Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 9.436
Filtrer
1.
BMC Plant Biol ; 24(1): 747, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39098916

RÉSUMÉ

BACKGROUND: As a result of the world population and climate change impact increases (especially in arid environments), there is a critical need for high-yield, drought-tolerant wheat. Synthetic hexaploid wheat derived lines (SHW-DL), were created artificially by crossing different durum wheat cultivars (AABB) with accessions of Aegilops tauschii (DD), a beneficial source of new genes for common bread wheat (Triticum aestivum L). Here, we studied the response of a panel of 91 SHW-DL for drought tolerance based on physiological, antioxidant enzyme activities, and drought tolerance indices. RESULTS: A wide range of variation and high values of heritability observed for grain yield, physiological and antioxidant traits indicating that the SHW-DL panel constitutes a valuable gene source for drought tolerance improvement of wheat. Despite decreases in grain yield (YLD), leaf area index (LAI), and relative water content (RWC) an increase in the content of malondialdehyde (MDA) was observed. Moreover, drought streass increased the antioxidant enzyme activities of ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD), and also photosynthetic pigments, proline (Pro), and MDA content. With higher values of grain yield, physiological and biochemical traits such as photosynthetic pigments, and RWC, and lower content of MDA, and peroxidase (H2O2) activity, SHW-DL performed better compared to common wheat lines under water stress conditions. CONCLUSIONS: Different responses to water stress within the germplasm and between synthetic and common wheat suggest that selection for adaptive and suitable genotypes is possible for drought tolerance in synthetic wheat germplasm. Genotypes 54, 98, 102, 105, 122, 124, 143, 159, 196, and 198 were identified to be directly used in breeding programs or indirectly by crossing them with other wheat germplasm collections.


Sujet(s)
Antioxydants , Sécheresses , Triticum , Triticum/génétique , Triticum/physiologie , Triticum/métabolisme , Antioxydants/métabolisme , Polyploïdie , Aegilops/génétique , Aegilops/métabolisme , Amélioration des plantes , Photosynthèse
2.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39101470

RÉSUMÉ

Selaginellaceae, originated in the Carboniferous and survived the Permian-Triassic mass extinction, is the largest family of lycophyte, which is sister to other tracheophytes. It stands out from tracheophytes by exhibiting extraordinary habitat diversity and lacking polyploidization. The organelle genome-based phylogenies confirmed the monophyly of Selaginella, with six or seven subgenera grouped into two superclades, but the phylogenetic positions of the enigmatic Selaginella sanguinolenta clade remained problematic. Here, we conducted a phylogenomic study on Selaginellaceae utilizing large-scale nuclear gene data from RNA-seq to elucidate the phylogeny and explore the causes of the phylogenetic incongruence of the S. sanguinolenta clade. Our phylogenetic analyses resolved three different positions of the S. sanguinolenta clade, which were supported by the sorted three nuclear gene sets, respectively. The results from the gene flow test, species network inference, and plastome-based phylogeny congruently suggested a probable hybrid origin of the S. sanguinolenta clade involving each common ancestor of the two superclades in Selaginellaceae. The hybrid hypothesis is corroborated by the evidence from rhizophore morphology and spore micromorphology. The chromosome observation and Ks distributions further suggested hybridization accompanied by polyploidization. Divergence time estimation based on independent datasets from nuclear gene sets and plastid genome data congruently inferred that allopolyploidization occurred in the Early Triassic. To our best knowledge, the allopolyploidization in the Mesozoic reported here represents the earliest record of tracheophytes. Our study revealed a unique triad of phylogenetic positions for a hybrid-originated group with comprehensive evidence and proposed a hypothesis for retaining both parental alleles through gene conversion.


Sujet(s)
Phylogenèse , Polyploïdie , Selaginellaceae , Selaginellaceae/génétique , Transcriptome , Flux des gènes
3.
Gigascience ; 132024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-39110622

RÉSUMÉ

BACKGROUND: Rhododendron nivale subsp. boreale Philipson et M. N. Philipson is an alpine woody species with ornamental qualities that serve as the predominant species in mountainous scrub habitats found at an altitude of ∼4,200 m. As a high-altitude woody polyploid, this species may serve as a model to understand how plants adapt to alpine environments. Despite its ecological significance, the lack of genomic resources has hindered a comprehensive understanding of its evolutionary and adaptive characteristics in high-altitude mountainous environments. FINDINGS: We sequenced and assembled the genome of R. nivale subsp. boreale, an assembly of the first subgenus Rhododendron and the first high-altitude woody flowering tetraploid, contributing an important genomic resource for alpine woody flora. The assembly included 52 pseudochromosomes (scaffold N50 = 42.93 Mb; BUSCO = 98.8%; QV = 45.51; S-AQI = 98.69), which belonged to 4 haplotypes, harboring 127,810 predicted protein-coding genes. Conjoint k-mer analysis, collinearity assessment, and phylogenetic investigation corroborated autotetraploid identity. Comparative genomic analysis revealed that R. nivale subsp. boreale originated as a neopolyploid of R. nivale and underwent 2 rounds of ancient polyploidy events. Transcriptional expression analysis showed that differences in expression between alleles were common and randomly distributed in the genome. We identified extended gene families and signatures of positive selection that are involved not only in adaptation to the mountaintop ecosystem (response to stress and developmental regulation) but also in autotetraploid reproduction (meiotic stabilization). Additionally, the expression levels of the (group VII ethylene response factor transcription factors) ERF VIIs were significantly higher than the mean global gene expression. We suspect that these changes have enabled the success of this species at high altitudes. CONCLUSIONS: We assembled the first high-altitude autopolyploid genome and achieved chromosome-level assembly within the subgenus Rhododendron. In addition, a high-altitude adaptation strategy of R. nivale subsp. boreale was reasonably speculated. This study provides valuable data for the exploration of alpine mountaintop adaptations and the correlation between extreme environments and species polyploidization.


Sujet(s)
Altitude , Génome végétal , Haplotypes , Phylogenèse , Rhododendron , Tétraploïdie , Rhododendron/génétique , Adaptation physiologique/génétique , Annotation de séquence moléculaire , Polyploïdie , Régulation de l'expression des gènes végétaux
4.
Nat Commun ; 15(1): 6893, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39134553

RÉSUMÉ

Polyploidization presents an unusual challenge for species with sex chromosomes, as it can lead to complex combinations of sex chromosomes that disrupt reproductive development. This is particularly true for allopolyploidization between species with different sex chromosome systems. Here, we assemble haplotype-resolved chromosome-level genomes of a female allotetraploid weeping willow (Salix babylonica) and a male diploid S. dunnii. We show that weeping willow arose from crosses between a female ancestor from the Salix-clade, which has XY sex chromosomes on chromosome 7, and a male ancestor from the Vetrix-clade, which has ancestral XY sex chromosomes on chromosome 15. We find that weeping willow has one pair of sex chromosomes, ZW on chromosome 15, that derived from the ancestral XY sex chromosomes in the male ancestor of the Vetrix-clade. Moreover, the ancestral 7X chromosomes from the female ancestor of the Salix-clade have reverted to autosomal inheritance. Duplicated intact ARR17-like genes on the four homologous chromosomes 19 likely have contributed to the maintenance of dioecy during polyploidization and sex chromosome turnover. Taken together, our results suggest the rapid evolution and reversion of sex chromosomes following allopolyploidization in weeping willow.


Sujet(s)
Chromosomes de plante , Évolution moléculaire , Polyploïdie , Salix , Chromosomes sexuels , Chromosomes de plante/génétique , Salix/génétique , Chromosomes sexuels/génétique , Phylogenèse , Génome végétal , Diploïdie , Haplotypes
5.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39125948

RÉSUMÉ

Polyploids are essential in plant evolution and species formation, providing a rich genetic reservoir and increasing species diversity. Complex polyploids with higher ploidy levels often have a dosage effect on the phenotype, which can be highly detrimental to gametes, making them rare. In this study, offspring plants resulting from an autoallotetraploid (RRRC) derived from the interspecific hybridization between allotetraploid Raphanobrassica (RRCC, 2n = 36) and diploid radish (RR, 2n = 18) were obtained. Fluorescence in situ hybridization (FISH) using C-genome-specific repeats as probes revealed two main genome configurations in these offspring plants: RRRCC (2n = 43, 44, 45) and RRRRCC (2n = 54, 55), showing more complex genome configurations and higher ploidy levels compared to the parental plants. These offspring plants exhibited extensive variation in phenotypic characteristics, including leaf type and flower type and color, as well as seed and pollen fertility. Analysis of chromosome behavior showed that homoeologous chromosome pairing events are widely observed at the diakinesis stage in the pollen mother cells (PMCs) of these allopolyploids, with a range of 58.73% to 78.33%. Moreover, the unreduced C subgenome at meiosis anaphase II in PMCs was observed, which provides compelling evidence for the formation of complex allopolyploid offspring. These complex allopolyploids serve as valuable genetic resources for further analysis and contribute to our understanding of the mechanisms underlying the formation of complex allopolyploids.


Sujet(s)
Aneuploïdie , Chromosomes de plante , Polyploïdie , Raphanus , Raphanus/génétique , Chromosomes de plante/génétique , Hybridation fluorescente in situ , Brassica/génétique , Hybridation génétique , Méiose/génétique , Génome végétal , Pollen/génétique , Phénotype
6.
Planta ; 260(3): 71, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39136783

RÉSUMÉ

MAIN CONCLUSION: Using octoploid somatic hybrids with excessive C genome sets, AABBCCCC, a diverse allohexaploid, AABBCC, was produced by C genome reduction through subsequent crossing with various AABB cultivars. Even when somatic hybrids are produced, the plants that are produced are rarely in themselves an innovative crop. In this study, we used somatic hybrids of Brassica juncea (AABB) and B. oleracea (CC) as model cases for the genetic diversification of the somatic hybrids. One cell of 'Akaoba Takana' (B. juncea) and two cells of 'Snow Crown' (B. oleracea) were fused to create several somatic hybrids with excessive C genomes, AABBCCCC. Using AABBCCCC somatic hybrids as mother plants and crossing with 'Akaoba Takana', the AABBCC progenies were generated. When these AABBCC plants were self-fertilized, and flow cytometric (FCM) analysis was performed on the next generations, differences in the relative amount of genome size variation were observed, depending on the different AABBCCCC parents used for AABBCC creation. Further self-progeny was obtained for AABBCC plants with a theoretical allohexaploid DNA index by FCM. However, as the DNA indices of the progeny populations varied between plants used and aneuploid individuals still occurred in the progeny populations, it was difficult to say that the allohexaploid genome was fully stabilized. Next, to obtain genetic diversification of the allohexaploid, different cultivars of B. juncea were crossed with AABBCCCC, resulting in diverse AABBCC plants. Genetic diversity can be further expanded by crossbreeding plants with different AABBCC genome sets. Although genetic stability is necessary to ensure in the later generations, the results obtained in this study show that the use of somatic hybrids with excess genomes is an effective strategy for creating innovative crops.


Sujet(s)
Brassica , Génome végétal , Hybridation génétique , Polyploïdie , Génome végétal/génétique , Brassica/génétique , Moutarde (plante)/génétique , Variation génétique , Taille du génome
7.
PLoS One ; 19(7): e0306969, 2024.
Article de Anglais | MEDLINE | ID: mdl-38990953

RÉSUMÉ

Docetaxel (Doc) plays a crucial role in clinical antineoplastic practice. However, it is continuously documented that tumors frequently develop chemoresistance and relapse, which may be related to polyploid giant cancer cells (PGCCs). The aim of this study was investigate the formation mechanism and biological behavior of PGCCs induced by Doc. Ovarian cancer cells were treated with Doc, and then the effect of Doc on cellular viability was evaluated by MTT assay and microscopic imaging analysis. The biological properties of PGCCs were further evaluated by Hoechst 33342 staining, cell cycle and DNA content assay, DNA damage response (DDR) signaling detection, ß-galactosidase staining, mitochondrial membrane potential detection, and reverse transcription-quantitative polymerase chain reaction. The results indicated that Doc reduced cellular viability; however, many cells were still alive, and were giant and polyploid. Doc increased the proportion of cells stayed in the G2/M phase and reduced the number of cells. In addition, the expression of γ-H2A.X was constantly increased after Doc treatment. PGCCs showed senescence-associated ß-galactosidase activity and an increase in the monomeric form of JC-1. The mRNA level of octamer-binding transcription factor 4 (OCT4) and krüppel-like factor 4 (KLF4) was significantly increased in PGCCs. Taken together, our results suggest that Doc induces G2/M cell cycle arrest, inhibits the proliferation and activates persistent DDR signaling to promote the formation of PGCCs. Importantly, PGCCs exhibit a senescence phenotype and express stem cell markers.


Sujet(s)
Vieillissement de la cellule , Docetaxel , Facteur-4 de type Kruppel , Cellules souches tumorales , Tumeurs de l'ovaire , Polyploïdie , Humains , Docetaxel/pharmacologie , Femelle , Tumeurs de l'ovaire/traitement médicamenteux , Tumeurs de l'ovaire/anatomopathologie , Tumeurs de l'ovaire/métabolisme , Tumeurs de l'ovaire/génétique , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Cellules souches tumorales/effets des médicaments et des substances chimiques , Cellules souches tumorales/métabolisme , Cellules souches tumorales/anatomopathologie , Facteur de transcription Oct-3/métabolisme , Facteur de transcription Oct-3/génétique , Cellules géantes/effets des médicaments et des substances chimiques , Cellules géantes/métabolisme , Antinéoplasiques/pharmacologie , Phénotype , Survie cellulaire/effets des médicaments et des substances chimiques , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Facteurs de transcription Krüppel-like/métabolisme , Facteurs de transcription Krüppel-like/génétique , Taxoïdes/pharmacologie , Altération de l'ADN/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Marqueurs biologiques tumoraux/métabolisme , Marqueurs biologiques tumoraux/génétique
8.
Nat Commun ; 15(1): 5733, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38977687

RÉSUMÉ

The occurrence of whole-genome duplication or polyploidy may promote plant adaptability to harsh environments. Here, we clarify the evolutionary relationship of eight GhCIPK6 homologous genes in upland cotton (Gossypium hirsutum). Gene expression and interaction analyses indicate that GhCIPK6 homologous genes show significant functional changes after polyploidy. Among these, GhCIPK6D1 and GhCIPK6D3 are significantly up-regulated by drought stress. Functional studies reveal that high GhCIPK6D1 expression promotes cotton drought sensitivity, while GhCIPK6D3 expression promotes drought tolerance, indicating clear functional differentiation. Genetic and biochemical analyses confirm the synergistic negative and positive regulation of cotton drought resistance through GhCBL1A1-GhCIPK6D1 and GhCBL2A1-GhCIPK6D3, respectively, to regulate stomatal movement by controlling the directional flow of K+ in guard cells. These results reveal differentiated roles of GhCIPK6 homologous genes in response to drought stress in upland cotton following polyploidy. The work provides a different perspective for exploring the functionalization and subfunctionalization of duplicated genes in response to polyploidization.


Sujet(s)
Sécheresses , Évolution moléculaire , Régulation de l'expression des gènes végétaux , Gossypium , Protéines végétales , Polyploïdie , Gossypium/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Stress physiologique/génétique , Gènes de plante , Phylogenèse , Duplication de gène , Végétaux génétiquement modifiés/génétique , Stomates de plante/génétique , Stomates de plante/physiologie , Résistance à la sécheresse
9.
PLoS One ; 19(7): e0307023, 2024.
Article de Anglais | MEDLINE | ID: mdl-39024350

RÉSUMÉ

Polyploidy is thought to enable species diversification and adaptation to extreme environments. Resolving the ecological differences between a taxon's ploidy levels would therefore provide important insights into local adaptation and speciation. The genus Betula includes many polyploids, but estimates of their phylogenetic relationships and evolutionary history are uncertain because of cryptic lineages and species. As one of the southern boundary populations of Betula ermanii in Japan has been shown to have distinctive genetic characteristics and traits, the differences in ploidy levels between three southern boundary and various other Japanese B. ermanii populations were investigated using flow cytometry. Leaf and seed morphologies were also compared. Apart from individuals in southern boundary populations, all those sampled were tetraploid. Individuals from the southern boundary populations were mostly diploid, apart from a few from lower altitude Shikoku populations, which were tetraploid. Leaf and seed morphologies differed between tetraploids and diploids. Diploid individuals were characterized by leaves with a heart-shaped base and many leaf teeth, and seeds with relatively longer wings. The diploid populations could be considered a cryptic relict lineage of B. ermanii, and there is a possibility that this lineage is a diploid ancestor of B. ermanii and a relict population of the Sohayaki element. Further investigation of the Japanese Betula phylogenetic relationships would enable an informed discussion of taxonomic revisions.


Sujet(s)
Betula , Diploïdie , Phylogenèse , Japon , Betula/génétique , Feuilles de plante/génétique , Graines/génétique , Polyploïdie
10.
Appl Microbiol Biotechnol ; 108(1): 416, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38995331

RÉSUMÉ

A large number of recombinant plasmids for the yeast Saccharomyces cerevisiae have been constructed and accumulated over the past four decades. It is desirable to apply the recombinant plasmid resources to Saccharomyces sensu stricto species group, which contains an increasing number of natural isolate and industrial strains. The application to the group encounters a difficulty. Natural isolates and industrial strains are exclusively prototrophic and polyploid, whereas direct application of most conventional plasmid resources imposes a prerequisite in host yeast strains of an auxotrophic mutation (i.e., leu2) that is rescued by a selection gene (e.g., LEU2) on the recombinant plasmids. To solve the difficulty, we aimed to generate leu2 mutants from yeast strains belonging to the yeast Saccharomyces sensu stricto species group by DNA editing. First, we modified an all-in-one type CRISPR-Cas9 plasmid pML104 by adding an antibiotic-resistance gene and designing guide sequences to target the LEU2 gene and to enable wide application in this yeast group. Then, the resulting CRISPR-Cas9 plasmids were exploited to seven strains belonging to five species of the group, including natural isolate, industrial, and allopolyploid strains. Colonies having the designed mutations in the gene appeared successfully by introducing the plasmids and assisting oligonucleotides to the strains. Most of the plasmids and resultant leu2- mutants produced in this study will be deposited in several repository organizations. KEY POINTS: • All-in-one type CRISPR-Cas9 plasmids targeting LEU2 gene were designed for broad application to Saccharomyces sensu stricto group species strains • Application of the plasmids generated leu2 mutants from strains including natural isolates, industrial, and allopolyploid strains • The easy conversion to leu2 mutants permits free access to recombinant plasmids having a LEU2 gene.


Sujet(s)
Systèmes CRISPR-Cas , Édition de gène , Mutation , Plasmides , Polyploïdie , Plasmides/génétique , Édition de gène/méthodes , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces/génétique , Saccharomyces cerevisiae/génétique , 3-Isopropylmalate dehydrogenase/génétique , 3-Isopropylmalate dehydrogenase/métabolisme , Génome fongique/génétique
11.
Genes (Basel) ; 15(7)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-39062640

RÉSUMÉ

The model haloarchaeon Haloferax volcanii is polyploid with about 20 copies of its major chromosome. Recently it has been described that highly efficient intermolecular gene conversion operates in H. volcanii to equalize the chromosomal copies. In the current study, 24 genes were selected that encode proteins with orthologs involved in gene conversion or homologous recombination in archaea, bacteria, or eukaryotes. Single gene deletion strains of 22 genes and a control gene were constructed in two parent strains for a gene conversion assay; only radA and radB were shown to be essential. Protoplast fusions were used to generate strains that were heterozygous for the gene HVO_2528, encoding an enzyme for carotinoid biosynthesis. It was revealed that a lack of six of the proteins did not influence the efficiency of gene conversion, while sixteen mutants had severe gene conversion defects. Notably, lack of paralogous proteins of gene families had very different effects, e.g., mutant Δrad25b had no phenotype, while mutants Δrad25a, Δrad25c, and Δrad25d were highly compromised. Generation of a quadruple rad25 and a triple sph deletion strain also indicated that the paralogs have different functions, in contrast to sph2 and sph4, which cannot be deleted simultaneously. There was no correlation between the severity of the phenotypes and the respective transcript levels under non-stressed conditions, indicating that gene expression has to be induced at the onset of gene conversion. Phylogenetic trees of the protein families Rad3/25, MutL/S, and Sph/SMC/Rad50 were generated to unravel the history of the paralogous proteins of H. volcanii. Taken together, unselected intermolecular gene conversion in H. volcanii involves at least 16 different proteins, the molecular roles of which can be studied in detail in future projects.


Sujet(s)
Protéines d'archée , Conversion des gènes , Haloferax volcanii , Haloferax volcanii/génétique , Protéines d'archée/génétique , Protéines d'archée/métabolisme , Polyploïdie , Génome d'archéobactérie/génétique , Délétion de gène , Dosage génique
12.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39062941

RÉSUMÉ

Wheat is one of the most important food crops globally, and understanding the regulation of grain size is crucial for wheat breeding to achieve a higher grain yield. MicroRNAs (miRNAs) play vital roles in plant growth and development. However, the miRNA-mediated mechanism underlying grain size regulation remains largely elusive in wheat. Here, we report the characterization and functional validation of a miRNA, TamiR397a, associated with grain size regulation in wheat. The function of three TaMIR397 homoeologs was determined through histochemical ß-glucuronidase-dependent assay. MiRNA expression was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and the function of TamiR397a was validated through its transgenic overexpression and repression in wheat. It was found that TaMIR397-6A and TaMIR397-6B encode active TamiR397a. The expression profiling indicated that TamiR397a was differentially expressed in various tissues and gradually up-regulated during grain filling. The inhibition of TamiR397a perturbed grain development, leading to a decrease in grain size and weight. Conversely, the overexpression of TamiR397a resulted in increased grain size and weight by accelerating the grain filling process. Transcriptome analysis revealed that TamiR397a regulates a set of genes involved in hormone response, desiccation tolerance, regulation of cellular senescence, seed dormancy, and seed maturation biological processes, which are important for grain development. Among the down-regulated genes in the grains of the TamiR397a-overexpressing transgenic plants, 11 putative targets of the miRNA were identified. Taken together, our results demonstrate that TamiR397a is a positive regulator of grain size and weight, offering potential targets for breeding wheat with an increased grain yield.


Sujet(s)
Grains comestibles , Régulation de l'expression des gènes végétaux , microARN , Triticum , Triticum/génétique , Triticum/croissance et développement , Triticum/métabolisme , microARN/génétique , microARN/métabolisme , Grains comestibles/génétique , Grains comestibles/croissance et développement , Grains comestibles/métabolisme , Polyploïdie , Végétaux génétiquement modifiés/génétique , Analyse de profil d'expression de gènes , Protéines végétales/génétique , Protéines végétales/métabolisme
13.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38946297

RÉSUMÉ

Schoenoplectus tabernaemontani (C. C. Gmelin) Palla is a typical macrophyte in diverse wetland ecosystems. This species holds great potential in decontamination applications and carbon sequestration. Previous studies have shown that this species may have experienced recent polyploidization. This would make S. tabernaemontani a unique model to study the processes and consequences of whole-genome duplications in the context of the well-documented holocentric chromosomes and dysploidy events in Cyperaceae. However, the inference was not completely solid because it lacked homology information that is essential to ascertain polyploidy. We present here the first chromosome-level genome assembly for S. tabernaemontani. By combining Oxford Nanopore Technologies (ONT) long reads and Illumina short reads, plus chromatin conformation via the Hi-C method, we assembled a genome spanning 507.96 Mb, with 99.43% of Hi-C data accurately mapped to the assembly. The assembly contig N50 value was 3.62 Mb. The overall BUSCO score was 94.40%. About 68.94% of the genome was comprised of repetitive elements. A total of 36,994 protein-coding genes were predicted and annotated. Long terminal repeat retrotransposons accounted for ∼26.99% of the genome, surpassing the content observed in most sequenced Cyperid genomes. Our well-supported haploid assembly comprised 21 pseudochromosomes, each harboring putative holocentric centromeres. Our findings corroborated a karyotype of 2n = 2X = 42. We also confirmed a recent whole-genome duplication occurring after the divergence between Schoenoplecteae and Bolboschoeneae. Our genome assembly expands the scope of sequenced genomes within the Cyperaceae family, encompassing the fifth genus. It also provides research resources on Cyperid evolution and wetland conservation.


Sujet(s)
Chromosomes de plante , Cyperaceae , Génome végétal , Cyperaceae/génétique , Chromosomes de plante/génétique , Duplication de gène , Polyploïdie , Évolution moléculaire
14.
Theor Appl Genet ; 137(8): 182, 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39001883

RÉSUMÉ

Polyploidy played an important role in the evolution of the three most important crops: wheat, maize and rice, each of them providing a unique model for studying allopolyploidy, segmental alloploidy or paleopolyploidy. However, its genetic and evolutionary role is still vague. The undelying mechanisms and consequences of polyploidy remain fundamental objectives in the study of eukaryotes. Maize is one of the underutilized crops at the polyploid level. This species has no stable natural polyploids, the existing ones being artificially obtained. From the experimental polyploid series of maize, only the tetraploid forms (4n = 40) are of interest. They are characterized by some valuable morphological, physiological and biochemical features, superior to the diploid forms from which they originated, but also by some drawbacks such as: reduced fertility, slower development, longer vegetation period, low productivity and adaptedness. Due to these barriers to using tetraploids in field production, maize tetraploids primarily found utility in scientific studies regarding genetic variability, inbreeding, heterosis and gene dosage effect. Since the first mention of a triploid maize plant to present, many scientists and schools, devoted their efforts to capitalize on the use of polyploidy in maize. Despite its common disadvantages as a crop, significant progress in developing tetraploid maize with good agronomic performance was achieved leading to registered tetraploid maize varieties. In this review we summarize and discuss the different aspects of polyploidy in maize, such as evolutionary context, methods of induction, morphology, fertility issue, inheritance patterns, gene expression and potential use.


Sujet(s)
Amélioration des plantes , Polyploïdie , Zea mays , Zea mays/génétique , Zea mays/croissance et développement , Zea mays/physiologie , Évolution biologique
15.
Sci Rep ; 14(1): 13333, 2024 06 10.
Article de Anglais | MEDLINE | ID: mdl-38858421

RÉSUMÉ

Mammalian cardiomyocytes (CMs) mostly become polyploid shortly after birth. Because this feature may relate to several aspects of heart biology, including regeneration after injury, the mechanisms that cause polyploidy are of interest. BALB/cJ and BALB/cByJ mice are highly related sister strains that diverge substantially in CM ploidy. We identified a large deletion in the Cyth1 gene that arose uniquely in BALB/cByJ mice that creates a null allele. The deletion also results in ectopic transcription of the downstream gene Dnah17, although this transcript is unlikely to encode a protein. By evaluating the natural null allele from BALB/cByJ and an engineered knockout allele in the C57BL/6J background, we determined that absence of Cyth1 does not by itself influence CM ploidy. The ready availability of BALB/cByJ mice may be helpful to other investigations of Cyth1 in other biological processes.


Sujet(s)
Souris de lignée BALB C , Myocytes cardiaques , Polyploïdie , Animaux , Souris , Allèles , Facteurs d'échange de nucléotides guanyliques/génétique , Facteurs d'échange de nucléotides guanyliques/métabolisme , Mutation perte de fonction , Souris de lignée C57BL , Souris knockout , Myocytes cardiaques/métabolisme
16.
Am J Bot ; 111(6): e16353, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38826031

RÉSUMÉ

PREMISE: Polyploidization is often followed by diploidization. Diploidization is generally studied using synthetic polyploid lines and/or crop plants, but rarely using extant diploids or nonmodel plants such as Artemisia tridentata. This threatened western North American keystone species has a large genome compared to congeneric Artemisia species; dominated by diploid and tetraploid cytotypes, with multiple origins of tetraploids with genome size reduction. METHODS: The genome of an A. tridentata sample was resequenced to study genome evolution and compared to that of A. annua, a diploid congener. Three diploid genomes of A. tridentata were compared to test for multiple diploidization events. RESULTS: The A. tridentata genome had many chromosomal rearrangements relative to that of A. annua, while large-scale synteny of A. tridentata chromosome 3 and A. annua chromosome 4 was conserved. The three A. tridentata genomes had similar sizes (4.19-4.2 Gbp), heterozygosity (2.24-2.25%), and sequence (98.73-99.15% similarity) across scaffolds, and in k-mer analyses, similar patterns of diploid heterozygous k-mers (AB = 41%, 47%, and 47%), triploid heterozygous k-mers (AAB = 18-21%), and tetraploid k-mers (AABB = 13-17%). Biallelic SNPs were evenly distributed across scaffolds for all individuals. Comparisons of transposable element (TE) content revealed differential enrichment of TE clades. CONCLUSIONS: Our findings suggest population-level TE differentiation after a shared polyploidization-to-diploidization event(s) and exemplify the complex processes of genome evolution. This research approached provides new resources for exploration of abiotic stress response, especially the roles of TEs in response pathways.


Sujet(s)
Artemisia , Diploïdie , Génome végétal , Artemisia/génétique , Évolution moléculaire , Amérique du Nord , Polyploïdie , Chromosomes de plante/génétique
17.
Plant Biol (Stuttg) ; 26(5): 735-748, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38924267

RÉSUMÉ

YABBY genes encode specific TFs of seed plants involved in development and formation of leaves, flowers, and fruit. In the present work, genome-wide and expression analyses of the YABBY gene family were performed in six species of the Fragaria genus: Fragaria × ananassa, F. daltoniana, F. nilgerrensis, F. pentaphylla, F. viridis, and F. vesca. The chromosomal location, synteny pattern, gene structure, and phylogenetic analyses were carried out. By combining RNA-seq data and RT-qPCR analysis we explored specific expression of YABBYs in F. × ananassa and F. vesca. We also analysed the promoter regions of FaYABBYs and performed MeJA application to F. × ananassa fruit to observe effects on gene expression. We identified and characterized 25 YABBY genes in F. × ananassa and six in each of the other five species, which belong to FIL/YAB3 (YABBY1), YAB2 (YABBY2), YAB5 (YABBY5), CRC, and INO clades previously described. Division of the YABBY1 clade into YABBY1.1 and YABBY1.2 subclades is reported. We observed differential expression according to tissue, where some FaYABBYs are expressed mainly in leaves and flowers and to a minor extent during fruit development of F. × ananassa. Specifically, the FaINO genes contain jasmonate-responsive cis-acting elements in their promoters which may be functional since FaINOs are upregulated in F. × ananassa fruit under MeJA treatment. This study suggests that YABBY TFs play an important role in the development- and environment-associated responses of the Fragaria genus.


Sujet(s)
Cyclopentanes , Diploïdie , Fragaria , Régulation de l'expression des gènes végétaux , Oxylipines , Phylogenèse , Protéines végétales , Facteurs de transcription , Fragaria/génétique , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Cyclopentanes/métabolisme , Cyclopentanes/pharmacologie , Oxylipines/pharmacologie , Oxylipines/métabolisme , Fruit/génétique , Fruit/croissance et développement , Polyploïdie , Acétates/pharmacologie , Régions promotrices (génétique)/génétique , Synténie , Famille multigénique
18.
BMC Plant Biol ; 24(1): 518, 2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38851683

RÉSUMÉ

Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.


Sujet(s)
Brassica napus , Méthylation de l'ADN , Régulation de l'expression des gènes végétaux , Polyploïdie , Brassica napus/génétique , Brassica napus/métabolisme , Gènes dupliqués/génétique , Gènes de plante , Épissage alternatif , Duplication de gène , Épigenèse génétique
19.
Article de Anglais | MEDLINE | ID: mdl-38862424

RÉSUMÉ

The order Acipenseriformes, which includes sturgeons and paddlefishes, represents "living fossils" with complex genomes that are good models for understanding whole-genome duplication (WGD) and ploidy evolution in fishes. Here, we sequenced and assembled the first high-quality chromosome-level genome for the complex octoploid Acipenser sinensis (Chinese sturgeon), a critically endangered species that also represents a poorly understood ploidy group in Acipenseriformes. Our results show that A. sinensis is a complex autooctoploid species containing four kinds of octovalents (8n), a hexavalent (6n), two tetravalents (4n), and a divalent (2n). An analysis taking into account delayed rediploidization reveals that the octoploid genome composition of Chinese sturgeon results from two rounds of homologous WGDs, and further provides insights into the timing of its ploidy evolution. This study provides the first octoploid genome resource of Acipenseriformes for understanding ploidy compositions and evolutionary trajectories of polyploid fishes.


Sujet(s)
Évolution moléculaire , Poissons , Génome , Polyploïdie , Séquençage du génome entier , Animaux , Poissons/génétique , Séquençage du génome entier/méthodes , Génome/génétique , Phylogenèse
20.
Am J Physiol Heart Circ Physiol ; 327(2): H377-H389, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38847758

RÉSUMÉ

Factors responsible for cardiomyocyte proliferation could serve as potential therapeutics to stimulate endogenous myocardial regeneration following insult, such as ischemic injury. A previously published forward genetics approach on cardiomyocyte cell cycle and ploidy led us to the transcription factor, Runx1. Here, we examine the effect of Runx1 on cardiomyocyte cell cycle during postnatal development and cardiac regeneration using cardiomyocyte-specific gain- and loss-of-function mouse models. RUNX1 is expressed in cardiomyocytes during early postnatal life, decreases to negligible levels by 3 wk of age, and increases upon myocardial injury, all consistent with observed rates of cardiomyocyte cell-cycle activity. Loss of Runx1 transiently stymied cardiomyocyte cell-cycle activity during normal postnatal development, a result that corrected itself and did not extend to the context of neonatal heart regeneration. On the other hand, cardiomyocyte-specific Runx1 overexpression resulted in an expansion of diploid cardiomyocytes in uninjured hearts and expansion of 4 N cardiomyocytes in the context of neonatal cardiac injury, suggesting Runx1 overexpression is sufficient to induce cardiomyocyte cell-cycle responses. Persistent overexpression of Runx1 for >1 mo continued to promote cardiomyocyte cell-cycle activity resulting in substantial hyperpolyploidization (≥8 N DNA content). This persistent cell-cycle activation was accompanied by ventricular dilation and adverse remodeling, raising the concern that continued cardiomyocyte cell cycling can have detrimental effects.NEW & NOTEWORTHY Runx1 is sufficient but not required for cardiomyocyte cell cycle.


Sujet(s)
Cycle cellulaire , Prolifération cellulaire , Sous-unité alpha 2 du facteur CBF , Myocytes cardiaques , Animaux , Myocytes cardiaques/métabolisme , Sous-unité alpha 2 du facteur CBF/métabolisme , Sous-unité alpha 2 du facteur CBF/génétique , Régénération , Souris , Animaux nouveau-nés , Polyploïdie , Souris de lignée C57BL
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE