Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.127
Filtrer
1.
J Exp Med ; 221(11)2024 Nov 04.
Article de Anglais | MEDLINE | ID: mdl-39316554

RÉSUMÉ

Dysregulation of the flow of information from genomic DNA to RNA to protein occurs within all cancer types. In this review, we described the current state of understanding of how RNA processing is dysregulated in cancer with a focus on mutations in the RNA splicing factor machinery that are highly prevalent in hematologic malignancies. We discuss the downstream effects of these mutations highlighting both individual genes as well as common pathways that they perturb. We highlight examples of how alterations in RNA processing have been harnessed for therapeutic intent as well as to promote the selective toxicity of cancer cells.


Sujet(s)
Tumeurs , Précurseurs des ARN , Humains , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Tumeurs/génétique , Tumeurs/métabolisme , Tumeurs/anatomopathologie , Mutation , Épissage des ARN/génétique , Animaux , Maturation post-transcriptionnelle des ARN/génétique , Facteurs d'épissage des ARN/métabolisme , Facteurs d'épissage des ARN/génétique
2.
Proc Natl Acad Sci U S A ; 121(37): e2401531121, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39226364

RÉSUMÉ

Many RNA-binding proteins (RBPs) are linked to the dysregulation of RNA metabolism in motor neuron diseases (MNDs). However, the molecular mechanisms underlying MN vulnerability have yet to be elucidated. Here, we found that such an RBP, Quaking5 (Qki5), contributes to formation of the MN-specific transcriptome profile, termed "MN-ness," through the posttranscriptional network and maintenance of the mature MNs. Immunohistochemical analysis and single-cell RNA sequencing (scRNA-seq) revealed that Qki5 is predominantly expressed in MNs, but not in other neuronal populations of the spinal cord. Furthermore, comprehensive RNA sequencing (RNA-seq) analyses revealed that Qki5-dependent RNA regulation plays a pivotal role in generating the MN-specific transcriptome through pre-messenger ribonucleic acid (mRNA) splicing for the synapse-related molecules and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signaling pathways. Indeed, MN-specific ablation of the Qki5 caused neurodegeneration in postnatal mice and loss of Qki5 function resulted in the aberrant activation of stress-responsive JNK/SAPK pathway both in vitro and in vivo. These data suggested that Qki5 plays a crucial biological role in RNA regulation and safeguarding of MNs and might be associated with pathogenesis of MNDs.


Sujet(s)
Motoneurones , Protéines de liaison à l'ARN , Moelle spinale , Transcriptome , Animaux , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Motoneurones/métabolisme , Souris , Moelle spinale/métabolisme , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Épissage des ARN , Souris knockout
3.
Biol Pharm Bull ; 47(9): 1504-1510, 2024.
Article de Anglais | MEDLINE | ID: mdl-39284734

RÉSUMÉ

Signal transducer and activator of transcription 3 (STAT3) is a pleiotropic factor involved in multiple vital biological processes and a key mediator of gene transcription in response to cytokines, growth factors and aberrant activation of oncogenic signaling. STAT3 has two splicing isoforms, STAT3α and STAT3ß, derived from alternative splicing of exon 23 within pre-mRNA. STAT3ß differs from STAT3α by replacement of 55 amino-acid residues in the C-terminal transactivation domain with 7 specific amino acids. Thus, a shorter STAT3ß was originally regarded as a dominant negative isoform of STAT3α. Recently accumulating evidence from independent studies have shown STAT3 splicing isoforms confer distinct and overlapping functions in many fundamental cellular regulatory steps such as cell differentiation, inflammatory responses, and cancer progression. However, relatively little is known about the mechanisms of STAT3 pre-mRNA splicing, and it remains undiscovered which chemical compounds or bioactive substances can induce the STAT3ß expression. In this study, we generated a potent reporter for detection of alternative splicing of STAT3 pre-mRNA optimized for the screening of function-known chemical library, and successfully identified entinostat, a histone deacetylase inhibitor, as a novel inducer of STAT3ß through modulating mRNA splicing. Our findings demonstrate that alternative splicing of STAT3 can be regulated by a compound, providing an important clue for understanding the regulation mechanisms of the expression balance of STAT3 isoforms in a chemical biology approach. Entinostat is likely to be a promising seed compound for elucidating how the higher ratio of STAT3ß expression impacts on biological responses associated with Janus kinase (JAK)/STAT3 signaling pathway.


Sujet(s)
Épissage alternatif , Benzamides , Pyridines , Précurseurs des ARN , Facteur de transcription STAT-3 , Facteur de transcription STAT-3/métabolisme , Facteur de transcription STAT-3/génétique , Épissage alternatif/effets des médicaments et des substances chimiques , Humains , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Pyridines/pharmacologie , Benzamides/pharmacologie , Inhibiteurs de désacétylase d'histone/pharmacologie , Cellules HEK293 , Isoformes de protéines/génétique , Isoformes de protéines/métabolisme
4.
Nucleic Acids Res ; 52(17): e83, 2024 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-39119897

RÉSUMÉ

CircRNA, an essential RNA molecule involved in various biological functions and diseases, often exhibits decreased expression in tumor tissues, playing a role as a tumor suppressor, and suggesting therapeutic potential for cancer. However, current methods for promoting circRNA production are limited. This study introduces a novel approach for enhancing circRNA biogenesis, termed circRNA promoting RNA (cpRNA). CpRNA is designed to complement the flanking sequences of reverse complementary matches (RCMs) within pre-mRNA, thereby facilitating circRNA formation through improved exon circularization. Using a split-GFP reporter system, we demonstrated that cpRNA significantly enhance circGFP production. Optimization identified the best conditions for cpRNA to promote circRNA biogenesis, and these cpRNAs were then used to augment the production of endogenous circRNAs. These results indicate that cpRNAs can specifically increase the production of endogenous circRNAs with RCMs, such as circZKSCAN1 and circSMARCA5 in cancer cells, thereby inhibiting cell proliferation and migration by modulating circRNA-related pathways, showcasing the therapeutic potential of cpRNAs. Mechanistic studies have also shown that cpRNA promotes circRNA biogenesis, in part, by antagonizing the unwinding function of DHX9. Overall, these findings suggest that cpRNA represents a promising strategy for circRNA overexpression, offering a potential treatment for diseases marked by low circRNA levels.


Sujet(s)
Prolifération cellulaire , ARN circulaire , ARN circulaire/génétique , ARN circulaire/métabolisme , Humains , Prolifération cellulaire/génétique , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/génétique , Lignée cellulaire tumorale , ARN/génétique , ARN/métabolisme , Mouvement cellulaire/génétique , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Tumeurs/génétique , Tumeurs/métabolisme , Cellules HEK293 , Protéines tumorales
5.
Biophys Chem ; 314: 107307, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39173313

RÉSUMÉ

The two transesterification reactions of pre-mRNA splicing require highly complex yet well-controlled rearrangements of small nuclear RNAs and proteins (snRNP) in the spliceosome. The efficiency and accuracy of these reactions are critical for gene expression, as almost all human genes pass through pre-mRNA splicing. Key parameters that determine the splicing outcome are the length of the intron, the strengths of its splicing signals and gaps between them, and the presence of splicing controlling elements. In particular, the gap between the branchpoint (BP) and the 3' splice site (ss) of introns is a major determinant of the splicing efficiency. This distance falls within a small range across the introns of an organism. The constraints exist possibly because BP and 3'ss are recognized by BP-binding proteins, U2 snRNP and U2 accessory factors (U2AF) in a coordinated manner. Furthermore, varying distances between the two signals may also affect the second transesterification reaction since the intervening RNA needs to be accurately positioned within the complex RNP machinery. Splicing such pre-mRNAs requires cis-acting elements in the RNA and many trans-acting splicing regulators. Regulated pre-mRNA splicing with BP-distant 3'ss adds another layer of control to gene expression and promotes alternative splicing.


Sujet(s)
Introns , Sites d'épissage d'ARN , Épissage des ARN , Humains , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique , Animaux
6.
Sci Adv ; 10(34): eadn3010, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39178251

RÉSUMÉ

The eukaryotic mRNA surveillance pathway, a pivotal guardian of mRNA fidelity, stands at the nexus of diverse biological processes, including antiviral immunity. Despite the recognized function of splicing factors on mRNA fate, the intricate interplay shaping the mRNA surveillance pathway remains elusive. We illustrate that the conserved splicing factor U2 snRNP auxiliary factor large subunit B (U2AF65B) modulates splicing of mRNA surveillance complex, contributing to transcriptomic homeostasis in maize. The functionality of the mRNA surveillance pathway requires ZmU2AF65B-mediated normal splicing of upstream frameshift 3 (ZmUPF3) pre-mRNA, encoding a core factor in this pathway. Intriguingly, sugarcane mosaic virus (SCMV)-coded nuclear inclusion protein a protease (NIa-Pro) hinders the splicing function of ZmU2AF65B. Furthermore, NIa-Pro disrupts ZmU2AF65B binding to ZmUPF3 pre-mRNA, leading to dysregulated splicing of ZmUPF3 transcripts and, consequently, impairing mRNA surveillance, thus facilitating viral infection. Together, this study establishes that splicing governs the mRNA surveillance pathway and identifies a pathogenic protein capable of disrupting this regulation to compromise RNA immunity.


Sujet(s)
Potyvirus , Épissage des ARN , ARN messager , Zea mays , Zea mays/virologie , Zea mays/génétique , ARN messager/génétique , ARN messager/métabolisme , Potyvirus/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Protéines virales/génétique , Protéines virales/métabolisme , Maladies des plantes/virologie , Maladies des plantes/génétique , Facteur d'épissage U2AF/métabolisme , Facteur d'épissage U2AF/génétique , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Régulation de l'expression des gènes végétaux
7.
Cell Death Dis ; 15(8): 618, 2024 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-39187547

RÉSUMÉ

Acute liver failure (ALF) is characterized by the rapidly progressive deterioration of hepatic function, which, without effective medical intervention, results in high mortality and morbidity. Here, using proteomic and transcriptomic analyses in murine ALF models, we found that the expression of multiple splicing factors was downregulated in ALF. Notably, we found that KH-type splicing regulatory protein (KHSRP) has a protective effect in ALF. Knockdown of KHSRP resulted in dramatic splicing defects, such as intron retention, and led to the exacerbation of liver injury in ALF. Moreover, we demonstrated that KHSRP directly interacts with splicing factor 3b subunit 1 (SF3B1) and enhances the binding of SF3B1 to the intronic branch sites, thereby promoting pre-mRNA splicing. Using splicing inhibitors, we found that Khsrp protects against ALF by regulating pre-mRNA splicing in vivo. Overall, our findings demonstrate that KHSRP is an important splicing activator and promotes the expression of genes associated with ALF progression by interacting with SF3B1; thus, KHSRP could be a possible target for therapeutic intervention in ALF.


Sujet(s)
Défaillance hépatique aigüe , Précurseurs des ARN , Facteurs d'épissage des ARN , Épissage des ARN , Protéines de liaison à l'ARN , Facteurs d'épissage des ARN/métabolisme , Facteurs d'épissage des ARN/génétique , Animaux , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Épissage des ARN/génétique , Défaillance hépatique aigüe/métabolisme , Défaillance hépatique aigüe/génétique , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Souris , Humains , Souris de lignée C57BL , Mâle , Phosphoprotéines/métabolisme , Phosphoprotéines/génétique , Modèles animaux de maladie humaine , Liaison aux protéines , Transactivateurs
8.
Cell Rep ; 43(8): 114610, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39116201

RÉSUMÉ

The tumor suppressor p53 and its antagonists MDM2 and MDM4 integrate stress signaling. For instance, dysbalanced assembly of ribosomes in nucleoli induces p53. Here, we show that the ribosomal protein L22 (RPL22; eL22), under conditions of ribosomal and nucleolar stress, promotes the skipping of MDM4 exon 6. Upon L22 depletion, more full-length MDM4 is maintained, leading to diminished p53 activity and enhanced cellular proliferation. L22 binds to specific RNA elements within intron 6 of MDM4 that correspond to a stem-loop consensus, leading to exon 6 skipping. Targeted deletion of these intronic elements largely abolishes L22-mediated exon skipping and re-enables cell proliferation, despite nucleolar stress. L22 also governs alternative splicing of the L22L1 (RPL22L1) and UBAP2L mRNAs. Thus, L22 serves as a signaling intermediate that integrates different layers of gene expression. Defects in ribosome synthesis lead to specific alternative splicing, ultimately triggering p53-mediated transcription and arresting cell proliferation.


Sujet(s)
Épissage alternatif , Exons , Précurseurs des ARN , Protéines ribosomiques , Protéine p53 suppresseur de tumeur , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Protéine p53 suppresseur de tumeur/métabolisme , Protéine p53 suppresseur de tumeur/génétique , Humains , Exons/génétique , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Épissage alternatif/génétique , Nucléole/métabolisme , Prolifération cellulaire , Protéines proto-oncogènes/métabolisme , Protéines proto-oncogènes/génétique , Liaison aux protéines , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Ribosomes/métabolisme , Stress physiologique/génétique , Protéines de liaison à l'ARN
9.
Nat Commun ; 15(1): 7511, 2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39209816

RÉSUMÉ

The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast. We combine biochemical characterization of pre-ribosomal particles with a quantitative single-particle cryo-EM approach to monitor changes in nucleolar particle populations upon drug treatment. Usnic acid rapidly blocks the transition from nucleolar state B to C of Nsa1-associated pre-ribosomes, depleting key maturation factors such as Dbp10 and hindering pre-rRNA processing. This primary nucleolar block rapidly rebounds on earlier stages of the pathway which highlights the regulatory linkages between different steps. In summary, we provide an in-depth characterization of the effect of usnic acid on ribosome biogenesis, which may have implications for its reported anti-cancer activities.


Sujet(s)
Benzofuranes , Nucléole , Cryomicroscopie électronique , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Benzofuranes/pharmacologie , Saccharomyces cerevisiae/effets des médicaments et des substances chimiques , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Nucléole/métabolisme , Nucléole/effets des médicaments et des substances chimiques , Protéines ribosomiques/métabolisme , Ribosomes/métabolisme , Ribosomes/effets des médicaments et des substances chimiques , ARN ribosomique/métabolisme , Grande sous-unité du ribosome/métabolisme , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Grande sous-unité du ribosome des eucaryotes/métabolisme , Lichens/métabolisme
10.
Int J Biol Macromol ; 278(Pt 4): 135067, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39191343

RÉSUMÉ

Alternative splicing (AS) plays important roles in modulating environmental stress responses in plants. However, little is known about the functions of bicarbonate-induced AS in cultivated soybean (Glycine max L. Merr.). In this study, we combined PacBio isoform sequencing (Iso-seq) and Illumina RNA sequencing (RNA-seq) to elucidate the bicarbonate-induced AS events in soybean root and leaf tissues. Compared to RNA-seq, Iso-seq identified more novel genes and transcripts, as well as more AS events, indicating that Iso-seq is more efficient in AS detection. Combining these two technologies, we found that intron retention (IR) is the most frequent AS event type. We identified a total of 913 and 1974 bicarbonate stress-responsive differentially alternative spliced genes (DAGs) in soybean leaves and roots respectively, from our RNA-seq results. Additionally, we determined a transcription factor (GmNTL9) and a splicing factor (GmRSZ22), and validated their roles in bicarbonate stress response by AS. Overall, our study opens an avenue for evaluating plant AS regulatory networks, and the obtained global landscape of alternative splicing provides valuable insights into the AS-mediated bicarbonate-responsive mechanisms in plant species.


Sujet(s)
Épissage alternatif , Hydrogénocarbonates , Régulation de l'expression des gènes végétaux , Glycine max , Précurseurs des ARN , Stress physiologique , Glycine max/génétique , Épissage alternatif/effets des médicaments et des substances chimiques , Hydrogénocarbonates/pharmacologie , Stress physiologique/génétique , Stress physiologique/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Précurseurs des ARN/génétique , RNA-Seq/méthodes , Feuilles de plante/génétique , Feuilles de plante/effets des médicaments et des substances chimiques , Analyse de profil d'expression de gènes/méthodes , Protéines végétales/génétique , Protéines végétales/métabolisme , Racines de plante/génétique , Racines de plante/effets des médicaments et des substances chimiques , Analyse de séquence d'ARN/méthodes
11.
Nucleic Acids Res ; 52(17): 10630-10644, 2024 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-38994562

RÉSUMÉ

Ribosomal RNAs are processed in a complex pathway. We profiled rRNA processing intermediates in yeast at single-molecule and single-nucleotide levels with circularization, targeted amplification and deep sequencing (CircTA-seq), gaining significant mechanistic insights into rRNA processing and surveillance. The long form of the 5' end of 5.8S rRNA is converted to the short form and represents an intermediate of a unified processing pathway. The initial 3' end processing of 5.8S rRNA involves trimming by Rex1 and Rex2 and Trf4-mediated polyadenylation. The 3' end of 25S rRNA is formed by sequential digestion by four Rex proteins. Intermediates with an extended A1 site are generated during 5' degradation of aberrant 18S rRNA precursors. We determined precise polyadenylation profiles for pre-rRNAs and show that the degradation efficiency of polyadenylated 20S pre-rRNA critically depends on poly(A) lengths and degradation intermediates released from the exosome are often extensively re-polyadenylated.


Sujet(s)
Précurseurs des ARN , Maturation post-transcriptionnelle des ARN , ARN ribosomique 5.8S , ARN ribosomique , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , ARN ribosomique/métabolisme , ARN ribosomique/génétique , ARN ribosomique/composition chimique , ARN ribosomique 5.8S/génétique , ARN ribosomique 5.8S/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , ARN ribosomique 18S/métabolisme , ARN ribosomique 18S/génétique , Polyadénylation , ARN fongique/métabolisme , ARN fongique/composition chimique , ARN fongique/génétique , Exosome multienzyme ribonuclease complex/métabolisme , Exosome multienzyme ribonuclease complex/génétique , Séquençage nucléotidique à haut débit , Stabilité de l'ARN
12.
Postepy Biochem ; 70(1): 57-61, 2024 05 23.
Article de Anglais | MEDLINE | ID: mdl-39016229

RÉSUMÉ

MicroRNAs (miRNAs) are generated from stem-loop-structured double-stranded RNA precursors by the consecutive action of the two RNase III-type endoribonuclease Drosha and Dicer. However, such structures are very common on cellular transcripts and specific features have evolved that guide and regulate processing of stem-loop-structured hairpins into mature and functional miRNAs. These features include sequence motifs and local RNA structures but also trans-acting factors such as RNA binding proteins. The menu of features required for miRNA biogenesis is summarized in this review.


Sujet(s)
microARN , Ribonuclease III , microARN/métabolisme , microARN/génétique , Humains , Animaux , Ribonuclease III/métabolisme , Ribonuclease III/génétique , ARN double brin/métabolisme , ARN double brin/génétique , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Conformation d'acide nucléique
13.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-39062888

RÉSUMÉ

Mirtrons represent a subclass of microRNAs (miRNAs) that rely on the splicing machinery for their maturation. However, the molecular details of this Drosha-independent processing are still not fully understood; as an example, the Microprocessor complex cannot process the mirtronic pre-miRNA from the transcript even if splice site mutations are present. To investigate the influence of alternative splicing sites on mirtron formation, we generated Enhanced Green Fluorescent Protein (EGFP) reporters containing artificial introns to compare the processing of canonical miRNAs and mirtrons. Although mutations of both splice sites generated a complex pattern of alternative transcripts, mirtron formation was always severely affected as opposed to the normal processing of the canonical hsa-mir-33b miRNA. However, we also detected that while its formation was also hindered, the mirtron-derived hsa-mir-877-3p miRNA was less affected by certain mutations than the hsa-mir-877-5p species. By knocking down Drosha, we showed that this phenomenon is not dependent on Microprocessor activity but rather points toward the potential stability difference between the miRNAs from the different arms. Our results indicate that when the major splice sites are mutated, mirtron formation cannot be rescued by nearby alternative splice sites, and stability differences between 5p and 3p species should also be considered for functional studies of mirtrons.


Sujet(s)
Épissage alternatif , microARN , Ribonuclease III , microARN/génétique , Humains , Ribonuclease III/génétique , Ribonuclease III/métabolisme , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Sites d'épissage d'ARN/génétique , Mutation , Protéines à fluorescence verte/génétique , Protéines à fluorescence verte/métabolisme , Cellules HEK293 , Introns/génétique
14.
Protein Sci ; 33(8): e5117, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39023093

RÉSUMÉ

In eukaryotes, pre-mRNA splicing is vital for RNA processing and orchestrated by the spliceosome, whose assembly starts with the interaction between U1-70K and SR proteins. Despite the significance of the U1-70K/SR interaction, the dynamic nature of the complex and the challenges in obtaining soluble U1-70K have impeded a comprehensive understanding of the interaction at the structural level for decades. We overcome the U1-70K solubility issues, enabling us to characterize the interaction between U1-70K and SRSF1, a representative SR protein. We unveil specific interactions: phosphorylated SRSF1 RS with U1-70K BAD1, and SRSF1 RRM1 with U1-70K RRM. The RS/BAD1 interaction plays a dominant role, whereas the interaction between the RRM domains further enhances the stability of the U1-70K/SRSF1 complex. The RRM interaction involves the C-terminal extension of U1-70K RRM and the conserved acid patches on SRSF1 RRM1 that is involved in SRSF1 phase separation. Our circular dichroism spectra reveal that BAD1 adapts an α-helical conformation and RS is intrinsically disordered. Intriguingly, BAD1 undergoes a conformation switch from α-helix to ß-strand and random coil upon RS binding. In addition to the regulatory mechanism via SRSF1 phosphorylation, the U1-70K/SRSF1 interaction is also regulated by U1-70K BAD1 phosphorylation. We find that U1-70K phosphorylation inhibits the U1-70K and SRSF1 interaction. Our structural findings are validated through in vitro splicing assays and in-cell saturated domain scanning using the CRISPR method, providing new insights into the intricate regulatory mechanisms of pre-mRNA splicing.


Sujet(s)
Petites ribonucléoprotéines nucléaires U1 , Facteurs d'épissage riches en sérine-arginine , Splicéosomes , Facteurs d'épissage riches en sérine-arginine/métabolisme , Facteurs d'épissage riches en sérine-arginine/composition chimique , Facteurs d'épissage riches en sérine-arginine/génétique , Phosphorylation , Splicéosomes/métabolisme , Splicéosomes/composition chimique , Humains , Petites ribonucléoprotéines nucléaires U1/métabolisme , Petites ribonucléoprotéines nucléaires U1/composition chimique , Petites ribonucléoprotéines nucléaires U1/génétique , Épissage des ARN , Liaison aux protéines , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Précurseurs des ARN/composition chimique
15.
PLoS One ; 19(7): e0305012, 2024.
Article de Anglais | MEDLINE | ID: mdl-38980892

RÉSUMÉ

Pre-messenger RNA (pre-mRNA) splicing modulation is an attractive approach for investigating the mechanisms of genetic disorders caused by mis-splicing. Previous reports have indicated that a modified U7 small nuclear RNA (U7 snRNA) is a prospective tool for modulating splicing both in vitro and in vivo. To date, very few studies have investigated the role of antisense sequence length in modified U7 snRNA. In this study, we designed a series of antisense sequences with various lengths and evaluated their efficiency in inducing splicing modulation. To express modified U7 snRNAs, we constructed a series of plasmid DNA sequences which codes cytomegalovirus (CMV) enhancer, human U1 promoter, and modified mouse U7 snRNAs with antisense sequences of different lengths. We evaluated in vitro splicing modulation efficiency using a luciferase reporter system for simple and precise evaluation as well as reverse transcription-polymerase chain reaction to monitor splicing patterns. Our in vitro assay findings suggest that antisense sequences of modified mouse U7 snRNAs have an optimal length for efficient splicing modulation, which depends on the target exon. In addition, antisense sequences that were either too long or too short decreased splicing modulation efficiency. To confirm reproducibility, we performed an in vitro assay using two target genes, mouse Fas and mouse Dmd. Together, our data suggests that the antisense sequence length should be optimized for modified mouse U7 snRNAs to induce efficient splicing modulation.


Sujet(s)
Précurseurs des ARN , Épissage des ARN , Petit ARN nucléaire , Petit ARN nucléaire/génétique , Animaux , Souris , Humains , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Séquence nucléotidique , Exons/génétique , ARN antisens/génétique
16.
Nat Commun ; 15(1): 6348, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39068178

RÉSUMÉ

The spliceosome executes pre-mRNA splicing through four sequential stages: assembly, activation, catalysis, and disassembly. Activation of the spliceosome, namely remodeling of the pre-catalytic spliceosome (B complex) into the activated spliceosome (Bact complex) and the catalytically activated spliceosome (B* complex), involves major flux of protein components and structural rearrangements. Relying on a splicing inhibitor, we have captured six intermediate states between the B and B* complexes: pre-Bact, Bact-I, Bact-II, Bact-III, Bact-IV, and post-Bact. Their cryo-EM structures, together with an improved structure of the catalytic step I spliceosome (C complex), reveal how the catalytic center matures around the internal stem loop of U6 snRNA, how the branch site approaches 5'-splice site, how the RNA helicase PRP2 rearranges to bind pre-mRNA, and how U2 snRNP undergoes remarkable movement to facilitate activation. We identify a previously unrecognized key role of PRP2 in spliceosome activation. Our study recapitulates a molecular choreography of the human spliceosome during its catalytic activation.


Sujet(s)
Cryomicroscopie électronique , Précurseurs des ARN , Épissage des ARN , Petit ARN nucléaire , Splicéosomes , Splicéosomes/métabolisme , Humains , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Petit ARN nucléaire/métabolisme , Petites ribonucléoprotéines nucléaires U2/métabolisme , Petites ribonucléoprotéines nucléaires U2/génétique , Modèles moléculaires , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/génétique , Domaine catalytique
17.
Wiley Interdiscip Rev RNA ; 15(4): e1866, 2024.
Article de Anglais | MEDLINE | ID: mdl-38972853

RÉSUMÉ

Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.


Sujet(s)
Précurseurs des ARN , Épissage des ARN , Saccharomyces cerevisiae , Splicéosomes , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique
18.
Bioessays ; 46(9): e2400037, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39030821

RÉSUMÉ

Genotoxic stress, arising from various environmental sources and endogenous cellular processes, pose a constant threat to genomic stability. Cells have evolved intricate mechanisms to detect and repair DNA damage, orchestrating a robust genotoxic stress response to safeguard the integrity of the genome. Recent research has shed light on the crucial role of co- and post-transcriptional regulatory mechanisms in modulating the cellular response to genotoxic stress. Here we highlight recent advances illustrating the intricate interplay between pre-mRNA processing, with a focus on 3'-end processing, and genotoxic stress response.


Sujet(s)
Altération de l'ADN , Précurseurs des ARN , Humains , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Animaux , Réparation de l'ADN , Maturation de l'extrémité 3' des ARN , Instabilité du génome , ARN messager/métabolisme , ARN messager/génétique , Maturation post-transcriptionnelle des ARN
19.
Mol Cell ; 84(15): 2949-2965.e10, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39053456

RÉSUMÉ

The eukaryotic nucleus has a highly organized structure. Although the spatiotemporal arrangement of spliceosomes on nascent RNA drives splicing, the nuclear architecture that directly supports this process remains unclear. Here, we show that RNA-binding proteins (RBPs) assembled on RNA form meshworks in human and mouse cells. Core and accessory RBPs in RNA splicing make two distinct meshworks adjacently but distinctly distributed throughout the nucleus. This is achieved by mutual exclusion dynamics between the charged and uncharged intrinsically disordered regions (IDRs) of RBPs. These two types of meshworks compete for spatial occupancy on pre-mRNA to regulate splicing. Furthermore, the optogenetic enhancement of the RBP meshwork causes aberrant splicing, particularly of genes involved in neurodegeneration. Genetic mutations associated with neurodegenerative diseases are often found in the IDRs of RBPs, and cells harboring these mutations exhibit impaired meshwork formation. Our results uncovered the spatial organization of RBP networks to drive RNA splicing.


Sujet(s)
Noyau de la cellule , Épissage des ARN , Protéines de liaison à l'ARN , Humains , Noyau de la cellule/métabolisme , Noyau de la cellule/génétique , Animaux , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Souris , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Mutation , Splicéosomes/métabolisme , Splicéosomes/génétique , Cellules HeLa , Cellules HEK293
20.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38982460

RÉSUMÉ

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Immunité des plantes , Précurseurs des ARN , Épissage des ARN , Arabidopsis/génétique , Arabidopsis/immunologie , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Régulation de l'expression des gènes végétaux , Maladies des plantes/génétique , Maladies des plantes/immunologie , Immunité des plantes/génétique , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE