift due to enhanced stacking interaction.


Sujet(s)
Phytochrome , Phytochrome/composition chimique , Biliverdine/composition chimique , Conformation moléculaire , Protéines bactériennes/composition chimique
10.
Methods Mol Biol ; 2795: 85-93, 2024.
Article de Anglais | MEDLINE | ID: mdl-38594530

RÉSUMÉ

Thermal reversion of phytochromes is the light-independent but strongly temperature-dependent relaxation of the light-activated Pfr form of phytochromes back into the inactive Pr ground state. The thermal reversion rates of different phytochromes vary considerably. For phytochrome B (phyB), thermal reversion represents a critical parameter affecting phyB activity as it reduces the active phyB Pfr pool, accelerated by increasing temperatures. Phytochromes are dimers existing in three different states: Pfr-Pfr homodimer, Pfr-Pr heterodimer, and Pr-Pr homodimer. Consequently, thermal reversion occurs in two steps, with Pfr-Pfr to Pfr-Pr reversion being much slower than reversion from Pfr-Pr to Pr-Pr. To measure thermal reversion in vivo, the relative proportion of Pfr in relation to the total amount of phytochrome (Ptot) must be determined in living samples. This is accomplished by in vivo spectroscopy utilizing dual wavelength ratiospectrophotometers, optimized for assaying phytochromes in highly scattering plant material. The method is depending on the photoreversibility of phytochromes displaying light-induced absorbance changes in response to actinic irradiation. In this chapter, we describe the experimental design and explain step-by-step the calculations necessary to determine the thermal reversion rates of phyB in vivo, taking into account phytochrome dimerization.


Sujet(s)
Phytochrome B , Phytochrome , Analyse spectrale , Lumière
11.
Methods Mol Biol ; 2795: 105-111, 2024.
Article de Anglais | MEDLINE | ID: mdl-38594532

RÉSUMÉ

In this method, we employed HEK293T cells to express the plant photoreceptor phytochrome B (phyB). Through the application of various treatments such as phycocyanobilin (PCB) supplementation, red light exposure, and temperature adjustments, the phyB proteins exhibited liquid-liquid phase separation, leading to the formation of biomolecular condensates. Here, we present a comprehensive description of the protein expression, cell treatment, and imaging capture procedures. This detailed guide provides step-by-step instructions on how to induce phase separation of phyB proteins in HEK293T cells. By utilizing this approach, researchers can investigate the physicochemical characteristics and dynamic formation process of phyB photobodies with precision.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Phytochrome , Humains , Phytochrome B/métabolisme , Phytochrome/métabolisme , Protéines d'Arabidopsis/métabolisme , Cellules HEK293 , Arabidopsis/métabolisme , , Facteurs de transcription/métabolisme , Lumière , Cellules photoréceptrices/métabolisme
12.
Methods Mol Biol ; 2795: 161-167, 2024.
Article de Anglais | MEDLINE | ID: mdl-38594537

RÉSUMÉ

The PHYTOCHROME INTERACTING FACTORs (PIFs) play pivotal roles in regulating thermo- and photo-morphogenesis in Arabidopsis. One of the main hubs in thermomorphogenesis is PIF4, which regulates plant development under high ambient temperature along with other PIFs. PIF4 enhances its own transcription and PIF4 protein is stabilized under high ambient temperature. However, the mechanisms of thermo-stabilization of PIF4 are less understood. Recently, it was shown that SUPPRESSOR OF PHYA-105 1 (SPA1) can function as a serine/threonine kinase to phosphorylate PIF4 in vitro, and the phosphorylated form of PIF4 is more stable under high ambient temperature conditions. In this chapter, we describe the in vitro kinase assay of PIF4 by SPA1. In principle, this protocol can be applied for other putative substrates and kinases.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Phytochrome , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Phosphorylation , Arabidopsis/métabolisme , Phytochrome/métabolisme , Développement des plantes , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Régulation de l'expression des gènes végétaux , Protéines du cycle cellulaire/métabolisme
13.
Methods Mol Biol ; 2795: 195-212, 2024.
Article de Anglais | MEDLINE | ID: mdl-38594540

RÉSUMÉ

The phytochrome-interacting factor 4 (PIF4) is a well-known transcription factor that plays a pivotal role in plant thermomorphogenesis, coordinating growth and development in response to temperature changes. As PIF4 functions by forming complexes with other proteins, determining its interacting partners is essential for understanding its diverse roles in plant thermal responses. The GST (glutathione-S-transferase) pull-down assay is a widely used biochemical technique that enables the investigation of protein-protein interactions in vitro. It is particularly useful for studying transient or weak interactions between proteins. In this chapter, we describe the GST pull-down approach to detect the interaction between PIF4 and a known or suspected interacting protein. We provide detailed step-by-step descriptions of the assay procedures, from the preparation of recombinant GST-PIF4 fusion protein to the binding and elution of interacting partners. Additionally, we provide guidelines for data interpretation, quantification, and statistical analysis to ensure robust and reliable results.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Phytochrome , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Phytochrome/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Régulation de l'expression des gènes végétaux
14.
Methods Mol Biol ; 2795: 183-194, 2024.
Article de Anglais | MEDLINE | ID: mdl-38594539

RÉSUMÉ

Phytochromes are red (R) and far-red (FR) light photoreceptors in plants. Upon light exposure, photoactivated phytochromes translocate into the nucleus, where they interact with their partner proteins to transduce light signals. The yeast two-hybrid (Y2H) system is a powerful technique for rapidly identifying and verifying protein-protein interactions, and PHYTOCHROME-INTERACTING FACTOR3 (PIF3), the founding member of the PIF proteins, was initially identified in a Y2H screen for phytochrome B (phyB)-interacting proteins. Recently, we developed a yeast three-hybrid (Y3H) system by introducing an additional vector into this Y2H system, and thus a new regulator could be co-expressed and its role in modulating the interactions between phytochromes and their signaling partners could be examined. By employing this Y3H system, we recently showed that both MYB30 and CBF1, two negative regulators of seedlings photomorphogenesis, act to inhibit the interactions between phyB and PIF4/PIF5. In this chapter, we will use the CBF1-phyB-PIF4 module as an example and describe the detailed procedure for performing this Y3H assay. It will be intriguing and exciting to explore the potential usage of this Y3H system in future research.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines , Phytochrome , Protéines de Saccharomyces cerevisiae , Phytochrome B/génétique , Phytochrome B/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Saccharomyces cerevisiae/métabolisme , Lumière , Phytochrome/génétique , Phytochrome/métabolisme , Régulation de l'expression des gènes végétaux , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Transactivateurs/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme
15.
Biochemistry ; 63(9): 1225-1233, 2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38682295

RÉSUMÉ

As plant photoreceptors, phytochromes are capable of detecting red light and far-red light, thereby governing plant growth. All2699 is a photoreceptor found in Nostoc sp. PCC7120 that specifically responds to red light and far-red light. All2699g1g2 is a truncated protein carrying the first and second GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains of All2699. In this study, we found that, upon exposure to red light, the protein underwent aggregation, resulting in the formation of protein aggregates. Conversely, under far-red light irradiation, these protein aggregates dissociated. We delved into the factors that impact the aggregation of All2699g1g2, focusing on the protein structure. Our findings showed that the GAF2 domain contains a low-complexity (LC) loop region, which plays a crucial role in mediating protein aggregation. Specifically, phenylalanine at position 239 within the LC loop region was identified as a key site for the aggregation process. Furthermore, our research revealed that various factors, including irradiation time, temperature, concentration, NaCl concentration, and pH value, can impact the aggregation of All2699g1g2. The aggregation led to variations in Pfr concentration depending on temperature, NaCl concentration, and pH value. In contrast, ΔLC did not aggregate and therefore lacked responses to these factors. Consequently, the LC loop region of All2699g1g2 extended and enhanced sensory properties.


Sujet(s)
Protéines bactériennes , Lumière , Nostoc , Nostoc/métabolisme , Nostoc/composition chimique , Nostoc/effets des radiations , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Domaines protéiques , Agrégats de protéines , Photorécepteurs microbiens/composition chimique , Photorécepteurs microbiens/métabolisme , Pigments biliaires/composition chimique , Pigments biliaires/métabolisme , Concentration en ions d'hydrogène , Phytochrome/composition chimique , Phytochrome/métabolisme
16.
Commun Biol ; 7(1): 473, 2024 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-38637683

RÉSUMÉ

Bacterial phytochromes are attractive molecular templates for engineering fluorescent proteins (FPs) because their near-infrared (NIR) emission significantly extends the spectral coverage of GFP-like FPs. Existing phytochrome-based FPs covalently bind heme-derived tetrapyrrole chromophores and exhibit constitutive fluorescence. Here we introduce Rep-miRFP, an NIR imaging probe derived from bacterial phytochrome, which interacts non-covalently and reversibly with biliverdin chromophore. In Rep-miRFP, the photobleached non-covalent adduct can be replenished with fresh biliverdin, restoring fluorescence. By exploiting this chromophore renewal capability, we demonstrate NIR PAINT nanoscopy in mammalian cells using Rep-miRFP.


Sujet(s)
Microscopie , Phytochrome , Animaux , Protéines luminescentes/génétique , Protéines luminescentes/métabolisme , Protéines bactériennes/métabolisme , Biliverdine/métabolisme , Bactéries/métabolisme , Mammifères
17.
Plant Cell ; 36(8): 2778-2797, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-38593049

RÉSUMÉ

Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Facteurs de transcription à motif basique hélice-boucle-hélice , Régulation de l'expression des gènes végétaux , Phytochrome , Végétaux génétiquement modifiés , Régions promotrices (génétique) , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , Régions promotrices (génétique)/génétique , Phytochrome/métabolisme , Phytochrome/génétique , Lumière , Hypocotyle/génétique , Hypocotyle/croissance et développement , Germination/génétique
18.
J Biol Chem ; 300(5): 107238, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38552736

RÉSUMÉ

Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.


Sujet(s)
Alternaria , , Flavine adénine dinucléotide , Protéines fongiques , Photorécepteurs microbiens , Alternaria/métabolisme , Flavine adénine dinucléotide/métabolisme , Flavine adénine dinucléotide/composition chimique , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Protéines fongiques/composition chimique , Régulation de l'expression des gènes fongiques , Photorécepteurs microbiens/métabolisme , Photorécepteurs microbiens/composition chimique , Photorécepteurs microbiens/génétique , Phytochrome/métabolisme , Phytochrome/composition chimique , Phytochrome/génétique , Domaines protéiques , Espèces réactives de l'oxygène/métabolisme , Température
19.
J Biol Chem ; 300(5): 107217, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38522512

RÉSUMÉ

Sensor-effector proteins integrate information from different stimuli and transform this into cellular responses. Some sensory domains, like red-light responsive bacteriophytochromes, show remarkable modularity regulating a variety of effectors. One effector domain is the GGDEF diguanylate cyclase catalyzing the formation of the bacterial second messenger cyclic-dimeric-guanosine monophosphate. While critical signal integration elements have been described for different phytochromes, a generalized understanding of signal processing and communication over large distances, roughly 100 Å in phytochrome diguanylate cyclases, is missing. Here we show that dynamics-driven allostery is key to understanding signal integration on a molecular level. We generated protein variants stabilized in their far-red-absorbing Pfr state and demonstrated by analysis of conformational dynamics using hydrogen-deuterium exchange coupled to mass spectrometry that single amino acid replacements are accompanied by altered dynamics of functional elements throughout the protein. We show that the conformational dynamics correlate with the enzymatic activity of these variants, explaining also the increased activity of a non-photochromic variant. In addition, we demonstrate the functional importance of mixed Pfr/intermediate state dimers using a fast-reverting variant that still enables wild-type-like fold-changes of enzymatic stimulation by red light. This supports the functional role of single protomer activation in phytochromes, a property that might correlate with the non-canonical mixed Pfr/intermediate-state spectra observed for many phytochrome systems. We anticipate our results to stimulate research in the direction of dynamics-driven allosteric regulation of different bacteriophytochrome-based sensor-effectors. This will eventually impact design strategies for the creation of novel sensor-effector systems for enriching the optogenetic toolbox.


Sujet(s)
Lumière , Phosphorus-oxygen lyases , Phytochrome , Régulation allostérique , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Phosphorus-oxygen lyases/métabolisme , Phosphorus-oxygen lyases/composition chimique , Phosphorus-oxygen lyases/génétique , Phytochrome/métabolisme , Phytochrome/composition chimique , Phytochrome/génétique , Multimérisation de protéines , , Alteromonadaceae/enzymologie , Modèles moléculaires
20.
Plant J ; 118(5): 1699-1712, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38509728

RÉSUMÉ

Capturing images of the nuclear dynamics within live cells is an essential technique for comprehending the intricate biological processes inherent to plant cell nuclei. While various methods exist for imaging nuclei, including combining fluorescent proteins and dyes with microscopy, there is a dearth of commercially available dyes for live-cell imaging. In Arabidopsis thaliana, we discovered that nuclei emit autofluorescence in the near-infrared (NIR) range of the spectrum and devised a non-invasive technique for the visualization of live cell nuclei using this inherent NIR autofluorescence. Our studies demonstrated the capability of the NIR imaging technique to visualize the dynamic behavior of nuclei within primary roots, root hairs, and pollen tubes, which are tissues that harbor a limited number of other organelles displaying autofluorescence. We further demonstrated the applicability of NIR autofluorescence imaging in various other tissues by incorporating fluorescence lifetime imaging techniques. Nuclear autofluorescence was also detected across a wide range of plant species, enabling analyses without the need for transformation. The nuclear autofluorescence in the NIR wavelength range was not observed in animal or yeast cells. Genetic analysis revealed that this autofluorescence was caused by the phytochrome protein. Our studies demonstrated that nuclear autofluorescence imaging can be effectively employed not only in model plants but also for studying nuclei in non-model plant species.


Sujet(s)
Arabidopsis , Noyau de la cellule , Imagerie optique , Arabidopsis/métabolisme , Noyau de la cellule/métabolisme , Imagerie optique/méthodes , Phytochrome/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Racines de plante/métabolisme , Racines de plante/cytologie , Fluorescence
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE