Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.740
Filtrer
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 853-860, 2024 Jul 20.
Article de Chinois | MEDLINE | ID: mdl-39170003

RÉSUMÉ

Objective: This study aims to develop a medical patch surface material featuring a microporous polyurethane (PU) membrane and to assess the material's properties and biological performance. The goal is to enhance the clinical applicability of pelvic floor repair patch materials. Methods: PU films with a microporous surface were prepared using PU prepolymer foaming technology. The films were produced by optimizing the PU prepolymer isocyanate index (R value) and the relative humidity (RH) of the foaming environment. The surface morphology of the PU microporous films was observed by scanning electron microscopy, and the chemical properties of the PU microporous films, including hydrophilicity, were analyzed using infrared spectroscopy, Raman spectroscopy, and water contact angle measurements. In vitro evaluations included testing the effects of PU microporous film extracts on the proliferation of L929 mouse fibroblasts and observing the adhesion and morphology of these fibroblasts. Additionally, the effect of the PU microporous films on RAW264.7 mouse macrophages was studied. Immune response and tissue regeneration were assessed in vivo using Sprague Dawley (SD) rats. Results: The PU films exhibited a well-defined and uniform microporous structure when the R value of PU prepolymer=1.5 and the foaming environment RH=70%. The chemical structure of the PU microporous films was not significantly altered compared to the PU films, with a significantly lower water contact angle ([55.7±1.5]° ) compared to PU films ([69.5±1.7]° ) and polypropylene (PP) ([ 104.3±2.5]°), indicating superior hydrophilicity. The extracts from PU microporous films demonstrated good in vitro biocompatibility, promoting the proliferation of L929 mouse fibroblasts. The surface morphology of the PU microporous films facilitated fibroblast adhesion and spreading. The films also inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1ß by RAW264.7 macrophages while enhancing IL-10 and IL-4 secretion. Compared to 24 hours, after 72 hours of culture, the expression levels of TNF-α and IL-1ß were reduced in both the PU film and PU microporous film groups and were significantly lower than those in the PP film group (P<0.05), with the most notable decreases observed in the PU microporous film group. IL-10 and IL-4 levels increased significantly in the PU microporous film group, surpassing those in the PP film group (P<0.01), with the most pronounced increase in IL-4. The PU microporous film induced mild inflammation with no significant fibrous capsule formation in vivo. After 60 days of implantation, the film partially degraded, showing extensive collagen fiber growth and muscle formation in its central region. Conclusion: The PU microporous film exhibits good hydrophilicity and biocompatibility. Its surface morphology enhances cell adhesion, regulates the function of RAW264.7 macrophages, and promotes tissue repair, offering new insights for the design of pelvic floor repair and reconstruction patch materials.


Sujet(s)
Fibroblastes , Polypropylènes , Polyuréthanes , Rat Sprague-Dawley , Polyuréthanes/composition chimique , Animaux , Souris , Rats , Polypropylènes/composition chimique , Fibroblastes/cytologie , Matériaux biocompatibles/composition chimique , Filet chirurgical , Cellules RAW 264.7 , Propriétés de surface , Lignée cellulaire , Porosité , Test de matériaux , Prolifération cellulaire/effets des médicaments et des substances chimiques , Macrophages/cytologie
2.
Water Res ; 263: 122177, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39111211

RÉSUMÉ

For the resource recovery of biomass waste, it is a challenge to simultaneously remove micro-/nano-plastics pollution but preserve organic resources. Wet oxidation is a promising technology for valorization of organic wastes through thermal hydrolysis and oxidation. This might in turn result in the degradation of microplastics in the presence of oxygen and high temperatures. Based on this hypothesis, this study quantified both microplastics and nanoplastics in an industrial-scale wet oxidation reactor from a full-size coverage perspective. Wet oxidation significantly reduced the size and mass of individual microplastics, and decreased total mass concentration of microplastics and nanoplastics by 94.8 % to 98.6 %. This technology also reduced the micro- and nanoplastic shapes and polymer types, resulting in a complete removal of fibers, clusters, polypropylene (PP) and poly(methyl methacrylate) (PMMA). The present study confirms that wet oxidation technology is effective in removing microplastics and nanoplastics while recovering organic waste.


Sujet(s)
Microplastiques , Oxydoréduction , Polluants chimiques de l'eau/composition chimique , Polypropylènes/composition chimique , Matières plastiques/composition chimique , Poly(méthacrylate de méthyle)/composition chimique
3.
Environ Pollut ; 359: 124751, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-39151783

RÉSUMÉ

The impacts of microplastics on soil ecological functions such as carbon recycling and soil structure maintenance have been extensively focused. However, the mechanisms underlying the impacts of microplastics on soil carbon transformation and soil microbial community at soil aggregate scale have not been clarified yet. In this work, the effects and action mechanisms of traditional microplastic polypropylene (PP) and degradable microplastic polylactic acid (PLA) on carbon transformation in three sizes of soil aggregates were investigated. The results showed that both PP and PLA promoted CO2 emission, and the effect depended on the type and content of microplastics, and the size of soil aggregates. Changes in soil carbon stocks were mainly driven by changes in organic carbon associated with macroaggregates. For macroaggregates, PP microplastics decreased soil organic carbon (SOC) as well as dissolved organic carbon (DOC). These changes were reversed in microaggregates and silt and clay. Interestingly, PLA increased the SOC, DOC and CO2 emissions in bulk soil and all three aggregates with a dose-effect response. These changes were associated with soil microbes, functional genes and enzymes associated with the degradation of labile and recalcitrant carbon fractions. Furthermore, PP and PLA reduced bacterial community diversities and shifted bacterial community structures in both the three aggregates and in bulk soil. Alterations of functional genes induced by microplastics were the key driving factors of their impacts on carbon transformation in soil aggregates. This research opened up a new insight into the mechanisms underlying the impacts of microplastics on soil carbon transformation, and helped us make rational assessments of the risks and the disturbances of microplastics on soil carbon cycling.


Sujet(s)
Carbone , Microplastiques , Microbiologie du sol , Polluants du sol , Sol , Sol/composition chimique , Dépollution biologique de l'environnement , Polyesters/composition chimique , Polypropylènes/composition chimique
4.
Environ Sci Pollut Res Int ; 31(39): 52181-52197, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39141264

RÉSUMÉ

Industrial solid waste (mine tailings) management has emerged as the key universal ecological challenge as a result of the unceasing creation of rising waste by-products. Employing tailings makes mine fill production economical and assists resolve disposal problems. Foamed cement-based tailings backfill (FCTB) is a mine fill consisting of tailing, cement, water, and foaming agents. It provides certain advantages such as lightweight, good fluidity, and thermal insulation yet is relatively weak in strength. Additionally, FCTB's strength properties can be intensely improved by adding fibers. A total of three diverse fibers: polypropylene (PP), glass (G), and basalt (B) as well as dodecyltrimethylammonium bromide (DTAB) as a foaming agent were used to prepare fiber-reinforced foamed cementitious tailings backfill (FR-FCTB). The mechanical properties, energy evolution, ductility, and microstructure of FR-FCTB were elaborately investigated by uniaxial compression tests (UCS) and SEM. Laboratory findings demonstrate the reinforcing effect of three fibers on FCTB specimens: glass > polypropylene > basalt. FR-FCTB showed the best strength features as a fiber content of 0.3% was adopted in FCTB. At this time, the UCS performance of glass fiber-reinforced FCTBs was 0.85 MPa increased by 18.1%. The addition of fibers can increase the fill's energy storage limit, slow down the discharge of elastic strain energy within the backfill, and enhance the fill's ductility and toughness. The ductility factor evaluates the degree of deterioration of filling in terms of post-peak drop, with all FR-FCTB values being greater than CTB. FR-FCTB's chief hydration product is the C-S-H gel. Fiber's bridging effect significantly rallies crack extension and thus fill's strength features. Lastly, the study's main results are instructive for the industrial application of FR-FCTB used in metallic mines.


Sujet(s)
Matériaux de construction , Polypropylènes/composition chimique , Mine
5.
Environ Sci Technol ; 58(35): 15711-15721, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39172764

RÉSUMÉ

Recent research has shown that microplastics are widespread in the atmosphere. However, we know little about their ability to nucleate ice and their impact on ice formation in clouds. Ice nucleation by microplastics could also limit their long-range transport and global distribution. The present study explores the heterogeneous ice-nucleating ability of seven microplastic samples in immersion freezing mode. Two polypropylene samples and one polyethylene terephthalate sample froze heterogeneously with median freezing temperatures of -20.9, -23.2, and -21.9 °C, respectively. The number of ice nucleation sites per surface area, ns(T), ranged from 10-1 to 104 cm-2 in a temperature interval of -15 to -25 °C, which is comparable to that of volcanic ash and fungal spores. After exposure to ozone or a combination of UV light and ozone, simulating atmospheric aging, the ice nucleation activity decreased in some cases and remained unchanged in others. Our freezing data suggest that microplastics may promote ice formation in cloud droplets. In addition, based on a comparison of our freezing results and previous simulations using a global transport model, ice nucleation by microplastics will impact their long-range transport to faraway locations and global distribution.


Sujet(s)
Atmosphère , Glace , Microplastiques , Atmosphère/composition chimique , Ozone/composition chimique , Congélation , Rayons ultraviolets , Polluants atmosphériques/composition chimique , Téréphtalate polyéthylène/composition chimique , Polypropylènes/composition chimique
6.
Int J Biol Macromol ; 277(Pt 3): 134316, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39094859

RÉSUMÉ

Due to dwindling petroleum resources and the need for environmental protection, the development of bio-based flame retardants has received much attention. In order to explore the feasibility of fully biomass polyelectrolyte complexes (PEC) for polyolefin flame retardant applications, chitosan (CS), sodium alginate (SA), and sodium phytate (SP) were used to prepare CS-based fully biomass PEC intercalated montmorillonite (MMT) hybrid biomaterials (SA-CS@MMT and SP-CS@MMT). The effects of two hybrid biomaterials on the fire safety and mechanical properties of intumescent flame-retardant polypropylene (PP) composites were compared. The SP-CS@MMT showed the best flame retardancy and toughening effect at the same addition amount. After adding 5 wt% SP-CS@MMT, the limiting oxygen index (LOI) value of PP5 reached 30.9 %, and the peak heat release rate (pHRR) decreased from 1348 kW/m2 to 163 kW/m2. In addition, the hydrogen bonding between polyelectrolyte complexes significantly improved the mechanical properties of PP composites. Compared with PP2, the tensile strength of PP5 increased by 59 %. This study provided an efficient and eco-friendly strategy for the large-scale production of renewable biomaterials with good thermal stability and expanded the application of macromolecular biomaterials in the field of fire safety.


Sujet(s)
Bentonite , Chitosane , Ignifuges , Polyélectrolytes , Polypropylènes , Chitosane/composition chimique , Bentonite/composition chimique , Polypropylènes/composition chimique , Polyélectrolytes/composition chimique , Résistance à la traction , Technologie de la chimie verte/méthodes , Matériaux biocompatibles/composition chimique , Phénomènes mécaniques
7.
J Hazard Mater ; 478: 135475, 2024 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-39146588

RÉSUMÉ

This study aims to deepen knowledge of the biodegradation of plastics, focusing on polypropylene (PP) fabric from surgical masks and polystyrene (PS) by larvae of Zophobas atratus as well as of specialized bacterial consortia from their gut, which were obtained in different enrichment conditions (aerobic, anaerobic, presence or absence of combined nitrogen). Plastics ingested by larvae obtained in Spain did not show any signs of oxidation but only limited depolymerization, preferably from the lowest molecular weight chains. Gut microbiota composition changed as an effect of plastic feeding. Such differences were more evident in bacterial enrichment cultures, where the polymer type influenced the composition more than by culture conditions, with an increase in the presence of nitrogen-fixers in anaerobic conditions. PS and PP degradation by different enrichment cultures was confirmed under aerobic and anaerobic conditions by respirometry tests, with anaerobic conditions favouring a more active plastic degradation. In addition, exposure to selected bacterial consortia in aerobiosis induced limited surface oxidation of PS. This possibly indicates that different biochemical routes are being utilized in the anaerobic gut and in aerobic conditions to degrade the polymer.


Sujet(s)
Dépollution biologique de l'environnement , Larve , Polypropylènes , Polystyrènes , Polystyrènes/composition chimique , Polystyrènes/métabolisme , Animaux , Polypropylènes/composition chimique , Polypropylènes/métabolisme , Larve/métabolisme , Anaérobiose , Microbiome gastro-intestinal , Bactéries/métabolisme , Consortiums microbiens , Aérobiose
8.
Waste Manag ; 187: 306-316, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39089146

RÉSUMÉ

Plastic waste poses a critical environmental challenge for the world. The proliferation of waste plastic coffee pods exacerbates this issue. Traditional disposal methods such as incineration and landfills are environmentally unfriendly, necessitating the exploration of alternative management strategies. One promising avenue is the pyrolysis in-line reforming process, which converts plastic waste into hydrogen. However, traditional pyrolysis methods are costly due to inefficiencies and heat losses. To address this, for the first time, our study investigates the use of microwave to enhance the pyrolysis process. We explored microwave pyrolysis for polypropylene (PP), high-density polypropylene (HDPE), and waste coffee pods, with the latter primarily comprising polypropylene. Additionally, catalytic ex-situ pyrolysis of coffee pod pyrolysis over a nickel-based catalyst was investigated to convert the evolved gas into hydrogen. The single-stage microwave pyrolysis results revealed the highest gas yield at 500 °C for HDPE, and 41 % and 58 % (by mass) for waste coffee pods and polypropylene at 700 °C, respectively. Polypropylene exhibited the highest gaseous yield, suggesting its readiness for pyrolytic degradation. Waste coffee pods uniquely produced carbon dioxide and carbon monoxide gases because of the oxygen present in their structure. Catalytic reforming of evolved gas from waste coffee pods using a 5 % nickel loaded activated carbon catalyst, yielded 76 % (by volume) hydrogen at 900 °C. These observed results were supported by elemental balance analysis. These findings highlight that two-stage microwave and catalysis assisted pyrolysis could be a promising method for the efficient management of waste coffee pods, particularly for producing clean energy.


Sujet(s)
Café , Hydrogène , Micro-ondes , Polyéthylène , Polypropylènes , Pyrolyse , Polypropylènes/composition chimique , Hydrogène/composition chimique , Café/composition chimique , Catalyse , Polyéthylène/composition chimique , Élimination des déchets/méthodes
9.
Stem Cell Res Ther ; 15(1): 212, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39020391

RÉSUMÉ

BACKGROUND: Sciatic nerve repair becomes a focus of research in neurological aspect to restore the normal physical ability of the animal to stand and walk. Tissue engineered nerve grafts (TENGs) provide a promising alternative therapy for regeneration of large gap defects. The present study investigates the regenerative capacity of PRP, ADSCs, and PRP mixed ADSCs on a long sciatic nerve defect (40-mm) bridged by a polyglycolic polypropylene (PGA-PRL) mesh which acts as a neural scaffold. MATERIALS AND METHODS: The study was conducted on 12 adult male mongrel dogs that were randomly divided into 4 groups: Group I (scaffold group); where the sciatic defect was bridged by a (PGA-PRL) mesh only while the mesh was injected with ADSCs in Group II (ADSCs group), PRP in Group III (PRP group). Mixture of PRP and ADSCs was allocated in Group IV (PRP + ADSCs group). Monthly, all animals were monitored for improvement in their gait and a numerical lameness score was recorded for all groups. 6 months-post surgery, the structural and functional recovery of sciatic nerve was evaluated electrophysiologically, and on the level of gene expression, and both sciatic nerve and the gastrocnemius muscle were evaluated morphometrically, histopathologically. RESULTS: Numerical lameness score showed improvement in the motor activities of both Group II and Group III followed by Group IV and the scaffold group showed mild improvement even after 6 months. Histopathologically, all treated groups showed axonal sprouting and numerous regenerated fascicles with obvious angiogenesis in proximal cut, and distal portion where Group IV exhibited a significant remyelination with the MCOOL technique. The regenerative ratio of gastrocnemius muscle was 23.81%, 56.68%, 52.06% and 40.69% for Group I, II, III and IV; respectively. The expression of NGF showed significant up regulation in the proximal portion for both Group III and Group IV (P ≤ 0.0001) while Group II showed no significant difference. PDGF-A, and VEGF expressions were up-regulated in Group II, III, and IV whereas Group I showed significant down-regulation for NGF, PDGF-A, and VEGF (P ≤ 0.0001). CONCLUSION: ADSCs have a great role in restoring the damaged nerve fibers by secreting several types of growth factors like NGF that have a proliferative effect on Schwann cells and their migration. In addition, PRP therapy potentiates the effect of ADSCs by synthesis another growth factors such as PDGF-A, VEGF, NGF for better healing of large sciatic gap defects.


Sujet(s)
Régénération nerveuse , Polypropylènes , Nerf ischiatique , Animaux , Chiens , Régénération nerveuse/physiologie , Nerf ischiatique/traumatismes , Mâle , Polypropylènes/composition chimique , Plasma riche en plaquettes/métabolisme , Tissu adipeux/cytologie , Acide polyglycolique/composition chimique , Cellules souches/cytologie , Cellules souches/métabolisme , Modèles animaux de maladie humaine , Structures d'échafaudage tissulaires/composition chimique , Transplantation de cellules souches/méthodes , Ingénierie tissulaire/méthodes
10.
Environ Sci Pollut Res Int ; 31(32): 45162-45176, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38958859

RÉSUMÉ

Virgin and environmentally aged polypropylene (PP) micropowders (V-PP and E-PP, respectively) were used as reference microplastics (MPs) in comparative photo- and thermo-oxidative ageing experiments performed on their mixtures with a natural ferrous sand (NS) and with a metal-free silica sand (QS). The ferrous NS was found to catalyze the photo-oxidative degradation of V-PP after both UV and simulated solar light irradiation. The catalytic activity in the V-PP/NS mixture was highlighted by the comparatively higher fraction of photo-oxidized PP extracted in dichloromethane, and the higher carbonyl index of the bulk polymer extracted with boiling xylene, when compared with the V-PP/QS mixture. Similarly, NS showed a catalytic effect on the thermal degradation (at T = 60 °C) of E-PP. The results obtained indicate that, under suitable environmental conditions (in this case, an iron-containing sediment or soil matrix, combined with simulated solar irradiation), the degradation of some types of MPs could be much faster than anticipated. Given the widespread presence of iron minerals (including the magnetite and iron-rich serpentine found in NS) in both coastal and mainland soils and sediments, a higher than expected resilience of the environment to the contamination by this class of pollutants is anticipated, and possible routes to remediation of polluted natural environments by eco-compatible iron-based minerals are envisaged.


Sujet(s)
Fer , Microplastiques , Polypropylènes , Polypropylènes/composition chimique , Microplastiques/composition chimique , Fer/composition chimique , Catalyse , Minéraux/composition chimique , Assainissement et restauration de l'environnement , Oxydoréduction
11.
Sci Rep ; 14(1): 16476, 2024 07 16.
Article de Anglais | MEDLINE | ID: mdl-39014021

RÉSUMÉ

Pyrolytic synergistic interactions, in which the production of pyrolyzates is enhanced or inhibited, commonly occur during the co-pyrolysis of different polymeric materials, such as plastics and biomass. Although these interactions can increase the yield of desired pyrolysis products under controlled degradation conditions, the desired compounds must be separated from complex pyrolyzates and further purified. To balance these dual effects, this study was aimed at examining pyrolytic synergistic interactions during slow heating co-pyrolysis of biodegradable plastics including polylactic acid (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexaoate) (PHBH) and petroleum-based plastics including high-density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS). Comprehensive investigations based on thermogravimetric analysis, pyrolysis-gas chromatography/mass spectrometry, and evolved gas analysis-mass spectrometry revealed that PLA and PHBH decompose at lower temperatures (273-378 °C) than HDPE, PP, and PS (386-499 °C), with each polymer undergoing independent decomposition without any pyrolytic interactions. Thus, the independent pyrolysis of biodegradable plastics, such as PLA and PHBH, with common plastics, such as HDPE, PP, and PS, can theoretically be realized through temperature control, enabling the selective recovery of their pyrolyzates in different temperature ranges. Thus, pyrolytic approaches can facilitate the treatment of mixed biodegradable and common plastics.


Sujet(s)
Matières plastiques biodégradables , Polyesters , Polypropylènes , Pyrolyse , Polyesters/composition chimique , Matières plastiques biodégradables/composition chimique , Polypropylènes/composition chimique , Matières plastiques/composition chimique , Polystyrènes/composition chimique , Chromatographie gazeuse-spectrométrie de masse , Température élevée , Thermogravimétrie , Polyéthylène/composition chimique
12.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-39000151

RÉSUMÉ

Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.


Sujet(s)
Hémoglobines , Oxygène , Matières plastiques , Polypropylènes , Hémoglobines/composition chimique , Hémoglobines/métabolisme , Adsorption , Oxygène/composition chimique , Oxygène/métabolisme , Matières plastiques/composition chimique , Polypropylènes/composition chimique , Polyéthylène/composition chimique , Microplastiques/composition chimique , Spectroscopie infrarouge à transformée de Fourier
13.
Environ Sci Pollut Res Int ; 31(36): 49100-49115, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39046636

RÉSUMÉ

The research investigates the effects of substituting sand with rubber particles derived from waste tyres-up to 40% by volume-and the inclusion of polypropylene (PP) fibres. Unlike steel fibres, which can cause operational challenges and surface irregularities in the printing process, PP fibres' flexibility integrates well within the concrete matrix. This integration ensures smooth extrusion and a high-quality surface finish, enhancing the printability of the concrete. The study's findings reveal that including rubber particles and PP fibres impacts the concrete's properties, showing a general decline in compressive and flexural strengths as the rubber content increases. Nevertheless, the PP fibre-enhanced mixtures maintain sufficient structural strength, demonstrating an anisotropic compressive strength above 30 MPa and a flexural strength of 4 MPa. These results underscore the feasibility of using rubberised 3D-printed concrete with PP fibres in sustainable construction practices, aligning with standards (ACI 318:2018) and contributing to eco-friendly and innovative construction methodologies.


Sujet(s)
Matériaux de construction , Polypropylènes , Impression tridimensionnelle , Caoutchouc , Caoutchouc/composition chimique , Polypropylènes/composition chimique , Anisotropie , Test de matériaux , Résistance à la compression
14.
ACS Appl Bio Mater ; 7(8): 5171-5187, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39008660

RÉSUMÉ

In response to the ongoing threat posed by respiratory diseases, ensuring effective transmission protection is crucial for public health. To address the drawbacks of single-use face masks/respirators, which can be a potential source of contact-based transmission, we have designed an antimicrobial face mask and mask covering utilizing a stack of salt-coated spunbond (SB) fabric. This fabric acts as an outer layer for the face mask and as a covering over a conventional mask, respectively. We evaluated the universal antimicrobial performance of the salt-coated three-stacked SB fabric against enveloped/nonenveloped viruses and spore-forming/nonspore-forming bacteria. The distinctive pathogen inactivation efficiency was confirmed, including resistant pathogens such as human rhinovirus and Clostridium difficile. In addition, we tested other filter attributes, such as filtration efficiency and breathability, to determine the optimal layer for salt coating and its effects on performance. Our findings revealed that the outer layer of a conventional face mask plays a crucial role in contact transmission through contaminated face masks and respirators. Through contact transmission experiments using droplets involving three types of contaminants (fluorescent dyes, bacteria, and viruses), the salt-coated stacked SB fabric demonstrated a superior effect in preventing contact transmission compared to SB or meltblown polypropylene fabrics─an issue challenging to existing masks. Our results demonstrate that the use of salt-coated stacked SB fabrics as (i) the outer layer of a mask and (ii) a mask cover over a mask enhances overall filter performance against infectious droplets, achieving high pathogen inactivation and low contact-based transmission while maintaining breathability.


Sujet(s)
Masques , Test de matériaux , Polypropylènes , Textiles , Polypropylènes/composition chimique , Masques/virologie , Humains , Taille de particule , Anti-infectieux/pharmacologie , Anti-infectieux/composition chimique , Clostridioides difficile/effets des médicaments et des substances chimiques
15.
Chemosphere ; 363: 142814, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38986773

RÉSUMÉ

There is a lack of agreement on a suitable container material for per- and polyfluoroalkyl substances (PFAS) analysis, particularly at trace levels. In this study, the losses of 18 short- and long-chain (C4-C10) PFAS to commonly used labware materials (high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), polypropylene co-polymer (PPCO), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and glass were investigated. The influence of sample storage and preparation conditions, i.e., storage time, solvent composition, storage temperatures (4 °C and 20 °C), and sample agitation techniques (shaking and centrifugation) on PFAS losses to the container materials were investigated. The results showed higher losses for most of the considered PFAS (up to 50.9%) in 100% aqueous solutions after storage for 7 days regardless of the storage temperature compared to those after 3 days. Overall, the order of losses to different materials varied for individual PFAS, with the highest losses of long-chain PFAS observed to PP and HDPE after 7-day storage at room temperature. The addition of methanol to aqueous PFAS solutions reduced the losses of long-chain PFAS to all tested materials. The use of sample centrifugation and shaking did not influence the extent of losses for most of the PFAS in 80:20 water:methanol (%, v/v) to container materials except for 8:2 fluorotelomer sulfonic acid (8:2 FTS), 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS), perfluorodecanoic acid (PFDA) and 4:2 fluorotelomer sulfonic acid (4:2 FTS). This study demonstrates lower losses of both long- and short-chain PFAS to glass and PET. It also highlights the need for caution when deciding on sample preparatory steps and storage during the analysis of PFAS.


Sujet(s)
Fluorocarbones , Fluorocarbones/analyse , Fluorocarbones/composition chimique , Téréphtalate polyéthylène/composition chimique , Température , Polyéthylène/composition chimique , Polypropylènes/composition chimique , Polytétrafluoroéthylène/composition chimique , Verre/composition chimique , Polystyrènes/composition chimique
16.
J Hazard Mater ; 476: 135089, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-38959827

RÉSUMÉ

The surge in face mask use due to COVID-19 has raised concerns about micro(nano)plastics (MNPs) from masks. Herein, focusing on fabric structure and polymer composition, we investigated MNP generation characteristics, mechanisms, and potential risks of surgical polypropylene (PP) and fashionable polyurethane (PU) masks during their wearing and photoaging based on stereomicroscope, µ-Fourier transform infrared spectroscopy (µ-FTIR), and scanning electron microscope (SEM) techniques. Compared with new PP and PU masks (66 ± 16 MPs/PP-mask, 163 ± 83 MPs/PU-mask), single- and multiple-used masks exhibited remarkably increased MP type and abundance (600-1867 MPs/PP-mask, 607-2167 MPs/PU-mask). Disinfection exacerbated endogenous MP generation in masks, with washing (416 MPs/PP-mask, 30,708 MPs/PU-mask) being the most prominent compared to autoclaving (219 MPs/PP-mask, 553 MPs/PU-mask) and alcohol spray (162 MPs/PP-mask, 18,333 MPs/PU-mask). Photoaging led to massive generation of MPs (8.8 × 104-3.7 × 105 MPs/PP-layer, 1.0 × 105 MPs/PU-layer) and NPs (5.2 × 109-3.6 × 1013 NPs/PP-layer, 3.5 × 1012 NPs/PU-layer) from masks, presenting highly fabric structure-dependent aging modes as "fragmentation" for fine fiber-structure PP mask and "erosion" for 3D mesh-structure PU mask. The MNPs derived from PP/PU mask caused significant deformities of Zebrafish (Danio rerio) larvae. These findings underscore the potential adverse effects of masks on humans and aquatic organisms, advocating to enhance proper use and rational disposal for masks.


Sujet(s)
COVID-19 , Masques , Polypropylènes , Polyuréthanes , Textiles , Polypropylènes/composition chimique , COVID-19/prévention et contrôle , Polyuréthanes/composition chimique , Humains , Textiles/analyse , Animaux , SARS-CoV-2 , Polymères/composition chimique , Microplastiques/toxicité , Danio zébré , Contamination de matériel/prévention et contrôle
17.
J Environ Manage ; 366: 121881, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39018861

RÉSUMÉ

Coal ash containing significant amount of SiO2 and Al2O3 is utilized as a catalyst substrate for carbon nanotubes (CNTs) synthesis. Three different types of catalysts were made by impregnating coal ash with cobalt, iron, and nickel. These catalysts were used to produce CNTs through pyrolysis of waste polypropylene followed by chemical vapor deposition. The influence of catalyst type and reaction temperature (700, 800 and 900 °C) on CNTs yield and its quality was studied in detail. The produced CNTs were characterized by thermogravimetric analysis (TGA), Raman scattering and electron microscopes (FESEM and HRTEM). The TGA results revealed that the Ni catalyst produced CNTs with highest yield (266 %) compared to those synthesized over and Fe (96 %) and Co (95 %). However, the yield of the CNTs from all three metal impregnated coal ash based catalysts was found to have decreased with increase in reaction temperature. The thermal stability of CNTs obtained over different catalysts followed the order of Fe (570 °C) > Ni (550 °C) > Co (530 °C). Further, the Raman analysis demonstrated that the produced CNTs over different catalysts showed increasing degree of graphitization with the rise in reaction temperature. Additionally, the ID/IG ratios indicated that CNTs produced from Fe catalyst showed highest degree of graphitization followed by Co and Ni. FESEM and HRTEM analysis showed that the coal ash based catalysts produced multiwalled CNTs and the diameter of the CNTs was increasing with the rise in catalysis temperature. Therefore, co-utilization of coal ash and waste plastic for production of high value CNTs can be a sustainable approach to waste management while actively contributing in circular economy.


Sujet(s)
Cendre de charbon , Nanotubes de carbone , Polypropylènes , Température , Nanotubes de carbone/composition chimique , Catalyse , Cendre de charbon/composition chimique , Polypropylènes/composition chimique , Thermogravimétrie
18.
Chemosphere ; 363: 142741, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38977247

RÉSUMÉ

Microplastics are widely present in the natural environment and exhibit a strong affinity for heavy metals in water, resulting in the formation of microplastics composite heavy metal pollutants. This study investigated the adsorption of heavy metals by electron beam-aged microplastics. For the first time, electron beam irradiation was employed to degrade polypropylene, demonstrating its ability to rapidly age microplastics and generate a substantial number of oxygen-containing functional groups on aged microplastics surface. Adsorption experiments revealed that the maximum adsorption equilibrium capacity of hexavalent chromium by aged microplastics reached 9.3 mg g-1. The adsorption process followed second-order kinetic model and Freundlich model, indicating that the main processes of heavy metal adsorption by aged microplastics are chemical adsorption and multilayer adsorption. The adsorption of heavy metals on aged microplastics primarily relies on the electrostatic and chelation effects of oxygen-containing functional groups. The study results demonstrate that environmental factors, such as pH, salinity, coexisting metal ions, humic acid, and water matrix, exert inhibitory effects on the adsorption of heavy metals by microplastics. Theoretical calculations confirm that the aging process of microplastics primarily relies on hydroxyl radicals breaking carbon chains and forming oxygen-containing functional groups on the surface. The results indicate that electron beam irradiation can simultaneously oxidize and degrade microplastics while reducing hexavalent chromium levels by approximately 90%, proposing a novel method for treating microplastics composite pollutants. Gas chromatography-mass spectrometry analysis reveals that electron beam irradiation can oxidatively degrade microplastics into esters, alcohols, and other small molecules. This study proposes an innovative and efficient approach to treat both microplastics composite heavy metal pollutants while elucidating the impact of environmental factors on the adsorption of heavy metals by electron beam-aged microplastics. The aim is to provide a theoretical basis and guidance for controlling microplastics composite pollution.


Sujet(s)
Chrome , Microplastiques , Polluants chimiques de l'eau , Adsorption , Chrome/composition chimique , Microplastiques/composition chimique , Polluants chimiques de l'eau/composition chimique , Cinétique , Métaux lourds/composition chimique , Substances humiques , Électrons , Polypropylènes/composition chimique , Concentration en ions d'hydrogène
19.
J Microbiol Methods ; 224: 106990, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39004285

RÉSUMÉ

The pUC-derived plasmid yield from E. coli using polypropylene tubes (PP) was compared among round and conical tubes. The yield from cells grown in a cheaper conical-PP with flat-bottom was 1.5-fold higher (p < 0.001) than other PP. The use of the conical-PP can save research budgets in the current inflationary environment.


Sujet(s)
Escherichia coli , Plasmides , Polypropylènes , Escherichia coli/croissance et développement , Escherichia coli/génétique , Polypropylènes/composition chimique , Plasmides/génétique , Vecteurs génétiques
20.
J Hazard Mater ; 477: 135311, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39068889

RÉSUMÉ

Face masks have emerged as a significant source of microplastics (MPs) under the influence of biotic and abiotic interactions. However, the combined effects of abiotic photoaging and biofilm-loading on mask-derived MPs as carriers of metal ions are not clear. We investigated the Pb(Ⅱ) adsorption onto polypropylene (PP) and polyurethane (PU) mask-derived MPs treated by photoaging, biofilm-loading, and both combinations, evaluating the composite risks. PU mask-derived MPs (1.157.47 mg/g) exhibited greater Pb(Ⅱ) adsorption capacity than PP mask-derived MPs (0.842.08 mg/g) because of the presence of intrinsic carbonyl functional groups. Photoaging (30.5%, 88.4%), biofilm-loading (110.7%, 87.1%), and both combinations (146.7%, 547.0%) of PP and PU masks enhanced Pb(Ⅱ) adsorption compared to virgin mask-derived MPs due to the increase of oxygen-containing functional groups. High-throughput sequencing indicated that the structural morphology and chemical composition of masks significantly affected the microbial community. Adsorption mechanisms involved electrostatic force and surface complexation. A combination of photoaging and biofilms increased the ecological risk index of mask-derived MPs in freshwater, showing the risk level to be high (PP mask) and very high (PU mask). This research highlights the crucial role of photoaging combined with biofilms in controlling metal ion adsorption onto mask-derived MPs, thereby increasing the composite risks.


Sujet(s)
Biofilms , Plomb , Microplastiques , Polypropylènes , Polyuréthanes , Adsorption , Plomb/composition chimique , Polyuréthanes/composition chimique , Polypropylènes/composition chimique , Microplastiques/composition chimique , Microplastiques/toxicité , Polluants chimiques de l'eau/composition chimique , Masques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE