Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-35163595

RÉSUMÉ

In mammals, the daily variation in the ecology of the intestinal microbiota is tightly coupled to the circadian rhythm of the host. On the other hand, a close correlation between increased body weight and light pollution at night has been reported in humans and animal models. However, the mechanisms underlying such weight gain in response to light contamination at night remain elusive. In the present study, we tested the hypothesis that dim light pollution at night alters the colonic microbiota of mice, which could correlate with weight gain in the animals. By developing an experimental protocol using a mouse model that mimics light contamination at night in urban residences (dLAN, dim light at night), we found that mice exposed to dLAN showed a significant weight gain compared with mice exposed to control standard light/dark (LD) photoperiod. To identify possible changes in the microbiota, we sampled two stages from the resting period of the circadian cycle of mice (ZT0 and ZT10) and evaluated them by high-throughput sequencing technology. Our results indicated that microbial diversity significantly differed between ZT0 and ZT10 in both LD and dLAN samples and that dLAN treatment impacted the taxonomic composition, functions, and interactions of mouse colonic microbiota. Together, these results show that bacterial taxa and microbial metabolic pathways might be involved with the mechanisms underlying weight gain in mice subjected to light contamination at night.


Sujet(s)
Côlon/microbiologie , Microbiome gastro-intestinal , Pollution lumineuse/effets indésirables , Prise de poids , Animaux , Souris
2.
J Endocrinol ; 252(2): 143-154, 2021 12 14.
Article de Anglais | MEDLINE | ID: mdl-34647525

RÉSUMÉ

Disruption of biological rhythms due to exposure to artificial light at night (ALAN) has emerged as a new risk factor for metabolic diseases. However, the effects of ALAN exposure on energy metabolism with concomitant misalignment in the circadian system caused by nutritional imbalance remain largely unexplored. Here, we evaluate whether a low-protein (LP) diet could enhance the effects induced by exposure to ALAN on the energy metabolism and consequently predispose to metabolic disorders. Male C57BL6/J mice were weaned on a normal protein (NP) or a LP diet and housed on 12 h light:12 h darkness (LD) cycle. After 6 weeks, mice maintained on their respective diets were subdivided into normal light/darkness cycle (NP/LD; LP/LD) or exposed to ALAN (NP/LL; LP/LL) for 8 weeks. We observed that exposure to ALAN concomitant to LP diet disrupts the behavioral rhythms, without shifting the timing of food intake. Furthermore, exposure to ALAN leads to increased body and fat pad weights, higher levels of fast and fed glycemia and glucose intolerance independent of the diet consumed. Importantly, the effects of ALAN on circadian regulation of insulin sensitivity were diet-dependent with LP/LL mice showing insulin resistance in an opposite time of day than NP/LL. At the molecular level, exposure to ALAN concurrent with LP diet increased the expression of phosphoenolpyruvate carboxykinase 1 in both periods analyzed and inverted the pattern of fibroblast growth factor 21 (Fgf21) expression in the liver. Our data suggest that dietary protein restriction modulates the effects induced by nighttime light exposure on glucose metabolism, which could be partially related with the dysregulation of hepatic Fgf21 expression.


Sujet(s)
Rythme circadien , Régime pauvre en protéines/effets indésirables , Ration calorique , Intolérance au glucose/étiologie , Pollution lumineuse/effets indésirables , Animaux , Glycémie , Facteurs de croissance fibroblastique/métabolisme , Glucose/métabolisme , Insulinorésistance , Protéines et peptides de signalisation intracellulaire/métabolisme , Foie/métabolisme , Mâle , Souris de lignée C57BL , Activité motrice , Obésité/étiologie , Phosphoenolpyruvate carboxykinase (GTP)/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE