Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.295
Filtrer
1.
Dev Psychobiol ; 66(6): e22524, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38973227

RÉSUMÉ

Alloparenting refers to the practice of caring for the young by individuals other than their biological parents. The relationship between the dynamic changes in psychological functions underlying alloparenting and the development of specific neuroreceptors remains unclear. Using a classic 10-day pup sensitization procedure, together with a pup preference and pup retrieval test on the EPM (elevated plus maze), we showed that both male and female adolescent rats (24 days old) had significantly shorter latency than adult rats (65 days old) to be alloparental, and their motivation levels for pups and objects were also significantly higher. In contrast, adult rats retrieved more pups than adolescent rats even though they appeared to be more anxious on the EPM. Analysis of mRNA expression using real-time-PCR revealed a higher dopamine D2 receptor (DRD2) receptor expression in adult hippocampus, amygdala, and ventral striatum, along with higher dopamine D1 receptor (DRD1) receptor expression in ventral striatum compared to adolescent rats. Adult rats also showed significantly higher levels of 5-hydroxytryptamine receptor 2A (HTR2A) receptor expression in the medial prefrontal cortex, amygdala, ventral striatum, and hypothalamus. These results suggest that the faster onset of alloparenting in adolescent rats compared to adult rats, along with the psychological functions involved, may be mediated by varying levels of dopamine DRD1, DRD2, and HTR2A in different forebrain regions.


Sujet(s)
Prosencéphale , ARN messager , Récepteur de la sérotonine de type 5-HT2A , Récepteur dopamine D1 , Récepteur D2 de la dopamine , Animaux , Récepteur D2 de la dopamine/métabolisme , Récepteur D2 de la dopamine/génétique , Mâle , Rats , Femelle , Récepteur dopamine D1/métabolisme , Récepteur dopamine D1/génétique , ARN messager/métabolisme , ARN messager/génétique , Récepteur de la sérotonine de type 5-HT2A/métabolisme , Récepteur de la sérotonine de type 5-HT2A/génétique , Prosencéphale/métabolisme , Empathie/physiologie , Facteurs âges , Caractères sexuels , Rat Sprague-Dawley , Comportement animal/physiologie , Amygdale (système limbique)/métabolisme
2.
eNeuro ; 11(6)2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38858068

RÉSUMÉ

Sleep disruption and impaired synaptic processes are common features in neurodegenerative diseases, including Alzheimer's disease (AD). Hyperphosphorylated Tau is known to accumulate at neuronal synapses in AD, contributing to synapse dysfunction. However, it remains unclear how sleep disruption and synapse pathology interact to contribute to cognitive decline. Here, we examined sex-specific onset and consequences of sleep loss in AD/tauopathy model PS19 mice. Using a piezoelectric home-cage monitoring system, we showed PS19 mice exhibited early-onset and progressive hyperarousal, a selective dark-phase sleep disruption, apparent at 3 months in females and 6 months in males. Using the Morris water maze test, we report that chronic sleep disruption (CSD) accelerated the onset of decline of hippocampal spatial memory in PS19 males only. Hyperarousal occurs well in advance of robust forebrain synaptic Tau burden that becomes apparent at 6-9 months. To determine whether a causal link exists between sleep disruption and synaptic Tau hyperphosphorylation, we examined the correlation between sleep behavior and synaptic Tau, or exposed mice to acute or chronic sleep disruption at 6 months. While we confirm that sleep disruption is a driver of Tau hyperphosphorylation in neurons of the locus ceruleus, we were unable to show any causal link between sleep loss and Tau burden in forebrain synapses. Despite the finding that hyperarousal appears earlier in females, female cognition was resilient to the effects of sleep disruption. We conclude sleep disruption interacts with the synaptic Tau burden to accelerate the onset of cognitive decline with greater vulnerability in males.


Sujet(s)
Dysfonctionnement cognitif , Modèles animaux de maladie humaine , Souris transgéniques , Prosencéphale , Synapses , Protéines tau , Animaux , Protéines tau/métabolisme , Mâle , Femelle , Dysfonctionnement cognitif/métabolisme , Dysfonctionnement cognitif/étiologie , Synapses/métabolisme , Synapses/anatomopathologie , Souris , Prosencéphale/métabolisme , Caractères sexuels , Tauopathies/métabolisme , Tauopathies/anatomopathologie , Troubles de la veille et du sommeil/métabolisme , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Souris de lignée C57BL
3.
Bull Exp Biol Med ; 176(6): 736-742, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38907060

RÉSUMÉ

Intranasal administration of total bovine brain gangliosides (6 mg/kg) to rats protected the CA1 hippocampal neurons from the death caused by two-vessel occlusion model (with hypotension) of forebrain ischemia/reperfusion injury. The immunohistochemical reaction of specific antibodies to marker proteins of activated microglia (Iba1) and astrocytes (GFAP) in hippocampal slices revealed the neuroprotective effect of exogenous gangliosides which can be mostly explained by their ability to suppress neuroinflammation and gliosis. The expression of neurotrophic factor BDNF in the CA1 region of hippocampus did not differ in sham-operated rats and animals exposed to ischemia/reperfusion. However, the administration of gangliosides increased the BDNF expression in both control and ischemic groups. The intranasal route of administration allows using lower concentrations of gangliosides preventing the death of hippocampal neurons.


Sujet(s)
Administration par voie nasale , Facteur neurotrophique dérivé du cerveau , Région CA1 de l'hippocampe , Gangliosides , Neurones , Neuroprotecteurs , Lésion d'ischémie-reperfusion , Animaux , Lésion d'ischémie-reperfusion/anatomopathologie , Lésion d'ischémie-reperfusion/traitement médicamenteux , Lésion d'ischémie-reperfusion/métabolisme , Gangliosides/pharmacologie , Rats , Mâle , Région CA1 de l'hippocampe/effets des médicaments et des substances chimiques , Région CA1 de l'hippocampe/anatomopathologie , Région CA1 de l'hippocampe/métabolisme , Facteur neurotrophique dérivé du cerveau/métabolisme , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Neurones/anatomopathologie , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/administration et posologie , Rat Wistar , Protéine gliofibrillaire acide/métabolisme , Protéines de liaison au calcium/métabolisme , Protéines des microfilaments/métabolisme , Encéphalopathie ischémique/traitement médicamenteux , Encéphalopathie ischémique/anatomopathologie , Encéphalopathie ischémique/métabolisme , Prosencéphale/effets des médicaments et des substances chimiques , Prosencéphale/anatomopathologie , Prosencéphale/métabolisme , Astrocytes/effets des médicaments et des substances chimiques , Astrocytes/métabolisme , Astrocytes/anatomopathologie , Microglie/effets des médicaments et des substances chimiques , Microglie/métabolisme , Microglie/anatomopathologie , Survie cellulaire/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine
4.
Sci Rep ; 14(1): 13787, 2024 06 14.
Article de Anglais | MEDLINE | ID: mdl-38877207

RÉSUMÉ

Cultural and genetic inheritance combine to enable rapid changes in trait expression, but their relative importance in determining trait expression across generations is not clear. Birdsong is a socially learned cognitive trait that is subject to both cultural and genetic inheritance, as well as being affected by early developmental conditions. We sought to test whether early-life conditions in one generation can affect song acquisition in the next generation. We exposed one generation (F1) of nestlings to elevated corticosterone (CORT) levels, allowed them to breed freely as adults, and quantified their son's (F2) ability to copy the song of their social father. We also quantified the neurogenetic response to song playback through immediate early gene (IEG) expression in the auditory forebrain. F2 males with only one corticosterone-treated parent copied their social father's song less accurately than males with two control parents. Expression of ARC in caudomedial nidopallium (NCM) correlated with father-son song similarity, and patterns of expression levels of several IEGs in caudomedial mesopallium (CMM) in response to father song playback differed between control F2 sons and those with a CORT-treated father only. This is the first study to demonstrate that developmental conditions can affect social learning and neurogenetic responses in a subsequent generation.


Sujet(s)
Corticostérone , Apprentissage , Vocalisation animale , Animaux , Vocalisation animale/physiologie , Mâle , Apprentissage/physiologie , Corticostérone/métabolisme , Femelle , Fringillidae/physiologie , Prosencéphale/métabolisme , Prosencéphale/physiologie , Gènes précoces
5.
J Comp Neurol ; 532(6): e25619, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38831653

RÉSUMÉ

Zebrafish is a useful model organism in neuroscience; however, its gene expression atlas in the adult brain is not well developed. In the present study, we examined the expression of 38 neuropeptides, comparing with GABAergic and glutamatergic neuron marker genes in the adult zebrafish brain by comprehensive in situ hybridization. The results are summarized as an expression atlas in 19 coronal planes of the forebrain. Furthermore, the scanned data of all brain sections were made publicly available in the Adult Zebrafish Brain Gene Expression Database (https://ssbd.riken.jp/azebex/). Based on these data, we performed detailed comparative neuroanatomical analyses of the hypothalamus and found that several regions previously described as one nucleus in the reference zebrafish brain atlas contain two or more subregions with significantly different neuropeptide/neurotransmitter expression profiles. Subsequently, we compared the expression data in zebrafish telencephalon and hypothalamus obtained in this study with those in mice, by performing a cluster analysis. As a result, several nuclei in zebrafish and mice were clustered in close vicinity. The present expression atlas, database, and anatomical findings will contribute to future neuroscience research using zebrafish.


Sujet(s)
Neuropeptides , Prosencéphale , Danio zébré , Animaux , Danio zébré/anatomie et histologie , Prosencéphale/métabolisme , Neuropeptides/génétique , Neuropeptides/métabolisme , Atlas comme sujet , Expression des gènes , Bases de données génétiques , Souris
6.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38838666

RÉSUMÉ

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Sujet(s)
Transport nucléaire actif , Adénosine , Noyau de la cellule , Neurogenèse , Neurones , Protéine-1 de liaison au poly(A) , ARN circulaire , ARN , ARN circulaire/métabolisme , ARN circulaire/génétique , Neurones/métabolisme , Adénosine/métabolisme , Noyau de la cellule/métabolisme , Humains , Protéine-1 de liaison au poly(A)/métabolisme , Protéine-1 de liaison au poly(A)/génétique , Animaux , ARN/métabolisme , ARN/génétique , Lignée cellulaire , Différenciation cellulaire , Cytoplasme/métabolisme , Prosencéphale/métabolisme
7.
Development ; 151(11)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38819455

RÉSUMÉ

The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.


Sujet(s)
Régulation de l'expression des gènes au cours du développement , Protéines à homéodomaine , Prosencéphale , Facteurs de transcription , Animaux , Prosencéphale/métabolisme , Prosencéphale/embryologie , Protéines à homéodomaine/métabolisme , Protéines à homéodomaine/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Humains , Mammifères/génétique , Souris
8.
Nature ; 629(8011): 384-392, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38600385

RÉSUMÉ

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Sujet(s)
Lignage cellulaire , Clones cellulaires , Mosaïcisme , Neurones , Prosencéphale , Sujet âgé , Femelle , Humains , Allèles , Lignage cellulaire/génétique , Clones cellulaires/cytologie , Clones cellulaires/métabolisme , Neurones GABAergiques/cytologie , Neurones GABAergiques/métabolisme , Hippocampe/cytologie , Protéines à homéodomaine/métabolisme , Néocortex/cytologie , Inhibition nerveuse , Neurones/cytologie , Neurones/métabolisme , Lobe pariétal/cytologie , Prosencéphale/anatomie et histologie , Prosencéphale/cytologie , Prosencéphale/métabolisme , Analyse sur cellule unique , Transcriptome/génétique
9.
Cell ; 187(9): 2129-2142.e17, 2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38670071

RÉSUMÉ

Interspecies blastocyst complementation (IBC) provides a unique platform to study development and holds the potential to overcome worldwide organ shortages. Despite recent successes, brain tissue has not been achieved through IBC. Here, we developed an optimized IBC strategy based on C-CRISPR, which facilitated rapid screening of candidate genes and identified that Hesx1 deficiency supported the generation of rat forebrain tissue in mice via IBC. Xenogeneic rat forebrain tissues in adult mice were structurally and functionally intact. Cross-species comparative analyses revealed that rat forebrain tissues developed at the same pace as the mouse host but maintained rat-like transcriptome profiles. The chimeric rate of rat cells gradually decreased as development progressed, suggesting xenogeneic barriers during mid-to-late pre-natal development. Interspecies forebrain complementation opens the door for studying evolutionarily conserved and divergent mechanisms underlying brain development and cognitive function. The C-CRISPR-based IBC strategy holds great potential to broaden the study and application of interspecies organogenesis.


Sujet(s)
Prosencéphale , Animaux , Prosencéphale/métabolisme , Prosencéphale/embryologie , Souris , Rats , Blastocyste/métabolisme , Femelle , Systèmes CRISPR-Cas/génétique , Transcriptome , Organogenèse , Clustered regularly interspaced short palindromic repeats/génétique , Mâle , Souris de lignée C57BL
10.
Nature ; 628(8009): 818-825, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38658687

RÉSUMÉ

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Sujet(s)
Trouble autistique , Syndrome du QT long , Oligonucléotides antisens , Syndactylie , Animaux , Femelle , Humains , Mâle , Souris , Épissage alternatif/effets des médicaments et des substances chimiques , Épissage alternatif/génétique , Trouble autistique/traitement médicamenteux , Trouble autistique/génétique , Calcium/métabolisme , Canaux calciques de type L/métabolisme , Canaux calciques de type L/génétique , Mouvement cellulaire/effets des médicaments et des substances chimiques , Dendrites/métabolisme , Exons/génétique , Syndrome du QT long/traitement médicamenteux , Syndrome du QT long/génétique , Neurones/métabolisme , Neurones/effets des médicaments et des substances chimiques , Oligonucléotides antisens/pharmacologie , Oligonucléotides antisens/usage thérapeutique , Organoïdes/effets des médicaments et des substances chimiques , Organoïdes/métabolisme , Prosencéphale/métabolisme , Prosencéphale/cytologie , Syndactylie/traitement médicamenteux , Syndactylie/génétique , Interneurones/cytologie , Interneurones/effets des médicaments et des substances chimiques
11.
Biochem Pharmacol ; 224: 116201, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38608783

RÉSUMÉ

Intestinal barrier dysfunction, leaky gut, is implicated in various diseases, including irritable bowel syndrome (IBS) and neurodegenerative conditions like Alzheimer's disease. Our recent investigation revealed that basal forebrain cholinergic neurons (BFCNs), critical for cognitive function, receive signals from butyrate and orexin, playing a role in regulating intestinal barrier function through adenosine A2B signaling and the vagus. This study explores the involvement and function of brain histamine, linked to BFCNs, in the regulation of intestinal barrier function. Colonic permeability, assessed by quantifying absorbed Evans blue in rat colonic tissue, showed that histamine did not affect increased colonic permeability induced by LPS when administered subcutaneously. However, intracisternal histamine administration improved colonic hyperpermeability. Elevating endogenous histamine levels in the brain with SKF91488, a histamine N-methyltransferase inhibitor, also improved colonic hyperpermeability. This effect was abolished by intracisternal chlorpheniramine, an histamine H1 receptor antagonist, not ranitidine, an H2 receptor antagonist. The SKF91488-induced improvement in colonic hyperpermeability was blocked by vagotomy, intracisternal pirenzepine (suppressing BFCNs activity), or alloxazine (an adenosine A2B receptor antagonist). Additionally, intracisternal chlorpheniramine injection eliminated butyrate-induced improvement in colonic hyperpermeability. These findings suggest that brain histamine, acting via the histamine H1 receptor, regulates intestinal barrier function involving BFCNs, adenosine A2B signaling, and the vagus. Brain histamine appears to centrally regulate intestinal barrier function influenced by butyrate, differentiating its actions from peripheral histamine in conditions like IBS, where mast cell-derived histamine induces leaky gut. Brain histamine emerges as a potential pharmacological target for diseases associated with leaky gut, such as dementia and IBS.


Sujet(s)
Neurones cholinergiques , Côlon , Histamine , Perméabilité , Rat Sprague-Dawley , Récepteur A2B à l'adénosine , Nerf vague , Animaux , Histamine/métabolisme , Histamine/pharmacologie , Rats , Mâle , Récepteur A2B à l'adénosine/métabolisme , Neurones cholinergiques/effets des médicaments et des substances chimiques , Neurones cholinergiques/métabolisme , Neurones cholinergiques/physiologie , Nerf vague/effets des médicaments et des substances chimiques , Nerf vague/physiologie , Nerf vague/métabolisme , Côlon/métabolisme , Côlon/effets des médicaments et des substances chimiques , Perméabilité/effets des médicaments et des substances chimiques , Prosencéphale/effets des médicaments et des substances chimiques , Prosencéphale/métabolisme
12.
J Alzheimers Dis ; 98(1): 301-318, 2024.
Article de Anglais | MEDLINE | ID: mdl-38427475

RÉSUMÉ

Background: Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective: In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods: Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100µM suramin for 72 h, followed by assessments for amyloid-ß, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results: Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions: These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.


Sujet(s)
Maladie d'Alzheimer , Cellules souches pluripotentes induites , Humains , Maladie d'Alzheimer/anatomopathologie , Suramine/pharmacologie , Suramine/métabolisme , Protéines tau/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Peptides bêta-amyloïdes/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Prosencéphale/métabolisme , Cellules souches pluripotentes induites/métabolisme , Neurones/métabolisme , Sirolimus/pharmacologie , Chloroquine/métabolisme , Chloroquine/pharmacologie
13.
Dev Neurobiol ; 84(2): 47-58, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38466218

RÉSUMÉ

In sexually dimorphic zebra finches (Taeniopygia guttata), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs.


Sujet(s)
Fringillidae , Vocalisation animale , Mâle , Animaux , Femelle , Vocalisation animale/physiologie , Alphafoetoprotéines/métabolisme , Fringillidae/métabolisme , Stimulation acoustique/méthodes , Perception auditive/physiologie , Prosencéphale/métabolisme , Imagerie par résonance magnétique/méthodes
14.
Brain Struct Funct ; 229(3): 759-773, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38411929

RÉSUMÉ

Malformation during cortical development can disrupt the balance of excitatory and inhibitory neural circuits, contributing to various psychiatric and developmental disorders. One of the critical factors of cortical neural networks is the fine regulation of neurogenesis through mechanical cues, such as shear stress and substrate stiffness. Piezo1, a mechanically-activated channel, serves as a transducer for these mechanical cues, regulating embryogenesis. However, specific cell-type expression patterns of this channel during cortical development have not yet been characterized. In the present study, we conducted an RNAscope experiment to visualize the location of Piezo1 transcripts with embryonic neuronal/glial lineage cell markers. Our analysis covered coronal sections of the mouse forebrain on embryonic day 12.5 (E12.5), E14.5, E16.5, and E18.5. In addition, applying Yoda1, a specific Piezo1 agonist, evoked distinct calcium elevation in piriform cortices of E16.5 and E18.5 embryonic slices. Furthermore, pharmacological activation or inhibition of this channel significantly modulated the migration of neurosphere-derived cells in vitro. These findings contribute valuable insights to the field of mechanobiology and provide an understanding of the intricate processes underlying embryonic brain development.


Sujet(s)
Canaux ioniques , Neurogenèse , Animaux , Souris , Canaux ioniques/génétique , Canaux ioniques/métabolisme , Mécanotransduction cellulaire/physiologie , Neurogenèse/génétique , Prosencéphale/métabolisme
15.
PLoS One ; 19(1): e0296790, 2024.
Article de Anglais | MEDLINE | ID: mdl-38227598

RÉSUMÉ

SpinoCerebellar Ataxia type 7 (SCA7) is an inherited disorder caused by CAG triplet repeats encoding polyglutamine expansion in the ATXN7 protein, which is part of the transcriptional coactivator complex SAGA. The mutation primarily causes neurodegeneration in the cerebellum and retina, as well as several forebrain structures. The SCA7140Q/5Q knock-in mouse model recapitulates key disease features, including loss of vision and motor performance. To characterize the temporal progression of brain degeneration of this model, we performed a longitudinal study spanning from early to late symptomatic stages using high-resolution magnetic resonance imaging (MRI) and in vivo 1H-magnetic resonance spectroscopy (1H-MRS). Compared to wild-type mouse littermates, MRI analysis of SCA7 mice shows progressive atrophy of defined brain structures, with the striatum, thalamus and cortex being the first and most severely affected. The volume loss of these structures coincided with increased motor impairments in SCA7 mice, suggesting an alteration of the sensory-motor network, as observed in SCA7 patients. MRI also reveals atrophy of the hippocampus and anterior commissure at mid-symptomatic stage and the midbrain and brain stem at late stage. 1H-MRS of hippocampus, a brain region previously shown to be dysfunctional in patients, reveals early and progressive metabolic alterations in SCA7 mice. Interestingly, abnormal glutamine accumulation precedes the hippocampal atrophy and the reduction in myo-inositol and total N-acetyl-aspartate concentrations, two markers of glial and neuronal damage, respectively. Together, our results indicate that non-cerebellar alterations and glial and neuronal metabolic impairments may play a crucial role in the development of SCA7 mouse pathology, particularly at early stages of the disease. Degenerative features of forebrain structures in SCA7 mice correspond to current observations made in patients. Our study thus provides potential biomarkers that could be used for the evaluation of future therapeutic trials using the SCA7140Q/5Q model.


Sujet(s)
Ataxies spinocérébelleuses , Humains , Souris , Animaux , Études longitudinales , Ataxies spinocérébelleuses/imagerie diagnostique , Ataxies spinocérébelleuses/génétique , Ataxies spinocérébelleuses/anatomopathologie , Ataxine-7/génétique , Imagerie par résonance magnétique , Prosencéphale/métabolisme , Spectroscopie par résonance magnétique , Atrophie/anatomopathologie
16.
Biochem Biophys Res Commun ; 681: 212-217, 2023 11 12.
Article de Anglais | MEDLINE | ID: mdl-37783119

RÉSUMÉ

Fibroblast growth factors (Fgfs) play crucial roles in various developmental processes including brain development. We previously identified Fgf22 in zebrafish and found that fgf22 is involved in midbrain patterning during embryogenesis. Here, we investigated the role of Fgf22 in the formation of the zebrafish forebrain. We found that fgf22 was essential for determining the ventral properties of the telencephalon and diencephalon but not for cell proliferation. In addition, the knockdown of fgf22 inhibited the generation of glutamatergic neurons, γ-aminobutyric acid (GABA)ergic interneurons and astrocytes. Recently, Fgf signaling has received much attention because of its importance in the pathogenesis of multiple sclerosis, in which oligodendrocytes and myelin are destroyed. However, the effects of each Fgf on oligodendrocytes remain largely unknown. Therefore, we also investigated the role of Fgf22 in oligodendrocyte development and explored whether there is a difference between Fgf22 and other Fgfs. Knockdown of fgf22 promoted the generation of oligodendrocytes. Conversely, overexpression of fgf22 inhibited the generation of oligodendrocytes. Furthermore, the forebrain phenotypes of fgfr2b knockdown zebrafish were remarkably similar to those of fgf22 knockdown zebrafish. This establishes the Fgf22-Fgfr2b axis as a key ligand‒receptor partnership in neurogenesis and gliogenesis in the forebrain. Our results indicate that Fgf22 has a unique function in suppressing oligodendrocyte differentiation through Fgfr2b without affecting cell proliferation.


Sujet(s)
Récepteur FGFR2 , Danio zébré , Animaux , Facteurs de croissance fibroblastique/génétique , Facteurs de croissance fibroblastique/métabolisme , Neurogenèse/génétique , Prosencéphale/métabolisme , Récepteur FGFR2/génétique , Récepteur FGFR2/métabolisme , Danio zébré/génétique
17.
eNeuro ; 10(10)2023 10.
Article de Anglais | MEDLINE | ID: mdl-37816595

RÉSUMÉ

Lysosomes are acidic organelles that traffic throughout neurons delivering catabolic enzymes to distal regions of the cell and maintaining degradative demands. Loss of function mutations in the gene GBA encoding the lysosomal enzyme glucocerebrosidase (GCase) cause the lysosomal storage disorder Gaucher's disease (GD) and are the most common genetic risk factor for synucleinopathies like Parkinson's disease (PD) and dementia with Lewy bodies (DLB). GCase degrades the membrane lipid glucosylceramide (GlcCer) and mutations in GBA, or inhibiting its activity, results in the accumulation of GlcCer and disturbs the composition of the lysosomal membrane. The lysosomal membrane serves as the platform to which intracellular trafficking complexes are recruited and activated. Here, we investigated whether lysosomal trafficking in axons was altered by inhibition of GCase with the pharmacological agent Conduritol B Epoxide (CBE). Using live cell imaging in human male induced pluripotent human stem cell (iPSC)-derived forebrain neurons, we demonstrated that lysosomal transport was similar in both control and CBE-treated neurons. Furthermore, we tested whether lysosomal rupture, a process implicated in various neurodegenerative disorders, was affected by inhibition of GCase. Using L-leucyl-L-leucine methyl ester (LLoME) to induce lysosomal membrane damage and immunocytochemical staining for markers of lysosomal rupture, we found no difference in susceptibility to rupture between control and CBE-treated neurons. These results suggest the loss of GCase activity does not contribute to neurodegenerative disease by disrupting either lysosomal transport or rupture.


Sujet(s)
Cellules souches pluripotentes induites , Maladies neurodégénératives , Mâle , Humains , Glucosylceramidase/génétique , Glucosylceramidase/métabolisme , Maladies neurodégénératives/métabolisme , Transport axonal , Neurones/métabolisme , Prosencéphale/métabolisme , Lysosomes/métabolisme , alpha-Synucléine/métabolisme
18.
Hum Mol Genet ; 32(23): 3276-3298, 2023 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-37688574

RÉSUMÉ

Cyclin-dependent kinase-like 5 (CDKL5) is a serine-threonine kinase enriched in the forebrain to regulate neuronal development and function. Patients with CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition caused by mutations of CDKL5 gene, present early-onset epilepsy as the most prominent feature. However, spontaneous seizures have not been reported in mouse models of CDD, raising vital questions on the human-mouse differences and the roles of CDKL5 in early postnatal brains. Here, we firstly measured electroencephalographic (EEG) activities via a wireless telemetry system coupled with video-recording in neonatal mice. We found that mice lacking CDKL5 exhibited spontaneous epileptic EEG discharges, accompanied with increased burst activities and ictal behaviors, specifically at postnatal day 12 (P12). Intriguingly, those epileptic spikes disappeared after P14. We next performed an unbiased transcriptome profiling in the dorsal hippocampus and motor cortex of Cdkl5 null mice at different developmental timepoints, uncovering a set of age-dependent and brain region-specific alterations of gene expression in parallel with the transient display of epileptic activities. Finally, we validated multiple differentially expressed genes, such as glycine receptor alpha 2 and cholecystokinin, at the transcript or protein levels, supporting the relevance of these genes to CDKL5-regulated excitability. Our findings reveal early-onset neuronal hyperexcitability in mouse model of CDD, providing new insights into CDD etiology and potential molecular targets to ameliorate intractable neonatal epilepsy.


Sujet(s)
Épilepsie pharmacorésistante , Épilepsie , Spasmes infantiles , Humains , Animaux , Souris , Transcriptome/génétique , Spasmes infantiles/génétique , Spasmes infantiles/métabolisme , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/métabolisme , Épilepsie/génétique , Prosencéphale/métabolisme , Souris knockout
19.
Nature ; 622(7982): 359-366, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37758944

RÉSUMÉ

The assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain1-3, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development4. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development5, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids6. Here we integrate assembloids with CRISPR screening to investigate the involvement of 425 NDD genes in human interneuron development. The first screen aimed at interneuron generation revealed 13 candidate genes, including CSDE1 and SMAD4. We subsequently conducted an interneuron migration screen in more than 1,000 forebrain assembloids that identified 33 candidate genes, including cytoskeleton-related genes and the endoplasmic reticulum-related gene LNPK. We discovered that, during interneuron migration, the endoplasmic reticulum is displaced along the leading neuronal branch before nuclear translocation. LNPK deletion interfered with this endoplasmic reticulum displacement and resulted in abnormal migration. These results highlight the power of this CRISPR-assembloid platform to systematically map NDD genes onto human development and reveal disease mechanisms.


Sujet(s)
Systèmes CRISPR-Cas , Édition de gène , Troubles du développement neurologique , Femelle , Humains , Nouveau-né , Grossesse , Mouvement cellulaire/génétique , Systèmes CRISPR-Cas/génétique , Interneurones/cytologie , Interneurones/métabolisme , Interneurones/anatomopathologie , Troubles du développement neurologique/génétique , Troubles du développement neurologique/anatomopathologie , Organoïdes/cytologie , Organoïdes/embryologie , Organoïdes/croissance et développement , Organoïdes/métabolisme , Organoïdes/anatomopathologie , Réticulum endoplasmique/métabolisme , Prosencéphale/cytologie , Prosencéphale/embryologie , Prosencéphale/croissance et développement , Prosencéphale/métabolisme , Prosencéphale/anatomopathologie , Transport nucléaire actif
20.
J Neurosci ; 43(41): 6854-6871, 2023 10 11.
Article de Anglais | MEDLINE | ID: mdl-37640551

RÉSUMÉ

Neural progenitor cells in the developing dorsal forebrain generate excitatory neurons followed by oligodendrocytes (OLs) and astrocytes. However, the specific mechanisms that regulate the timing of this neuron-glia switch are not fully understood. In this study, we show that the proper balance of Notch signaling in dorsal forebrain progenitors is required to generate oligodendrocytes during late stages of embryonic development. Using ex vivo and in utero approaches in mouse embryos of both sexes, we found that Notch inhibition reduced the number of oligodendrocyte lineage cells in the dorsal pallium. However, Notch overactivation also prevented oligodendrogenesis and maintained a progenitor state. These results point toward a dual role for Notch signaling in both promoting and inhibiting oligodendrogenesis, which must be fine-tuned to generate oligodendrocyte lineage cells at the right time and in the right numbers. We further identified the canonical Notch downstream factors HES1 and HES5 as negative regulators in this process. CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9-mediated knockdown of Hes1 and Hes5 caused increased expression of the pro-oligodendrocyte factor ASCL1 and led to precocious oligodendrogenesis. Conversely, combining Notch overactivation with ASCL1 overexpression robustly promoted oligodendrogenesis, indicating a separate mechanism of Notch that operates synergistically with ASCL1 to specify an oligodendrocyte fate. We propose a model in which Notch signaling works together with ASCL1 to specify progenitors toward the oligodendrocyte lineage but also maintains a progenitor state through Hes-dependent repression of Ascl1 so that oligodendrocytes are not made too early, thus contributing to the precise timing of the neuron-glia switch.SIGNIFICANCE STATEMENT Neural progenitors make oligodendrocytes after neurogenesis starts to wind down, but the mechanisms that control the timing of this switch are poorly understood. In this study, we identify Notch signaling as a critical pathway that regulates the balance between progenitor maintenance and oligodendrogenesis. Notch signaling is required for the oligodendrocyte fate, but elevated Notch signaling prevents oligodendrogenesis and maintains a progenitor state. We provide evidence that these opposing functions are controlled by different mechanisms. Before the switch, Notch signaling through Hes factors represses oligodendrogenesis. Later, Notch signaling through an unknown mechanism promotes oligodendrogenesis synergistically with the transcription factor ASCL1. Our study underscores the complexity of Notch and reveals its importance in regulating the timing and numbers of oligodendrocyte production.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice , Neurones , Mâle , Femelle , Souris , Animaux , Différenciation cellulaire/physiologie , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Neurones/métabolisme , Prosencéphale/métabolisme , Oligodendroglie/métabolisme , Récepteurs Notch/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...