Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Congenit Anom (Kyoto) ; 56(1): 12-7, 2016 Jan.
Article de Anglais | MEDLINE | ID: mdl-26754466

RÉSUMÉ

The tympanic membrane is a thin layer that originates from the ectoderm, endoderm, and mesenchyme. Molecular-genetic investigations have revealed that interaction between epithelial and mesenchymal cells in the pharyngeal arches is essential for development of the tympanic membrane. We have recently reported that developmental mechanisms underlying the tympanic membrane seem to be different between mouse and chicken, suggesting that the tympanic membrane evolved independently in mammals and non-mammalian amniotes. In this review, we summarize previous studies of tympanic membrane formation in the mouse. We also discuss its formation in amniotes from an evolutionary point of view.


Sujet(s)
Membrane du tympan/embryologie , Animaux , Évolution biologique , Régulation de l'expression des gènes au cours du développement , Protéine Goosecoid/physiologie , Protéines à homéodomaine/physiologie , Humains , Facteur de transcription MSX-1/physiologie , Mammifères , Membrane du tympan/malformations , Membrane du tympan/métabolisme
2.
Dev Dyn ; 240(6): 1422-9, 2011 Jun.
Article de Anglais | MEDLINE | ID: mdl-21538683

RÉSUMÉ

We have previously shown that the Gsx family homeobox gene Gsh2 is part of the regulatory network specifying dorsoventral pattern of primary neurons in the developing amphibian embryo. Here, we investigate the role of Gsx transcription factors in regulating the transcription of Iroquois family homeobox genes in the amphibian neural plate. Iroquois genes are key regulators of neural patterning and their expression is coincident with that of the Gsx genes during open neural plate stages. We show that Gsx proteins repress Iroquois expression in the embryo and conversely, inhibition of Gsx activity with either antisense morpholino oligos or an anti-morphic Gsx protein up-regulates Iroquois expression. These data indicate that Gsx factors act as negative regulators of Iroquois gene expression in the amphibian neural plate and support a model in which the Gsx proteins promote neuronal differentiation by repressing the expression of known inhibitors of neuronal differentiation such as Iro3.


Sujet(s)
Amphibiens/embryologie , Amphibiens/génétique , Régulation de l'expression des gènes au cours du développement , Protéine Goosecoid/physiologie , Protéines à homéodomaine/génétique , Animaux , Animal génétiquement modifié , Cellules cultivées , Régulation négative/génétique , Embryon non mammalien , Protéine Goosecoid/génétique , Protéines à homéodomaine/métabolisme , Protéines à homéodomaine/physiologie , Modèles biologiques , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/physiologie , Xenopus laevis/embryologie , Xenopus laevis/génétique , Xenopus laevis/métabolisme
3.
Development ; 136(10): 1675-85, 2009 May.
Article de Anglais | MEDLINE | ID: mdl-19369398

RÉSUMÉ

The organizer is essential for dorsal-ventral (DV) patterning in vertebrates. Goosecoid (Gsc), a transcriptional repressor found in the organizer, elicits partial secondary axes when expressed ventrally in Xenopus, similar to an organizer transplant. Although gsc is expressed in all vertebrate organizers examined, knockout studies in mouse suggested that it is not required for DV patterning. Moreover, experiments in Xenopus and zebrafish suggest a role in head formation, although a function in axial mesoderm formation is less clear. To clarify the role of Gsc in vertebrate development, we used gain- and loss-of-function approaches in zebrafish. Ventral injection of low doses of gsc produced incomplete secondary axes, which we propose results from short-range repression of BMP signaling. Higher gsc doses resulted in complete secondary axes and long-range signaling, correlating with repression of BMP and Wnt signals. In striking contrast to Xenopus, the BMP inhibitor Chordin (Chd) is not required for Gsc function. Gsc produced complete secondary axes in chd null mutant embryos and gsc-morpholino knockdown in chd mutants enhanced the mutant phenotype, suggesting that Gsc has Chd-independent functions in DV patterning. Even more striking was that Gsc elicited complete secondary axes in the absence of three secreted BMP antagonists, Chd, Follistatin-like 1b and Noggin 1, suggesting that Gsc functions in parallel with secreted BMP inhibitors. Our findings suggest that Gsc has dose dependent effects on axis induction and provide new insights into molecularly distinct short- and long-range signaling activities of the organizer.


Sujet(s)
Protéines de transport/physiologie , Protéines apparentées à la follistatine/physiologie , Glycoprotéines/physiologie , Protéine Goosecoid/physiologie , Protéines et peptides de signalisation intercellulaire/physiologie , Protéines de poisson-zèbre/physiologie , Danio zébré/embryologie , Animaux , Animal génétiquement modifié , Plan d'organisation du corps/physiologie , Protéines morphogénétiques osseuses/physiologie , Embryon non mammalien/physiologie , Glycoprotéines/génétique , Protéine Goosecoid/génétique , Protéines et peptides de signalisation intercellulaire/génétique , Mutation , Récepteurs Notch/physiologie , Transduction du signal/physiologie , Danio zébré/physiologie , Protéines de poisson-zèbre/génétique
4.
Dev Biol ; 295(2): 743-55, 2006 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-16678814

RÉSUMÉ

After implantation, mouse embryos deficient for the activity of the transforming growth factor-beta member Nodal fail to form both the mesoderm and the definitive endoderm. They also fail to specify the anterior visceral endoderm, a specialized signaling center which has been shown to be required for the establishment of anterior identity in the epiblast. Our study reveals that Nodal-/- epiblast cells nevertheless express prematurely and ectopically molecular markers specific of anterior fate. Our analysis shows that neural specification occurs and regional identities characteristic of the forebrain are established precociously in the Nodal-/- mutant with a sequential progression equivalent to that of wild-type embryo. When explanted and cultured in vitro, Nodal-/- epiblast cells readily differentiate into neurons. Genes normally transcribed in organizer-derived tissues, such as Gsc and Foxa2, are also expressed in Nodal-/- epiblast. The analysis of Nodal-/-;Gsc-/- compound mutant embryos shows that Gsc activity plays no critical role in the acquisition of forebrain characters by Nodal-deficient cells. This study suggests that the initial steps of neural specification and forebrain development may take place well before gastrulation in the mouse and highlights a possible role for Nodal, at pregastrula stages, in the inhibition of anterior and neural fate determination.


Sujet(s)
Induction embryonnaire , Neurones/cytologie , Prosencéphale/cytologie , Transduction du signal , Facteur de croissance transformant bêta/déficit , Animaux , Différenciation cellulaire , Embryon de mammifère , Protéine Goosecoid/physiologie , Souris , Protéine Nodal , Facteur de croissance transformant bêta/physiologie
5.
Science ; 310(5751): 1184-7, 2005 Nov 18.
Article de Anglais | MEDLINE | ID: mdl-16293761

RÉSUMÉ

Craniofacial abnormalities account for about one-third of all human congenital defects, but our understanding of the genetic mechanisms governing craniofacial development is incomplete. We show that GTF2IRD1 is a genetic determinant of mammalian craniofacial and cognitive development, and we implicate another member of the TFII-I transcription factor family, GTF2I, in both aspects. Gtf2ird1-null mice exhibit phenotypic abnormalities reminiscent of the human microdeletion disorder Williams-Beuren syndrome (WBS); craniofacial imaging reveals abnormalities in both skull and jaws that may arise through misregulation of goosecoid, a downstream target of Gtf2ird1. In humans, a rare WBS individual with an atypical deletion, including GTF2IRD1, shows facial dysmorphism and cognitive deficits that differ from those of classic WBS cases. We propose a mechanism of cumulative dosage effects of duplicated and diverged genes applicable to other human chromosomal disorders.


Sujet(s)
Malformations crâniofaciales/génétique , Face/embryologie , Protéines du muscle/physiologie , Protéines nucléaires/physiologie , Crâne/embryologie , Transactivateurs/physiologie , Syndrome de Williams/génétique , Adolescent , Adulte , Animaux , Lignée cellulaire , Enfant , Enfant d'âge préscolaire , Chromosomes humains de la paire 7 , Femelle , Délétion de gène , Protéine Goosecoid/génétique , Protéine Goosecoid/physiologie , Homozygote , Humains , Nourrisson , Nouveau-né , Mâle , Souris , Souris de lignée C57BL , Souris de lignée CBA , Souris transgéniques , Facteurs de transcription TFII/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE