Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.596
Filtrer
1.
Plant Cell Rep ; 43(10): 248, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39354144

RÉSUMÉ

KEY MESSAGE: Embryo abortion at the heart-shaped stage is the main reason for the failure of interspecific hybridization of hydrangea, and salicylic acid plays a key role during embryo abortion. Difficulties in obtaining seeds from interspecific hybridization between Hydrangea macrophylla and H. arborescens had severely restricted the process of breeding new hydrangea varieties. To clarify the cause of reproductive barriers, an interspecific hybridization was made between H. macrophylla 'Endless Summer' (female parent) and H. arborescens 'Annabelle' (male parent). The results showed that both parents' floral organs developed normally, 'Annabelle' had high pollen viability (84.83% at 8 h after incubation), and the pollen tube could enter into the ovule of 'Endless Summer' at 72 h after pollination. Therefore, the pre-fertilization barrier was not the main reason for the failure of interspecific hybridization. However, observation of the embryo development by paraffin sections showed that the embryo was aborted at the heart-shaped stage. In addition, salicylic acid (SA) content was significantly higher (fourfold, P < 0.01) at 21 days after pollination (DAP) as compared to that of 17 DAP, which means SA may be closely correlated with embryo development. A total of 957 metabolites were detected, among which 78 were significantly different. During the embryo abortion, phenylpropanoids and polyketides were significantly down-regulated, while organic oxygen compounds were significantly up-regulated. Further analysis indicated that the metabolic pathway was enriched in the shikimic acid biosynthesis pathway, which suggests that more SA was synthesized. Taken together, it can be reasonably speculated that SA plays a key role leading to embryo abortion underlying the interspecific hybridization between Hydrangea macrophylla and H. arborescens. The result is helpful to direct the breeding of hydrangea through distant hybridization.


Sujet(s)
Hybridation génétique , Hydrangea , Acide salicylique , Graines , Acide salicylique/métabolisme , Graines/génétique , Graines/métabolisme , Graines/croissance et développement , Hydrangea/génétique , Hydrangea/métabolisme , Métabolomique/méthodes , Pollinisation , Pollen/génétique , Pollen/métabolisme , Pollen/croissance et développement , Fleurs/génétique , Fleurs/métabolisme , Fleurs/croissance et développement , Régulation de l'expression des gènes végétaux
2.
Int J Mol Sci ; 25(17)2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39273285

RÉSUMÉ

Tomato plants favor warmth, making them particularly susceptible to cold conditions, especially their reproductive development. Therefore, understanding how pollen reacts to cold stress is vital for selecting and improving cold-resistant tomato varieties. The programmed cell death (PCD) in the tapetum is particularly susceptible to cold temperatures which could hinder the degradation of the tapetal layer in the anthers, thus affecting pollen development. However, it is not clear yet how genes integral to tapetal degradation respond to cold stress. Here, we report that SlHB8, working upstream of the conserved genetic module DYT1-TDF1-AMS-MYB80, is crucial for regulating cold tolerance in tomato anthers. SlHB8 expression increases in the tapetum when exposed to low temperatures. CRISPR/Cas9-generated SlHB8-knockout mutants exhibit improved pollen cold tolerance due to the reduced temperature sensitivity of the tapetum. SlHB8 directly upregulates SlDYT1 and SlMYB80 by binding to their promoters. In normal anthers, cold treatment boosts SlHB8 levels, which then elevates the expression of genes like SlDYT1, SlTDF1, SlAMS, and SlMYB80; however, slhb8 mutants do not show this gene activation during cold stress, leading to a complete blockage of delayed tapetal programmed cell death (PCD). Furthermore, we found that SlHB8 can interact with both SlTDF1 and SlMYB80, suggesting the possibility that SlHB8 might regulate tapetal PCD at the protein level. This study sheds light on molecular mechanisms of anther adaptation to temperature fluctuations.


Sujet(s)
Basse température , Régulation de l'expression des gènes végétaux , Protéines végétales , Solanum lycopersicum , Solanum lycopersicum/génétique , Solanum lycopersicum/métabolisme , Solanum lycopersicum/physiologie , Protéines végétales/génétique , Protéines végétales/métabolisme , Réponse au choc froid/génétique , Mort cellulaire/génétique , Fleurs/génétique , Fleurs/croissance et développement , Fleurs/physiologie , Pollen/génétique , Pollen/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
3.
Nat Commun ; 15(1): 7796, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39242635

RÉSUMÉ

Epigenetic modifications are crucial for plant development. EFD (Exine Formation Defect) encodes a SAM-dependent methyltransferase that is essential for the pollen wall pattern formation and male fertility in Arabidopsis. In this study, we find that the expression of DRM2, a de novo DNA methyltransferase in plants, complements for the defects in efd, suggesting its potential de novo DNA methyltransferase activity. Genetic analysis indicates that EFD functions through HB21, as the knockout of HB21 fully restores fertility in efd mutants. DNA methylation and histone modification analyses reveal that EFD represses the transcription of HB21 through epigenetic mechanisms. Additionally, we demonstrate that HB21 directly represses the expression of genes crucial for pollen formation and anther dehiscence, including CalS5, RPG1/SWEET8, CYP703A2 and NST2. Collectively, our findings unveil a double negative regulatory cascade mediated by epigenetic modifications that coordinates anther development, offering insights into the epigenetic regulation of this process.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Méthylation de l'ADN , Épigenèse génétique , Fleurs , Régulation de l'expression des gènes végétaux , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Fleurs/génétique , Fleurs/croissance et développement , Pollen/croissance et développement , Pollen/génétique , Pollen/métabolisme , Methyltransferases/métabolisme , Methyltransferases/génétique , Mutation , Végétaux génétiquement modifiés
4.
Nat Commun ; 15(1): 8352, 2024 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-39333110

RÉSUMÉ

Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Either one of two DNGs, MATERNAL DEREPRESSION OF R1 (MDR1) or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen-segregating mutations in both genes, we identify 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in other tissues. They are unusual in their tendency to lack introns but even more so in their TE-like methylation (teM) in coding DNA. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with the potential for extremely high expression in pollen but constitutive silencing elsewhere.


Sujet(s)
DNA Glycosylases , Méthylation de l'ADN , Régulation de l'expression des gènes végétaux , Pollen , Zea mays , Zea mays/génétique , DNA Glycosylases/métabolisme , DNA Glycosylases/génétique , Pollen/génétique , Pollen/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Mutation , Tube pollinique/métabolisme , Tube pollinique/génétique , Tube pollinique/croissance et développement
6.
Plant Physiol Biochem ; 215: 109015, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39133983

RÉSUMÉ

Male sterile lines are key resources for hybrid seed production and for ensuring high varietal purity. However, the genes and mechanisms underlying sesame male sterility remain largely unknown. Hence, this study identified an O-acetylserine(thiol)lyase gene SiOASTL1 and functionally characterized its roles in inducing defective anther development. Spatiotemporal expression analysis revealed that SiOASTL1 is significantly (2.7 fold) up-regulated in sterile sesame anthers at the microspore stage compared with fertile ones. Sequence and phylogenetic analyses showed that SiOASTL1 is homologous to Arabidopsis OAS-TL plastid isoforms. We thus overexpressed SiOASTL1 in Arabidopsis to unravel its regulatory roles. Cytological observation revealed that SiOASTL1 overexpression transformed transgenic plants into male sterile lines arising at the microspore development stage. SiOASTL1 overexpression decreased cysteine biosynthesis and down-regulated the expression of the sporopollenin synthesis-related genes, including AtTKPR1, AtTKPR2, AtPKSA, and AtPKSB in transgenic Arabidopsis. Consequently, the tapetum programmed cell death (PCD) was delayed, resulting in the formation of defective pollen grains with irregular walls and empty cytoplasm. Our findings prove that the induction of SiOASTL1 expression disrupts pollen development and contributes to sesame male sterility. Moreover, these results suggest that genetic manipulation of SiOASTL1 expression may facilitate the development of new hybrid varieties in sesame and other crops.


Sujet(s)
Apoptose , Arabidopsis , Régulation de l'expression des gènes végétaux , Stérilité des plantes , Végétaux génétiquement modifiés , Sesamum , Sesamum/génétique , Sesamum/métabolisme , Stérilité des plantes/génétique , Arabidopsis/génétique , Apoptose/génétique , Pollen/génétique , Pollen/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Fleurs/génétique , Phylogenèse
7.
Int J Biol Macromol ; 278(Pt 2): 134856, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39168224

RÉSUMÉ

Male sterility is used in the production of hybrid seeds and can improve the breeding efficiency of cotton hybrids. Reactive oxygen species is closely associated with the tapetum and pollen development, but their relationship in cotton male fertility remains unclear. In this study, we comprehensively compared the cytology and proteome of the anthers from an Upland cotton (Gossypium hirsutum) material, Shida 98 (WT), and its nearly-isogenic male sterile line Shida 98A (MS). Cytology indicated delayed PCD in the tapetum and defects in microspores in MS anthers. And further studies revealed disruption of ROS homeostasis. Proteomic analysis identified proteins with differential abundance mainly being related to redox homeostasis, protein folding, and apoptotic signaling pathways. GhAPX1 interacted with GhHSP70 and played a crucial role in the development of cotton anthers. Exogenous application of HSP70 inhibitor increased H2O2 content and decreased the activity of APX1 and pollen viability. The GhAPX1 mutants generated by CRISPR/Cas9-mediated gene editing exhibited premature degradation of the tapetum, significant decrease in pollen viability, and significant increase in H2O2 content. Altogether, our results imply HSP70 and APX1 being the key players jointly regulating male fertility by mediating ROS homeostasis. These results provide insights into the proteins associated with male fertility.


Sujet(s)
Gossypium , Protéines du choc thermique HSP70 , Homéostasie , Protéines végétales , Pollen , Espèces réactives de l'oxygène , Gossypium/génétique , Gossypium/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Espèces réactives de l'oxygène/métabolisme , Pollen/génétique , Pollen/métabolisme , Protéines du choc thermique HSP70/métabolisme , Protéines du choc thermique HSP70/génétique , Stérilité des plantes/génétique , Fécondité , Régulation de l'expression des gènes végétaux , Protéomique/méthodes , Peroxyde d'hydrogène/métabolisme
8.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39201600

RÉSUMÉ

The pollen wall protects pollen during dispersal and is critical for pollination recognition. In the Poaceae family, the pollen exine stereostructure exhibits a high degree of conservation with similar patterns across species. However, there remains controversy regarding the conservation of key factors involved in its formation among various Poaceae species. EPAD1, as a gene specific to the Poaceae family, and its orthologous genes play a conserved role in pollen wall formation in wheat and rice. However, they do not appear to have significant functions in maize. To further confirm the conserved function of EPAD1 in Poaceae, we performed an analysis on four EPAD1 orthologs from two distinct sub-clades within the Poaceae family. The two functional redundant barley EPAD1 genes (HvEPAD1 and HvEPAD2) from the BOP clade, along with the single copy of sorghum (SbEPAD1) and millet (SiEPAD1) from the PACMAD clade were examined. The CRISPR-Cas9-generated mutants all exhibited defects in pollen wall formation, consistent with previous findings on EPAD1 in rice and wheat. Interestingly, in barley, hvepad2 single mutant also showed apical spikelets abortion, aligning with a decreased expression level of HvEPAD1 and HvEPAD2 from the apical to the bottom of the spike. Our finding provides evidence that EPAD1 orthologs contribute to Poaceae specific pollen exine pattern formation via maintaining primexine integrity despite potential variations in copy numbers across different species.


Sujet(s)
Régulation de l'expression des gènes végétaux , Protéines végétales , Pollen , Pollen/génétique , Pollen/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Hordeum/génétique , Hordeum/métabolisme , Oryza/génétique , Oryza/métabolisme , Phylogenèse , Sorghum/génétique , Sorghum/métabolisme , Zea mays/génétique , Mutation
9.
Nat Commun ; 15(1): 7078, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39152128

RÉSUMÉ

Heterochromatin de-condensation in companion gametic cells is conserved in both plants and animals. In plants, microspore undergoes asymmetric pollen mitosis (PMI) to produce a vegetative cell (VC) and a generative cell (GC). Subsequently, the GC undergoes pollen mitosis (PMII) to produce two sperm cells (SC). Consistent with heterochromatin de-condensation in the VC, H3K9me2, a heterochromatin mark, is barely detected in VC. However, how H3K9me2 is differentially regulated during pollen mitosis remains unclear. Here, we show that H3K9me2 is gradually evicted from the VC since PMI but remain unchanged in the GC and SC. ARID1, a pollen-specific transcription factor that facilitates PMII, promotes H3K9me2 maintenance in the GC/SC but slows down its eviction in the VC. The genomic targets of ARID1 mostly overlaps with H3K9me2 loci, and ARID1 recruits H3K9 methyltransferase SUVH6. Our results uncover that differential pattern of H3K9me2 between two cell types is regulated by ARID1 during pollen mitosis.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Régulation de l'expression des gènes végétaux , Histone , Mitose , Pollen , Facteurs de transcription , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Hétérochromatine/métabolisme , Hétérochromatine/génétique , Histone-lysine N-methyltransferase/métabolisme , Histone-lysine N-methyltransferase/génétique , Histone/métabolisme , Histone/génétique , Méthylation , Pollen/métabolisme , Pollen/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique
10.
PLoS One ; 19(8): e0308950, 2024.
Article de Anglais | MEDLINE | ID: mdl-39150928

RÉSUMÉ

Eusocial insects, such as stingless bees (Meliponini), depend on division of labour, overlapping generations, and collaborative brood care to ensure the functionality and success of their colony. Female workers transition through a range of age-specific tasks during their lifespan (i.e., age-polyethism) and play a central role in the success of a colony. These age-specific tasks (e.g., brood care or foraging) often closely coincide with key physiological changes necessary to ensure optimal performance. However, our understanding of how nutrition, age, and polyethism may affect the development of such physiological traits in stingless bees remains limited. Here we show that pollen consumption and age-polyethism govern hypopharyngeal gland (HPG) acini size and protein content in Tetragonula pagdeni. By conducting a controlled laboratory experiment we monitored the effect of pollen consumption on worker bee survival as well as assessed how a pollen diet and age affected their HPG acini width and protein content. Further, we sampled nurses and foragers from field colonies to measure the effect of age-polyethism on HPG acini width. We found that pollen consumption enhanced survival and led to increased HPG acini width and protein content and that HPG acini were as expected largest in nurse bees. Our findings highlight the beneficial effects of an adequate diet for physiological development and health in stingless bees and reveal that age-polyethism is the key factor governing HPG size in worker bees. As HPGs are imperative for collaborative brood care-an essential component of eusociality-the data provide a foundation for future studies to investigate the impact of potential environmental stressors on a critical physiological trait in stingless bees which may serve as a proxy to understand the effects at the colony level.


Sujet(s)
Protéines d'insecte , Animaux , Abeilles/physiologie , Abeilles/métabolisme , Femelle , Protéines d'insecte/métabolisme , Partie laryngée du pharynx/métabolisme , Pollen/métabolisme , Vieillissement/physiologie , Vieillissement/métabolisme , Facteurs âges
11.
Sci Rep ; 14(1): 15177, 2024 07 02.
Article de Anglais | MEDLINE | ID: mdl-38956174

RÉSUMÉ

Human activities associated with large-scale farms and the monocultures expose honey bees to one type of food. Moreover, there is an ongoing decline of plant species producing pollen and nectar in Europe. A poorly balanced diet affects a number of processes occurring in a bee's body. The fat body and hemolymph are the tissues that participate in all of them. Therefore, the aim of our study was to determine the effect of hazel, pine, rapeseed, buckwheat, phacelia and goldenrod pollen on the morphological parameters of fat body trophocytes, the diameters of cell nuclei in oenocytes and the concentrations of compounds involved in energy metabolism (glucose, glycogen, triglycerides and protein). In the cage tests, the bees were fed from the first day of life with sugar candy (control group) or candy with a 10% addition of one of the 6 pollen types. Hemolymph and fat body from various locations were collected from 1-, 7- and 14-day-old workers. Pollen produced by plant species such as hazel and pine increased glucose concentrations in the bee tissues, especially in the hemolymph. It can therefore be concluded that they are valuable sources of energy (in the form of simple carbohydrates) which are quickly used by bees. Pollen from plants blooming in the summer and autumn increased the concentrations of proteins, glycogen and triglycerides in the fat body, especially that from the third tergite. The accumulation of these compounds was associated with an increased the length and width of trophocytes as well as with enhanced metabolic activity, which was evidenced in the increasing diameter of oenocyte cell nuclei. It seems a balanced multi-pollen diet is more valuable for bees, but it is important to understand the effects of the particular pollen types in the context of a mono-diet. In the future, this will make it possible to produce mixtures that can ensure homeostasis in the apian body.


Sujet(s)
Métabolisme énergétique , Corps gras , Hémolymphe , Pollen , Abeilles/métabolisme , Abeilles/physiologie , Animaux , Pollen/métabolisme , Hémolymphe/métabolisme , Corps gras/métabolisme , Glycogène/métabolisme , Glucose/métabolisme
12.
Nat Commun ; 15(1): 5875, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38997266

RÉSUMÉ

Correct regulation of intercellular communication is a fundamental requirement for cell differentiation. In Arabidopsis thaliana, the female germline differentiates from a single somatic ovule cell that becomes encased in ß-1,3-glucan, a water insoluble polysaccharide implicated in limiting pathogen invasion, regulating intercellular trafficking in roots, and promoting pollen development. Whether ß-1,3-glucan facilitates germline isolation and development has remained contentious, since limited evidence is available to support a functional role. Here, transcriptional profiling of adjoining germline and somatic cells revealed differences in gene expression related to ß-1,3-glucan metabolism and signalling through intercellular channels (plasmodesmata). Dominant expression of a ß-1,3-glucanase in the female germline transiently perturbed ß-1,3-glucan deposits, allowed intercellular movement of tracer molecules, and led to changes in germline gene expression and histone marks, eventually leading to termination of germline development. Our findings indicate that germline ß-1,3-glucan fulfils a functional role in the ovule by insulating the primary germline cell, and thereby determines the success of downstream female gametogenesis.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Gamétogenèse de plante , Régulation de l'expression des gènes végétaux , Ovule (botanique) , bêta-Glucanes , Arabidopsis/métabolisme , Arabidopsis/génétique , Ovule (botanique)/métabolisme , Ovule (botanique)/génétique , bêta-Glucanes/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Gamétogenèse de plante/génétique , Plasmodesmes/métabolisme , Pollen/métabolisme , Pollen/génétique , Pollen/croissance et développement , Analyse de profil d'expression de gènes
13.
Sci Rep ; 14(1): 13760, 2024 06 14.
Article de Anglais | MEDLINE | ID: mdl-38877021

RÉSUMÉ

Elevated atmospheric carbon dioxide (eCO2) can affect plant growth and physiology, which can, in turn, impact herbivorous insects, including by altering pollen or plant tissue nutrition. Previous research suggests that eCO2 can reduce pollen nutrition in some species, but it is unknown whether this effect is consistent across flowering plant species. We experimentally quantified the effects of eCO2 across multiple flowering plant species on plant growth in 9 species and pollen chemistry (%N an estimate for protein content and nutrition in 12 species; secondary chemistry in 5 species) in greenhouses. For pollen nutrition, only buckwheat significantly responded to eCO2, with %N increasing in eCO2; CO2 treatment did not affect pollen amino acid composition but altered secondary metabolites in buckwheat and sunflower. Plant growth under eCO2 exhibited two trends across species: plant height was taller in 44% of species and flower number was affected for 63% of species (3 species with fewer and 2 species with more flowers). The remaining growth metrics (leaf number, above-ground biomass, flower size, and flowering initiation) showed divergent, species-specific responses, if any. Our results indicate that future eCO2 is unlikely to uniformly change pollen chemistry or plant growth across flowering species but may have the potential to alter ecological interactions, or have particularly important effects on specialized pollinators.


Sujet(s)
Dioxyde de carbone , Pollen , Dioxyde de carbone/métabolisme , Pollen/croissance et développement , Pollen/métabolisme , Atmosphère/composition chimique , Spécificité d'espèce , Magnoliopsida/croissance et développement , Magnoliopsida/métabolisme , Magnoliopsida/physiologie , Fleurs/croissance et développement , Fleurs/métabolisme , Développement des plantes/effets des médicaments et des substances chimiques
14.
Plant Mol Biol ; 114(3): 71, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38856917

RÉSUMÉ

Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.


Sujet(s)
Oryza , Oryza/génétique , Oryza/métabolisme , Oryza/enzymologie , Oryza/croissance et développement , Protéines végétales/génétique , Protéines végétales/métabolisme , Exonucleases/métabolisme , Exonucleases/génétique , Édition de gène , Régulation de l'expression des gènes végétaux , ADN des plantes/génétique , ADN des plantes/métabolisme , Pollen/génétique , Pollen/métabolisme , Pollen/croissance et développement , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Génome végétal , Mutation
15.
Nat Commun ; 15(1): 5448, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38937444

RÉSUMÉ

Flowering plants rely on the polarized growth of pollen tubes to deliver sperm cells (SCs) to the embryo sac for double fertilization. In pollen, the vegetative nucleus (VN) and two SCs form the male germ unit (MGU). However, the mechanism underlying directional transportation of MGU is not well understood. In this study, we provide the first full picture of the dynamic interplay among microtubules, actin filaments, and MGU during pollen germination and tube growth. Depolymerization of microtubules and inhibition of kinesin activity result in an increased velocity and magnified amplitude of VN's forward and backward movement. Pharmacological washout experiments further suggest that microtubules participate in coordinating the directional movement of MGU. In contrast, suppression of the actomyosin system leads to a reduced velocity of VN mobility but without a moving pattern change. Moreover, detailed observation shows that the direction and velocity of VN's movement are in close correlations with those of the actomyosin-driven cytoplasmic streaming surrounding VN. Therefore, we propose that while actomyosin-based cytoplasmic streaming influences on the oscillational movement of MGU, microtubules and kinesins avoid MGU drifting with the cytoplasmic streaming and act as the major regulator for fine-tuning the proper positioning and directional migration of MGU in pollen.


Sujet(s)
Cytosquelette d'actine , Actomyosine , Kinésine , Microtubules , Pollen , Microtubules/métabolisme , Cytosquelette d'actine/métabolisme , Kinésine/métabolisme , Pollen/métabolisme , Actomyosine/métabolisme , Tube pollinique/métabolisme , Tube pollinique/croissance et développement , Noyau de la cellule/métabolisme , Arabidopsis/métabolisme , Mouvement de cyclose , Germination/physiologie
16.
Plant Sci ; 346: 112146, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38848769

RÉSUMÉ

The Mediator complex is essential for eukaryotic transcription, yet its role and the function of its individual subunits in plants, especially in rice, remain poorly understood. Here, we investigate the function of OsMED14_2, a subunit of the Mediator tail module, in rice development. Overexpression and knockout of OsMED14_2 resulted in notable changes in panicle morphology and grain size. Microscopic analysis revealed impact of overexpression on pollen maturation, reflected by reduced viability, irregular shapes, and aberrant intine development. OsMED14_2 was found to interact with proteins involved in pollen development, namely, OsMADS62, OsMADS63 and OsMADS68, and its overexpression negatively affected the expression of OsMADS68 and the expression of other genes involved in intine development, including OsCAP1, OsGCD1, OsRIP1, and OsCPK29. Additionally, we found that OsMED14_2 overexpression influences jasmonic acid (JA) homeostasis, affecting bioactive JA levels, and expression of OsJAZ genes. Our data suggest OsMED14_2 may act as a regulator of JA-responsive genes through its interactions with OsHDAC6 and OsJAZ repressors. These findings contribute to better understanding of the Mediator complex's role in plant traits regulation.


Sujet(s)
Cyclopentanes , Régulation de l'expression des gènes végétaux , Oryza , Oxylipines , Protéines végétales , Oryza/génétique , Oryza/métabolisme , Oryza/croissance et développement , Oxylipines/métabolisme , Cyclopentanes/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Facteur de croissance végétal/métabolisme , Complexe médiateur/métabolisme , Complexe médiateur/génétique , Pollen/croissance et développement , Pollen/génétique , Pollen/métabolisme
17.
BMC Plant Biol ; 24(1): 535, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38862889

RÉSUMÉ

BACKGROUND: Cytoplasmic male sterility (CMS) has greatly improved the utilization of heterosis in crops due to the absence of functional male gametophyte. The newly developed sporophytic D1 type CMS (CMS-D1) rice exhibits unique characteristics compared to the well-known sporophytic CMS-WA line, making it a valuable resource for rice breeding. RESULTS: In this research, a novel CMS-D1 line named Xingye A (XYA) was established, characterized by small, transparent, and shriveled anthers. Histological and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays conducted on anthers from XYA and its maintainer line XYB revealed that male sterility in XYA is a result of delayed degradation of tapetal cells and abnormal programmed cell death (PCD) of microspores. Transcriptome analysis of young panicles revealed that differentially expressed genes (DEGs) in XYA, compared to XYB, were significantly enriched in processes related to chromatin structure and nucleosomes during the microspore mother cell (MMC) stage. Conversely, processes associated with sporopollenin biosynthesis, pollen exine formation, chitinase activity, and pollen wall assembly were enriched during the meiosis stage. Metabolome analysis identified 176 specific differentially accumulated metabolites (DAMs) during the meiosis stage, enriched in pathways such as α-linoleic acid metabolism, flavone and flavonol biosynthesis, and linolenic acid metabolism. Integration of transcriptomic and metabolomic data underscored the jasmonic acid (JA) biosynthesis pathway was significant enriched in XYA during the meiosis stage compared to XYB. Furthermore, levels of JA, MeJA, OPC4, OPDA, and JA-Ile were all higher in XYA than in XYB at the meiosis stage. CONCLUSIONS: These findings emphasize the involvement of the JA biosynthetic pathway in pollen development in the CMS-D1 line, providing a foundation for further exploration of the molecular mechanisms involved in CMS-D1 sterility.


Sujet(s)
Oryza , Stérilité des plantes , Pollen , Oryza/génétique , Oryza/métabolisme , Oryza/croissance et développement , Pollen/génétique , Pollen/croissance et développement , Pollen/métabolisme , Stérilité des plantes/génétique , Transcriptome , Analyse de profil d'expression de gènes , Métabolomique , Métabolome , Régulation de l'expression des gènes végétaux , Méiose
18.
Plant Physiol ; 196(2): 763-772, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38917229

RÉSUMÉ

Pollen germination and pollen tube elongation require rapid phospholipid production and remodeling in membrane systems that involve both de novo synthesis and turnover. Phosphatidic acid phosphohydrolase (PAH) and lysophosphatidylcholine acyltransferase (LPCAT) are 2 key enzymes in membrane lipid maintenance. PAH generates diacylglycerol (DAG), a necessary precursor for the de novo synthesis of phosphatidylcholine (PC), while LPCAT reacylates lysophosphatidylcholine to PC and plays an essential role in the remodeling of membrane lipids. In this study, we investigated the synthetic defects of pah and lpcat mutations in sexual reproduction of Arabidopsis (Arabidopsis thaliana) and explored the prospect of pistil lipid provision to pollen tube growth. The combined deficiencies of lpcat and pah led to decreased pollen tube growth in the pistil and reduced male transmission. Interestingly, pistils of the lipid mutant dgat1 ameliorated the male transmission deficiencies of pah lpcat pollen. In contrast, pollination with a nonspecific phospholipase C (NPC) mutant exacerbated the fertilization impairment of the pah lpcat pollen. Given the importance of DAG in lipid metabolism and its contrasting changes in the dgat1 and npc mutants, we further investigated whether DAG supplement in synthetic media could influence pollen performance. DAG was incorporated into phospholipids of germinating pollen and stimulated pollen tube growth. Our study provides evidence that pistil-derived lipids contribute to membrane lipid synthesis in pollen tube growth, a hitherto unknown role in synergistic pollen-pistil interactions.


Sujet(s)
Arabidopsis , Fleurs , Tube pollinique , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/physiologie , Arabidopsis/métabolisme , Tube pollinique/croissance et développement , Tube pollinique/génétique , Tube pollinique/métabolisme , Fleurs/génétique , Fleurs/croissance et développement , Fleurs/physiologie , Fécondité/effets des médicaments et des substances chimiques , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Mutation , Diglycéride/métabolisme , 1-Acylglycerophosphocholine acyltransferase/métabolisme , 1-Acylglycerophosphocholine acyltransferase/génétique , Phosphatidate phosphatase/métabolisme , Phosphatidate phosphatase/génétique , Pollinisation , Métabolisme lipidique , Pollen/croissance et développement , Pollen/génétique , Pollen/métabolisme
19.
Plant Physiol ; 196(2): 996-1013, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38922580

RÉSUMÉ

The intricate process of male gametophyte development in flowering plants is regulated by jasmonic acid (JA) signaling. JA signaling initiates with the activation of the basic helix-loop-helix transcription factor (TF), MYC2, leading to the expression of numerous JA-responsive genes during stamen development and pollen maturation. However, the regulation of JA signaling during different stages of male gametophyte development remains less understood. This study focuses on the characterization of the plant ARID-HMG DNA-BINDING PROTEIN 15 (AtHMGB15) and its role in pollen development in Arabidopsis (Arabidopsis thaliana). Phenotypic characterization of a T-DNA insertion line (athmgb15-4) revealed delayed bolting, shorter siliques, and reduced seed set in mutant plants compared to the wild type. Additionally, AtHMGB15 deletion resulted in defective pollen morphology, delayed pollen germination, aberrant pollen tube growth, and a higher percentage of nonviable pollen grains. Molecular analysis indicated the downregulation of JA biosynthesis and signaling genes in the athmgb15-4 mutant. Quantitative analysis demonstrated that JA and its derivatives were ∼10-fold lower in athmgb15-4 flowers. Exogenous application of methyl jasmonate could restore pollen morphology and germination, suggesting that the low JA content in athmgb15-4 impaired JA signaling during pollen development. Furthermore, our study revealed that AtHMGB15 physically interacts with MYC2 to form a transcription activation complex. This complex promotes the transcription of key JA signaling genes, the R2R3-MYB TFs MYB21 and MYB24, during stamen and pollen development. Collectively, our findings highlight the role of AtHMGB15 as a positive regulator of the JA pathway, controlling the spatiotemporal expression of key regulators involved in Arabidopsis stamen and pollen development.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines , Cyclopentanes , Régulation de l'expression des gènes végétaux , Oxylipines , Pollen , Transduction du signal , Cyclopentanes/métabolisme , Cyclopentanes/pharmacologie , Oxylipines/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/métabolisme , Pollen/croissance et développement , Pollen/génétique , Pollen/métabolisme , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/métabolisme , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Mutation/génétique , Tube pollinique/croissance et développement , Tube pollinique/génétique , Tube pollinique/métabolisme , Phénotype
20.
J Integr Plant Biol ; 66(8): 1801-1819, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38940322

RÉSUMÉ

In flowering plants, sexual reproductive success depends on the production of viable pollen grains. However, the mechanisms by which QUA QUINE STARCH (QQS) regulates pollen development and how transcriptional activators facilitate the transcription of QQS in this process remain poorly understood. Here, we demonstrate that INDUCER OF CBF EXPRESSION 1 (ICE1), a basic helix-loop-helix (bHLH) transcription factor, acts as a key transcriptional activator and positively regulates QQS expression to increase pollen germination and viability in Arabidopsis thaliana by interacting with INDETERMINATE DOMAIN14 (IDD14). In our genetic and biochemical experiments, overexpression of ICE1 greatly promoted both the activation of QQS and high pollen viability mediated by QQS. IDD14 additively enhanced ICE1 function by promoting the binding of ICE1 to the QQS promoter. In addition, mutation of ICE1 significantly repressed QQS expression; the impaired function of QQS and the abnormal anther dehiscence jointly affected pollen development of the ice1-2 mutant. Our results also showed that the enhancement of pollen activity by ICE1 depends on QQS. Furthermore, QQS interacted with CUT1, the key enzyme for long-chain lipid biosynthesis. This interaction both promoted CUT1 activity and regulated pollen lipid metabolism, ultimately determining pollen hydration and fertility. Our results not only provide new insights into the key function of QQS in promoting pollen development by regulating pollen lipid metabolism, but also elucidate the mechanism that facilitates the transcription of QQS in this vital developmental process.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Régulation de l'expression des gènes végétaux , Pollen , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Pollen/croissance et développement , Pollen/génétique , Pollen/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Germination/génétique , Germination/effets des médicaments et des substances chimiques , Amidon/métabolisme , Liaison aux protéines/effets des médicaments et des substances chimiques , Régions promotrices (génétique)/génétique , Facteurs de transcription
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE