Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.543
Filtrer
1.
PLoS Pathog ; 20(9): e1012484, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39241090

RÉSUMÉ

Glycophosphatidylinositol (GPI) anchors are the predominant glycoconjugate in Plasmodium parasites, enabling modified proteins to associate with biological membranes. GPI biosynthesis commences with donation of a mannose residue held by dolichol-phosphate at the endoplasmic reticulum membrane. In Plasmodium dolichols are derived from isoprenoid precursors synthesised in the Plasmodium apicoplast, a relict plastid organelle of prokaryotic origin. We found that treatment of Plasmodium parasites with apicoplast inhibitors decreases the synthesis of isoprenoid and GPI intermediates resulting in GPI-anchored proteins becoming untethered from their normal membrane association. Even when other isoprenoids were chemically rescued, GPI depletion led to an arrest in schizont stage parasites, which had defects in segmentation and egress. In those daughter parasites (merozoites) that did form, proteins that would normally be GPI-anchored were mislocalised, and when these merozoites were artificially released they were able to attach to but not invade new red blood cells. Our data provides further evidence for the importance of GPI biosynthesis during the asexual cycle of P. falciparum, and indicates that GPI biosynthesis, and by extension egress and invasion, is dependent on isoprenoids synthesised in the apicoplast.


Sujet(s)
Apicoplastes , Glycosylphosphatidylinositols , Plasmodium falciparum , Terpènes , Plasmodium falciparum/métabolisme , Apicoplastes/métabolisme , Glycosylphosphatidylinositols/métabolisme , Glycosylphosphatidylinositols/biosynthèse , Terpènes/métabolisme , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Érythrocytes/parasitologie , Érythrocytes/métabolisme , Humains , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/métabolisme , Animaux , Mérozoïtes/métabolisme
2.
PLoS Pathog ; 20(9): e1012514, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39298535

RÉSUMÉ

Plasmodium falciparum undergoes sequestration within deep tissues of the human body, spanning multiple organ systems with differing oxygen (O2) concentrations. The parasite is exposed to an even greater range of O2 concentrations as it transitions from the human to the mosquito host, suggesting a high level of plasticity as it navigates these different environments. In this review, we explore factors that may contribute to the parasite's response to different environmental O2 concentrations, recognizing that there are likely multiple pieces to this puzzle. We first review O2-sensing mechanisms, which exist in other apicomplexans such as Toxoplasma gondii and consider whether similar systems could exist in Plasmodium. Next, we review morphological and functional changes in P. falciparum's mitochondrion during the asexual-to-sexual stage transition and discuss how these changes overlap with the parasite's access to O2. We then delve into reactive oxygen species (ROS) as ROS production is influenced by O2 availability and oxidative stress impacts Plasmodium intraerythrocytic development. Lastly, given that the primary role of the red blood cell (RBC) is to deliver O2 throughout the body, we discuss how changes in the oxygenation status of hemoglobin, the RBC's O2-carrying protein and key nutrient for Plasmodium, could also potentially impact the parasite's growth during intraerythrocytic development. This review also highlights studies that have investigated P. falciparum biology under varying O2 concentrations and covers technical aspects related to P. falciparum cultivation in the lab, focusing on sources of technical variation that could alter the amount of dissolved O2 encountered by cells during in vitro experiments. Lastly, we discuss how culture systems can better replicate in vivo heterogeneity with respect to O2 gradients, propose ideas for further research in this area, and consider translational implications related to O2 and malaria.


Sujet(s)
Érythrocytes , Paludisme à Plasmodium falciparum , Oxygène , Plasmodium falciparum , Plasmodium falciparum/métabolisme , Plasmodium falciparum/physiologie , Humains , Oxygène/métabolisme , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/métabolisme , Érythrocytes/parasitologie , Érythrocytes/métabolisme , Animaux , Espèces réactives de l'oxygène/métabolisme , Étapes du cycle de vie/physiologie , Stress oxydatif
3.
Sci Rep ; 14(1): 20625, 2024 09 04.
Article de Anglais | MEDLINE | ID: mdl-39232051

RÉSUMÉ

Improved understanding of mosquito-plant feeding interactions can reveal insights into the ecological dynamics of pathogen transmission. In wild malaria vectors Anopheles gambiae s.l. and An. funestus group surveyed in selected dryland ecosystems of Kenya, we found a low level of plant feeding (2.8%) using biochemical cold anthrone test but uncovered 14-fold (41%) higher rate via DNA barcoding targeting the chloroplast rbcL gene. Plasmodium falciparum positivity was associated with either reduced or increased total sugar levels and varied by mosquito species. Gut analysis revealed the mosquitoes to frequently feed on acacia plants (~ 89%) (mainly Vachellia tortilis) in the family Fabaceae. Chemical analysis revealed 1-octen-3-ol (29.9%) as the dominant mosquito attractant, and the sugars glucose, sucrose, fructose, talose and inositol enriched in the vegetative parts, of acacia plants. Nutritional analysis of An. longipalpis C with high plant feeding rates detected fewer sugars (glucose, talose, fructose) compared to acacia plants. These results demonstrate (i) the sensitivity of DNA barcoding to detect plant feeding in malaria vectors, (ii) Plasmodium infection status affects energetic reserves of wild anopheline vectors and (iii) nutrient content and olfactory cues likely represent potent correlates of acacia preferred as a host plant by diverse malaria vectors. The results have relevance in the development of odor-bait control strategies including attractive targeted sugar-baits.


Sujet(s)
Anopheles , Codage à barres de l'ADN pour la taxonomie , Écosystème , Vecteurs moustiques , Plasmodium falciparum , Animaux , Vecteurs moustiques/parasitologie , Vecteurs moustiques/génétique , Anopheles/parasitologie , Anopheles/génétique , Anopheles/métabolisme , Kenya , Plasmodium falciparum/génétique , Plasmodium falciparum/métabolisme , Paludisme/transmission , Paludisme/parasitologie , Acacia/métabolisme , Acacia/parasitologie , Acacia/génétique , Comportement alimentaire/physiologie , Ribulose bisphosphate carboxylase/métabolisme , Ribulose bisphosphate carboxylase/génétique
4.
PLoS Biol ; 22(9): e3002801, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39292724

RÉSUMÉ

Malaria is a global and deadly human disease caused by the apicomplexan parasites of the genus Plasmodium. Parasite proliferation within human red blood cells (RBCs) is associated with the clinical manifestations of the disease. This asexual expansion within human RBCs begins with the invasion of RBCs by P. falciparum, which is mediated by the secretion of effectors from 2 specialized club-shaped secretory organelles in merozoite-stage parasites known as rhoptries. We investigated the function of the Rhoptry Neck Protein 11 (RON11), which contains 7 transmembrane domains and calcium-binding EF-hand domains. We generated conditional mutants of the P. falciparum RON11. Knockdown of RON11 inhibits parasite growth by preventing merozoite invasion. The loss of RON11 did not lead to any defects in processing of rhoptry proteins but instead led to a decrease in the amount of rhoptry proteins. We utilized ultrastructure expansion microscopy (U-ExM) to determine the effect of RON11 knockdown on rhoptry biogenesis. Surprisingly, in the absence of RON11, fully developed merozoites had only 1 rhoptry each. The single rhoptry in RON11-deficient merozoites were morphologically typical with a bulb and a neck oriented into the apical polar ring. Moreover, rhoptry proteins are trafficked accurately to the single rhoptry in RON11-deficient parasites. These data show that in the absence of RON11, the first rhoptry is generated during schizogony but upon the start of cytokinesis, the second rhoptry never forms. Interestingly, these single-rhoptry merozoites were able to attach to host RBCs but are unable to invade RBCs. Instead, RON11-deficient merozoites continue to engage with RBC for prolonged periods eventually resulting in echinocytosis, a result of secreting the contents from the single rhoptry into the RBC. Together, our data show that RON11 triggers the de novo biogenesis of the second rhoptry and functions in RBC invasion.


Sujet(s)
Érythrocytes , Mérozoïtes , Plasmodium falciparum , Protéines de protozoaire , Mérozoïtes/métabolisme , Érythrocytes/parasitologie , Érythrocytes/métabolisme , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Humains , Plasmodium falciparum/métabolisme , Plasmodium falciparum/génétique , Plasmodium falciparum/physiologie , Organites/métabolisme , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/métabolisme , Techniques de knock-down de gènes
5.
Future Microbiol ; 19(15): 1293-1307, 2024.
Article de Anglais | MEDLINE | ID: mdl-39235058

RÉSUMÉ

Aim: To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; 'PfMFSDT') as a drug transporter, using Candida glabrata for orthologous protein expression.Methods: Complementary Determining Sequence encoding PfMFSDT was integrated into the genome of genetically engineered C. glabrata strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter.Results & conclusion: The modified C. glabrata strain exhibited plasma membrane localization of PfMFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole. The nanomolar inhibitory effects of the drugs on the intra-erythrocytic growth of Plasmodium falciparum highlight their antimalarial properties. This study proposes PfMFSDT as a drug transporter, expanding the repertoire of the currently known antimalarial 'resistome'.


[Box: see text].


Sujet(s)
Antifongiques , Antipaludiques , Candida glabrata , Protéines de transport membranaire , Plasmodium falciparum , Plasmodium falciparum/génétique , Plasmodium falciparum/effets des médicaments et des substances chimiques , Plasmodium falciparum/métabolisme , Antifongiques/pharmacologie , Antifongiques/métabolisme , Protéines de transport membranaire/génétique , Protéines de transport membranaire/métabolisme , Candida glabrata/génétique , Candida glabrata/métabolisme , Candida glabrata/effets des médicaments et des substances chimiques , Antipaludiques/pharmacologie , Antipaludiques/métabolisme , Protéines de protozoaire/génétique , Protéines de protozoaire/métabolisme , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Itraconazole/pharmacologie , Kétoconazole/pharmacologie , Humains , Membrane cellulaire/métabolisme
6.
J Proteome Res ; 23(10): 4467-4479, 2024 Oct 04.
Article de Anglais | MEDLINE | ID: mdl-39262370

RÉSUMÉ

Complexome profiling is an experimental approach to identify interactions by integrating native separation of protein complexes and quantitative mass spectrometry. In a typical complexome profile, thousands of proteins are detected across typically ≤100 fractions. This relatively low resolution leads to similar abundance profiles between proteins that are not necessarily interaction partners. To address this challenge, we introduce the Gaussian Interaction Profiler (GIP), a Gaussian mixture modeling-based clustering workflow that assigns protein clusters by modeling the migration profile of each cluster. Uniquely, the GIP offers a way to prioritize actual interactors over spuriously comigrating proteins. Using previously analyzed human fibroblast complexome profiles, we show good performance of the GIP compared to other state-of-the-art tools. We further demonstrate GIP utility by applying it to complexome profiles from the transmissible lifecycle stage of malaria parasites. We unveil promising novel associations for future experimental verification, including an interaction between the vaccine target Pfs47 and the hypothetical protein PF3D7_0417000. Taken together, the GIP provides methodological advances that facilitate more accurate and automated detection of protein complexes, setting the stage for more varied and nuanced analyses in the field of complexome profiling. The complexome profiling data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD050751.


Sujet(s)
Plasmodium falciparum , Protéines de protozoaire , Plasmodium falciparum/métabolisme , Plasmodium falciparum/composition chimique , Protéines de protozoaire/composition chimique , Protéines de protozoaire/métabolisme , Protéines de protozoaire/analyse , Humains , Protéomique/méthodes , Loi normale , Spectrométrie de masse/méthodes , Cartographie d'interactions entre protéines/méthodes , Analyse de regroupements , Protéome/analyse
7.
Int J Mol Sci ; 25(17)2024 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-39273187

RÉSUMÉ

The Plasmodium falciparum mitochondrial electron transport chain (mETC) is responsible for essential metabolic pathways such as de novo pyrimidine synthesis and ATP synthesis. The mETC complex III (cytochrome bc1 complex) is responsible for transferring electrons from ubiquinol to cytochrome c and generating a proton gradient across the inner mitochondrial membrane, which is necessary for the function of ATP synthase. Recent studies have revealed that the composition of Plasmodium falciparum complex III (PfCIII) is divergent from humans, highlighting its suitability as a target for specific inhibition. Indeed, PfCIII is the target of the clinically used anti-malarial atovaquone and of several inhibitors undergoing pre-clinical trials, yet its role in parasite biology has not been thoroughly studied. We provide evidence that the universally conserved subunit, PfRieske, and the new parasite subunit, PfC3AP2, are part of PfCIII, with the latter providing support for the prediction of its divergent composition. Using inducible depletion, we show that PfRieske, and therefore, PfCIII as a whole, is essential for asexual blood stage parasite survival, in line with previous observations. We further found that depletion of PfRieske results in gametocyte maturation defects. These phenotypes are linked to defects in mitochondrial functions upon PfRieske depletion, including increased sensitivity to mETC inhibitors in asexual stages and decreased cristae abundance alongside abnormal mitochondrial morphology in gametocytes. This is the first study that explores the direct role of the PfCIII in gametogenesis via genetic disruption, paving the way for a better understanding of the role of mETC in the complex life cycle of these important parasites and providing further support for the focus of antimalarial drug development on this pathway.


Sujet(s)
Antipaludiques , Atovaquone , Complexe III de la chaîne respiratoire , Paludisme à Plasmodium falciparum , Mitochondries , Plasmodium falciparum , Plasmodium falciparum/effets des médicaments et des substances chimiques , Plasmodium falciparum/croissance et développement , Plasmodium falciparum/métabolisme , Plasmodium falciparum/génétique , Atovaquone/pharmacologie , Complexe III de la chaîne respiratoire/métabolisme , Complexe III de la chaîne respiratoire/génétique , Complexe III de la chaîne respiratoire/antagonistes et inhibiteurs , Antipaludiques/pharmacologie , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/traitement médicamenteux , Humains , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Protéines de protozoaire/antagonistes et inhibiteurs , Étapes du cycle de vie/effets des médicaments et des substances chimiques
8.
J Chem Inf Model ; 64(17): 6912-6925, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39193724

RÉSUMÉ

The convergence of biotechnology and artificial intelligence has the potential to transform drug development, especially in the field of therapeutic peptide design. Peptides are short chains of amino acids with diverse therapeutic applications that offer several advantages over small molecular drugs, such as targeted therapy and minimal side effects. However, limited oral bioavailability and enzymatic degradation have limited their effectiveness. With advances in deep learning techniques, innovative approaches to peptide design have become possible. In this work, we demonstrate HYDRA, a hybrid deep learning approach that leverages the distribution modeling capabilities of a diffusion model and combines it with a binding affinity maximization algorithm that can be used for de novo design of peptide binders for various target receptors. As an application, we have used our approach to design therapeutic peptides targeting proteins expressed by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) genes. The ability of HYDRA to generate peptides conditioned on the target receptor's binding sites makes it a promising approach for developing effective therapies for malaria and other diseases.


Sujet(s)
Peptides , Peptides/composition chimique , Peptides/métabolisme , Plasmodium falciparum/métabolisme , Diffusion , Protéines de protozoaire/métabolisme , Protéines de protozoaire/composition chimique , Modèles moléculaires , Apprentissage profond
9.
PLoS One ; 19(8): e0306975, 2024.
Article de Anglais | MEDLINE | ID: mdl-39146276

RÉSUMÉ

Malaria, an ancient mosquito-borne illness caused by Plasmodium parasites, is mostly treated with Artemisinin Combination Therapy (ACT). However, Single Nucleotide Polymorphisms (SNPs) mutations in the P. falciparum Kelch 13 (PfK13) protein have been associated with artemisinin resistance (ART-R). Therefore, this study aims to generate PfK13 recombinant proteins incorporating of two specific SNPs mutations, PfK13-V494I and PfK13-N537I, and subsequently analyze their binding interactions with artemisinin (ART). The recombinant proteins of PfK13 mutations and the Wild Type (WT) variant were expressed utilizing a standard protein expression protocol with modifications and subsequently purified via IMAC and confirmed with SDS-PAGE analysis and Orbitrap tandem mass spectrometry. The binding interactions between PfK13-V494I and PfK13-N537I propeller domain proteins ART were assessed through Isothermal Titration Calorimetry (ITC) and subsequently validated using fluorescence spectrometry. The protein concentrations obtained were 0.3 mg/ml for PfK13-WT, 0.18 mg/ml for PfK13-V494I, and 0.28 mg/ml for PfK13-N537I. Results obtained for binding interaction revealed an increased fluorescence intensity in the mutants PfK13-N537I (83 a.u.) and PfK13-V494I (143 a.u.) compared to PfK13-WT (33 a.u.), indicating increased exposure of surface proteins because of the looser binding between PfK13 protein mutants with ART. This shows that the PfK13 mutations may induce alterations in the binding interaction with ART, potentially leading to reduced effectiveness of ART and ultimately contributing to ART-R. However, this study only elucidated one facet of the contributing factors that could serve as potential indicators for ART-R and further investigation should be pursued in the future to comprehensively explore this complex mechanism of ART-R.


Sujet(s)
Artémisinines , Plasmodium falciparum , Liaison aux protéines , Protéines de protozoaire , Protéines recombinantes , Artémisinines/pharmacologie , Plasmodium falciparum/génétique , Plasmodium falciparum/effets des médicaments et des substances chimiques , Plasmodium falciparum/métabolisme , Protéines recombinantes/métabolisme , Protéines recombinantes/génétique , Protéines de protozoaire/génétique , Protéines de protozoaire/métabolisme , Protéines de protozoaire/composition chimique , Mutation , Polymorphisme de nucléotide simple , Antipaludiques/pharmacologie , Résistance aux substances/génétique
10.
Microbiol Spectr ; 12(10): e0122924, 2024 Oct 03.
Article de Anglais | MEDLINE | ID: mdl-39162502

RÉSUMÉ

Apicomplexan parasites mobilize ionic calcium (Ca2+) from intracellular stores to promote microneme secretion and facilitate motile processes including gliding motility, invasion, and egress. Recently, a multipass transmembrane protein, ICM1, was found to be important for calcium mobilization in Plasmodium falciparum and P. berghei. Comparative genomics and phylogenetics have revealed putative ICM orthologs in Toxoplasma gondii and other apicomplexans. T. gondii possesses two ICM-like proteins, which we have named TgICM1-L (TGGT1_305470) and TgICM2-L (TGGT1_309910). TgICM1-L and TgICM2-L localized to undefined puncta within the parasite cytosol. TgICM1-L and TgICM2-L are individually dispensable in tachyzoites, suggesting a potential compensatory relationship between the two proteins may exist. Surprisingly, mutants lacking both TgICM1-L and TgICM2-L are fully viable, exhibiting no obvious defects in growth, microneme secretion, invasion, or egress. Furthermore, loss of TgICM1-L, TgICM2-L, or both does not impair the parasite's ability to mobilize Ca2+. These findings suggest that additional proteins may participate in Ca2+ mobilization or import in Apicomplexa, reducing the dependence on ICM-like proteins in T. gondii. Collectively, these results highlight similar yet distinct mechanisms of Ca2+ mobilization between T. gondii and Plasmodium.IMPORTANCECa2+ signaling plays a crucial role in governing apicomplexan motility; yet, the mechanisms underlying Ca2+ mobilization from intracellular stores in these parasites remain unclear. In Plasmodium, the necessity of ICM1 for Ca2+ mobilization raises the question of whether this mechanism is conserved in other apicomplexans. Investigation into the orthologs of Plasmodium ICM1 in T. gondii revealed a differing requirement for ICM proteins between the two parasites. This study suggests that T. gondii employs ICM-independent mechanisms to regulate Ca2+ homeostasis and mobilization. Proteins involved in Ca2+ signaling in apicomplexans represent promising targets for therapeutic development.


Sujet(s)
Calcium , Protéines de protozoaire , Toxoplasma , Toxoplasma/génétique , Toxoplasma/métabolisme , Protéines de protozoaire/génétique , Protéines de protozoaire/métabolisme , Calcium/métabolisme , Animaux , Humains , Souris , Plasmodium/génétique , Plasmodium/métabolisme , Plasmodium falciparum/génétique , Plasmodium falciparum/métabolisme
11.
J Cell Sci ; 137(20)2024 10 15.
Article de Anglais | MEDLINE | ID: mdl-38962997

RÉSUMÉ

Lipid droplets (LDs) are organelles that are central to lipid and energy homeostasis across all eukaryotes. In the malaria-causing parasite Plasmodium falciparum the roles of LDs in lipid acquisition from its host cells and their metabolism are poorly understood, despite the high demand for lipids in parasite membrane synthesis. We systematically characterised LD size, composition and dynamics across the disease-causing blood infection. Applying split fluorescence emission analysis and three-dimensional (3D) focused ion beam-scanning electron microscopy (FIB-SEM), we observed a decrease in LD size in late schizont stages. LD contraction likely signifies a switch from lipid accumulation to lipid utilisation in preparation for parasite egress from host red blood cells. We demonstrate connections between LDs and several parasite organelles, pointing to potential functional interactions. Chemical inhibition of triacylglyerol (TAG) synthesis or breakdown revealed essential LD functions for schizogony and in counteracting lipid toxicity. The dynamics of lipid synthesis, storage and utilisation in P. falciparum LDs might provide a target for new anti-malarial intervention strategies.


Sujet(s)
Érythrocytes , Gouttelettes lipidiques , Paludisme à Plasmodium falciparum , Plasmodium falciparum , Plasmodium falciparum/métabolisme , Gouttelettes lipidiques/métabolisme , Humains , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/métabolisme , Érythrocytes/parasitologie , Érythrocytes/métabolisme , Métabolisme lipidique , Triglycéride/métabolisme
12.
J Biol Chem ; 300(8): 107557, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39002668

RÉSUMÉ

Glycosylphosphatidylinositol (GPI) anchor protein modification in Plasmodium species is well known and represents the principal form of glycosylation in these organisms. The structure and biosynthesis of GPI anchors of Plasmodium spp. has been primarily studied in the asexual blood stage of Plasmodium falciparum and is known to contain the typical conserved GPI structure of EtN-P-Man3GlcN-PI. Here, we have investigated the circumsporozoite protein (CSP) for the presence of a GPI anchor. CSP is the major surface protein of Plasmodium sporozoites, the infective stage of the malaria parasite. While it is widely assumed that CSP is a GPI-anchored cell surface protein, compelling biochemical evidence for this supposition is absent. Here, we employed metabolic labeling and mass-spectrometry-based approaches to confirm the presence of a GPI anchor in CSP. Biosynthetic radiolabeling of CSP with [3H]-palmitic acid and [3H]-ethanolamine, with the former being base-labile and therefore ester-linked, provided strong evidence for the presence of a GPI anchor on CSP, but these data alone were not definitive. To provide further evidence, immunoprecipitated CSP was analyzed for the presence of myo-inositol (a characteristic component of GPI anchor) using strong acid hydrolysis and GC-MS for highly sensitive and quantitative detection. The single ion monitoring (SIM) method for GC-MS analysis confirmed the presence of the myo-inositol component in CSP. Taken together, these data provide confidence that the long-assumed presence of a GPI anchor on this important parasite protein is correct.


Sujet(s)
Membrane cellulaire , Glycosylphosphatidylinositols , Plasmodium falciparum , Protéines de protozoaire , Sporozoïtes , Protéines de protozoaire/métabolisme , Glycosylphosphatidylinositols/métabolisme , Glycosylphosphatidylinositols/composition chimique , Membrane cellulaire/métabolisme , Sporozoïtes/métabolisme , Plasmodium falciparum/métabolisme , Animaux , Protéines membranaires/métabolisme , Humains
13.
FEBS J ; 291(19): 4349-4371, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39003571

RÉSUMÉ

Non-canonical nucleotides, generated as oxidative metabolic by-products, significantly threaten the genome integrity of Plasmodium falciparum and thereby, their survival, owing to their mutagenic effects. PfHAM1, an evolutionarily conserved inosine/xanthosine triphosphate pyrophosphohydrolase, maintains nucleotide homeostasis in the malaria parasite by removing non-canonical nucleotides, although structure-function intricacies are hitherto poorly reported. Here, we report the X-ray crystal structure of PfHAM1, which revealed a homodimeric structure, additionally validated by size-exclusion chromatography-multi-angle light scattering analysis. The two monomeric units in the dimer were aligned in a parallel fashion, and critical residues associated with substrate and metal binding were identified, wherein a notable structural difference was observed in the ß-sheet main frame compared to human inosine triphosphate pyrophosphatase. PfHAM1 exhibited Mg++-dependent pyrophosphohydrolase activity and the highest binding affinity to dITP compared to other non-canonical nucleotides as measured by isothermal titration calorimetry. Modifying the pfham1 genomic locus followed by live-cell imaging of expressed mNeonGreen-tagged PfHAM1 demonstrated its ubiquitous presence in the cytoplasm across erythrocytic stages with greater expression in trophozoites and schizonts. Interestingly, CRISPR-Cas9/DiCre recombinase-guided pfham1-null P. falciparum survived in culture under standard growth conditions, indicating its assistive role in non-canonical nucleotide clearance during intra-erythrocytic stages. This is the first comprehensive structural and functional report of PfHAM1, an atypical nucleotide-cleansing enzyme in P. falciparum.


Sujet(s)
Plasmodium falciparum , Protéines de protozoaire , Pyrophosphatases , Plasmodium falciparum/génétique , Plasmodium falciparum/enzymologie , Plasmodium falciparum/métabolisme , Humains , Cristallographie aux rayons X , Pyrophosphatases/génétique , Pyrophosphatases/métabolisme , Pyrophosphatases/composition chimique , Protéines de protozoaire/génétique , Protéines de protozoaire/métabolisme , Protéines de protozoaire/composition chimique , Relation structure-activité , Modèles moléculaires , Séquence d'acides aminés , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/génétique , Liaison aux protéines , Multimérisation de protéines , Nucléotides/métabolisme
14.
Nucleic Acids Res ; 52(17): 10161-10179, 2024 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-38966997

RÉSUMÉ

Development of the malaria parasite, Plasmodium falciparum, is regulated by a limited number of sequence-specific transcription factors (TFs). However, the mechanisms by which these TFs recognize genome-wide binding sites is largely unknown. To address TF specificity, we investigated the binding of two TF subsets that either bind CACACA or GTGCAC DNA sequence motifs and further characterized two additional ApiAP2 TFs, PfAP2-G and PfAP2-EXP, which bind unique DNA motifs (GTAC and TGCATGCA). We also interrogated the impact of DNA sequence and chromatin context on P. falciparum TF binding by integrating high-throughput in vitro and in vivo binding assays, DNA shape predictions, epigenetic post-translational modifications, and chromatin accessibility. We found that DNA sequence context minimally impacts binding site selection for paralogous CACACA-binding TFs, while chromatin accessibility, epigenetic patterns, co-factor recruitment, and dimerization correlate with differential binding. In contrast, GTGCAC-binding TFs prefer different DNA sequence context in addition to chromatin dynamics. Finally, we determined that TFs that preferentially bind divergent DNA motifs may bind overlapping genomic regions due to low-affinity binding to other sequence motifs. Our results demonstrate that TF binding site selection relies on a combination of DNA sequence and chromatin features, thereby contributing to the complexity of P. falciparum gene regulatory mechanisms.


Sujet(s)
Chromatine , Motifs nucléotidiques , Plasmodium falciparum , Liaison aux protéines , Protéines de protozoaire , Facteurs de transcription , Plasmodium falciparum/génétique , Plasmodium falciparum/métabolisme , Chromatine/métabolisme , Chromatine/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Sites de fixation , Humains , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Protéines de protozoaire/composition chimique , Paludisme à Plasmodium falciparum/parasitologie , Séquence nucléotidique , ADN/métabolisme , ADN/composition chimique , Épigenèse génétique , ADN des protozoaires/métabolisme , ADN des protozoaires/génétique
15.
J Biol Chem ; 300(9): 107608, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39084459

RÉSUMÉ

Vacuolar type ATPases (V-type ATPases) are highly conserved hetero-multisubunit proton pumping machineries found in all eukaryotes. They utilize ATP hydrolysis to pump protons, acidifying intracellular or extracellular compartments, and are thus crucial for various biological processes. Despite their evolutionary conservation in malaria parasites, this proton pump remains understudied. To understand the localization and biological functions of Plasmodium falciparum V-type ATPase, we employed CRISPR/Cas9 to endogenously tag the subunit A of the V1 domain. V1A (PF3D7_1311900) was tagged with a triple hemagglutinin epitope and the TetR-DOZI-aptamer system for conditional expression under the regulation of anhydrotetracycline. Via immunofluorescence assays, we identified that V-type ATPase is expressed throughout the intraerythrocytic developmental cycle and is mainly localized to the digestive vacuole and parasite plasma membrane. Immuno-electron microscopy further revealed that V-type ATPase is also localized on secretory organelles in merozoites. Knockdown of V1A led to cytosolic pH imbalance and blockage of hemoglobin digestion in the digestive vacuole, resulting in an arrest of parasite development in the trophozoite-stage and, ultimately, parasite demise. Using bafilomycin A1, a specific inhibitor of V-type ATPases, we found that the P. falciparum V-type ATPase is likely involved in parasite invasion but is not critical for ring-stage development. Further, we detected a large molecular weight complex in blue native-PAGE (∼1.0 MDa), corresponding to the total molecular weights of V1 and Vo domains. Together, we show that V-type ATPase is localized to multiple subcellular compartments in P. falciparum, and its functionality throughout the asexual cycle varies depending on the parasite developmental stages.


Sujet(s)
Plasmodium falciparum , Protéines de protozoaire , Vacuolar Proton-Translocating ATPases , Plasmodium falciparum/enzymologie , Plasmodium falciparum/croissance et développement , Plasmodium falciparum/génétique , Plasmodium falciparum/métabolisme , Vacuolar Proton-Translocating ATPases/métabolisme , Vacuolar Proton-Translocating ATPases/génétique , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Érythrocytes/parasitologie , Érythrocytes/métabolisme , Mérozoïtes/métabolisme , Mérozoïtes/croissance et développement , Mérozoïtes/enzymologie , Humains , Vacuoles/métabolisme , Reproduction asexuée , Concentration en ions d'hydrogène , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/métabolisme
16.
Proc Natl Acad Sci U S A ; 121(28): e2403442121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38968107

RÉSUMÉ

Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.


Sujet(s)
Hépatocytes , Foie , Paludisme à Plasmodium falciparum , Plasmodium falciparum , Protéines de protozoaire , Sporozoïtes , Plasmodium falciparum/croissance et développement , Plasmodium falciparum/génétique , Plasmodium falciparum/métabolisme , Animaux , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Sporozoïtes/métabolisme , Sporozoïtes/croissance et développement , Souris , Foie/parasitologie , Foie/métabolisme , Humains , Hépatocytes/parasitologie , Hépatocytes/métabolisme , Paludisme à Plasmodium falciparum/parasitologie
17.
Biochim Biophys Acta Gen Subj ; 1868(9): 130665, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38969256

RÉSUMÉ

BACKGROUND: The malaria parasite Plasmodium falciparum replicates within red blood cells, then ruptures the cell in a process called egress in order to continue its life cycle. Egress is regulated by a proteolytic cascade involving an essential parasite subtilisin-like serine protease called SUB1. Maturation of SUB1 initiates in the parasite endoplasmic reticulum with autocatalytic cleavage of an N-terminal prodomain (p31), which initially remains non-covalently bound to the catalytic domain, p54. Further trafficking of the p31-p54 complex results in formation of a terminal p47 form of the SUB1 catalytic domain. Recent work has implicated a parasite aspartic protease, plasmepsin X (PMX), in maturation of the SUB1 p31-p54 complex through controlled cleavage of the prodomain p31. METHODS: Here we use biochemical and enzymatic analysis to examine the activation of SUB1 by PMX. RESULTS: We show that both p31 and p31-p54 are largely dimeric under the relatively acidic conditions to which they are likely exposed to PMX in the parasite. We confirm the sites within p31 that are cleaved by PMX and determine the order of cleavage. We find that cleavage by PMX results in rapid loss of the capacity of p31 to act as an inhibitor of SUB1 catalytic activity and we directly demonstrate that exposure to PMX of recombinant p31-p54 complex activates SUB1 activity. CONCLUSIONS: Our results confirm that precise, PMX-mediated cleavage of the SUB1 prodomain activates SUB1 enzyme activity. GENERAL SIGNIFICANCE: Our findings elucidate the role of PMX in activation of SUB1, a key effector of malaria parasite egress.


Sujet(s)
Aspartic acid endopeptidases , Plasmodium falciparum , Protéines de protozoaire , Plasmodium falciparum/enzymologie , Plasmodium falciparum/métabolisme , Aspartic acid endopeptidases/métabolisme , Aspartic acid endopeptidases/génétique , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Protéines de protozoaire/composition chimique , Protéolyse , Humains , Subtilisines/métabolisme , Domaine catalytique , Domaines protéiques , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/métabolisme , Érythrocytes/parasitologie , Érythrocytes/métabolisme
18.
Nat Commun ; 15(1): 5794, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987258

RÉSUMÉ

Plasmodium falciparum is the causative agent of malaria and remains a pathogen of global importance. Asexual blood stage replication, via a process called schizogony, is an important target for the development of new antimalarials. Here we use ultrastructure-expansion microscopy to probe the organisation of the chromosome-capturing kinetochores in relation to the mitotic spindle, the centriolar plaque, the centromeres and the apical organelles during schizont development. Conditional disruption of the kinetochore components, PfNDC80 and PfNuf2, is associated with aberrant mitotic spindle organisation, disruption of the centromere marker, CENH3 and impaired karyokinesis. Surprisingly, kinetochore disruption also leads to disengagement of the centrosome equivalent from the nuclear envelope. Severing the connection between the nucleus and the apical complex leads to the formation of merozoites lacking nuclei. Here, we show that correct assembly of the kinetochore/spindle complex plays a previously unrecognised role in positioning the nascent apical complex in developing P. falciparum merozoites.


Sujet(s)
Centrosome , Kinétochores , Plasmodium falciparum , Protéines de protozoaire , Appareil du fuseau , Kinétochores/métabolisme , Plasmodium falciparum/métabolisme , Plasmodium falciparum/physiologie , Centrosome/métabolisme , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Appareil du fuseau/métabolisme , Humains , Mérozoïtes/métabolisme , Mérozoïtes/physiologie , Mitose , Centromère/métabolisme , Enveloppe nucléaire/métabolisme , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/métabolisme
19.
Nat Commun ; 15(1): 5219, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38890312

RÉSUMÉ

With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.


Sujet(s)
Acétamides , Antipaludiques , Plasmodium falciparum , Protéines de protozoaire , Plasmodium falciparum/effets des médicaments et des substances chimiques , Plasmodium falciparum/génétique , Plasmodium falciparum/métabolisme , Plasmodium falciparum/croissance et développement , Acétamides/pharmacologie , Acétamides/composition chimique , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Antipaludiques/pharmacologie , Antipaludiques/composition chimique , Animaux , Protéines de transport/métabolisme , Protéines de transport/génétique , Mutation , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/prévention et contrôle , Paludisme à Plasmodium falciparum/traitement médicamenteux , Humains , Résistance aux substances/génétique , Résistance aux substances/effets des médicaments et des substances chimiques , Étapes du cycle de vie/effets des médicaments et des substances chimiques
20.
J Biol Chem ; 300(8): 107496, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38925325

RÉSUMÉ

Emerging Artemisinin (ART) resistance in Plasmodium falciparum (Pf) poses challenges for the discovery of novel drugs to tackle ART-resistant parasites. Concentrated efforts toward the ART resistance mechanism indicated a strong molecular link of ART resistance with upregulated expression of unfolded protein response pathways involving Prefoldins (PFDs). However, a complete characterization of PFDs as molecular players taking part in ART resistance mechanism, and discovery of small molecule inhibitors to block this process have not been identified to date. Here, we functionally characterized all Pf Prefoldin subunits (PFD1-6) and established a causative role played by PFDs in ART resistance by demonstrating their expression in intra-erythrocytic parasites along with their interactions with Kelch13 protein through immunoprecipitation coupled MS/MS analysis. Systematic biophysical interaction analysis between all subunits of PFDs revealed their potential to form a complex. The role of PFDs in ART resistance was confirmed in orthologous yeast PFD6 mutants, where PfPFD6 expression in yeast mutants reverted phenotype to ART resistance. We identified an FDA-approved drug "Biperiden" that restricts the formation of Prefoldin complex and inhibits its interaction with its key parasite protein substrates, MSP-1 and α-tubulin-I. Moreover, Biperiden treatment inhibits the parasite growth in ART-sensitive Pf3D7 and resistant Pf3D7k13R539T strains. Ring survival assays that are clinically relevant to analyze ART resistance in Pf3D7k13R539T parasites demonstrate the potency of BPD to inhibit the growth of survivor parasites. Overall, our study provides the first evidence of the role of PfPFDs in ART resistance mechanisms and opens new avenues for the management of resistant parasites.


Sujet(s)
Antipaludiques , Artémisinines , Résistance aux substances , Paludisme à Plasmodium falciparum , Plasmodium falciparum , Protéines de protozoaire , Réponse aux protéines mal repliées , Plasmodium falciparum/génétique , Plasmodium falciparum/effets des médicaments et des substances chimiques , Plasmodium falciparum/métabolisme , Artémisinines/pharmacologie , Réponse aux protéines mal repliées/effets des médicaments et des substances chimiques , Résistance aux substances/effets des médicaments et des substances chimiques , Résistance aux substances/génétique , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Humains , Antipaludiques/pharmacologie , Paludisme à Plasmodium falciparum/parasitologie , Paludisme à Plasmodium falciparum/traitement médicamenteux , Paludisme à Plasmodium falciparum/génétique , Paludisme à Plasmodium falciparum/métabolisme , Chaperons moléculaires/métabolisme , Chaperons moléculaires/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE