Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 484
Filtrer
1.
Biochem Soc Trans ; 52(3): 1131-1148, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38884803

RÉSUMÉ

The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.


Sujet(s)
Protéine-58 à domaine DEAD , Immunité innée , ARN viral , Récepteurs immunologiques , Humains , ARN viral/métabolisme , Protéine-58 à domaine DEAD/métabolisme , Récepteurs immunologiques/métabolisme , Animaux , ARN double brin/métabolisme , Hélicase IFIH1 inductrice de l'interféron/métabolisme , DEAD-box RNA helicases/métabolisme , RNA helicases/métabolisme
2.
J Immunol ; 213(2): 187-203, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38829131

RÉSUMÉ

The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-ß expression during virus infection, the expression level of IFN-ß in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.


Sujet(s)
Canards , Immunité innée , Sous-type H5N1 du virus de la grippe A , Grippe chez les oiseaux , Transduction du signal , Ubiquitin-protein ligases , Réplication virale , Animaux , Canards/immunologie , Canards/virologie , Réplication virale/immunologie , Transduction du signal/immunologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/physiologie , Immunité innée/immunologie , Ubiquitin-protein ligases/génétique , Ubiquitin-protein ligases/immunologie , Fibroblastes/immunologie , Fibroblastes/virologie , Protéines aviaires/immunologie , Protéines aviaires/génétique , Protéines aviaires/métabolisme , Ubiquitination , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/immunologie
3.
J Virol ; 98(6): e0046124, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38780247

RÉSUMÉ

Transmissible gastroenteritis virus (TGEV)-induced enteritis is characterized by watery diarrhea, vomiting, and dehydration, and has high mortality in newborn piglets, resulting in significant economic losses in the pig industry worldwide. Conventional cell lines have been used for many years to investigate inflammation induced by TGEV, but these cell lines may not mimic the actual intestinal environment, making it difficult to obtain accurate results. In this study, apical-out porcine intestinal organoids were employed to study TEGV-induced inflammation. We found that apical-out organoids were susceptible to TGEV infection, and the expression of representative inflammatory cytokines was significantly upregulated upon TGEV infection. In addition, retinoic acid-inducible gene I (RIG-I) and the nuclear factor-kappa B (NF-κB) pathway were responsible for the expression of inflammatory cytokines induced by TGEV infection. We also discovered that the transcription factor hypoxia-inducible factor-1α (HIF-1α) positively regulated TGEV-induced inflammation by activating glycolysis in apical-out organoids, and pig experiments identified the same molecular mechanism as the ex vivo results. Collectively, we unveiled that the inflammatory responses induced by TGEV were modulated via the RIG-I/NF-κB/HIF-1α/glycolysis axis ex vivo and in vivo. This study provides novel insights into TGEV-induced enteritis and verifies intestinal organoids as a reliable model for investigating virus-induced inflammation. IMPORTANCE: Intestinal organoids are a newly developed culture system for investigating immune responses to virus infection. This culture model better represents the physiological environment compared with well-established cell lines. In this study, we discovered that inflammatory responses induced by TGEV infection were regulated by the RIG-I/NF-κB/HIF-1α/glycolysis axis in apical-out porcine organoids and in pigs. Our findings contribute to understanding the mechanism of intestinal inflammation upon viral infection and highlight apical-out organoids as a physiological model to mimic virus-induced inflammation.


Sujet(s)
Gastroentérite transmissible du porc , Glycolyse , Inflammation , Organoïdes , Virus de la gastroentérite transmissible , Animaux , Cytokines/métabolisme , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/génétique , Gastroentérite transmissible du porc/virologie , Gastroentérite transmissible du porc/métabolisme , Gastroentérite transmissible du porc/anatomopathologie , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique , Inflammation/métabolisme , Inflammation/virologie , Intestins/virologie , Intestins/anatomopathologie , Facteur de transcription NF-kappa B/métabolisme , Organoïdes/virologie , Organoïdes/métabolisme , Organoïdes/anatomopathologie , Transduction du signal , Suidae , Virus de la gastroentérite transmissible/physiologie
4.
Vet Microbiol ; 294: 110124, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38795403

RÉSUMÉ

PEDV, a single-stranded RNA virus, causes significant economic losses in the pig industry. Sin3-associated protein 18 (SAP18) is known for its role in transcriptional inhibition and RNA splicing. However, research on SAP18's involvement in PEDV infection is limited. Here, we identified an interaction between SAP18 and PEDV nonstructural protein 10 (Nsp10) using immunoprecipitation-mass spectrometry (IP-MS) and confirmed it through immunoprecipitation and laser confocal microscopy. Additionally, PEDV Nsp10 reduced SAP18 protein levels and induced its cytoplasmic accumulation. Overexpressing SAP18 suppressed PEDV replication, meanwhile its knockdown via short interfering RNA (siRNA) enhanced replication. SAP18 overexpression boosted IRF3 and NF-κB P65 phosphorylation, nuclear translocation, and IFN-ß antiviral response. Furthermore, SAP18 upregulated RIG-I expression and facilitated its dephosphorylation, while SAP18 knockdown had the opposite effect. Finally, SAP18 interacted with phosphatase 1 (PP1) catalytic subunit alpha (PPP1CA), promoting PPP1CA-RIG-I interaction during PEDV infection. These findings highlight SAP18's role in activating the type I interferon pathway and inhibiting viral replication by promoting RIG-I dephosphorylation through its interaction with PPP1CA.


Sujet(s)
Virus de la diarrhée porcine épidémique , Protéines virales non structurales , Réplication virale , Animaux , Protéines virales non structurales/métabolisme , Protéines virales non structurales/génétique , Virus de la diarrhée porcine épidémique/physiologie , Virus de la diarrhée porcine épidémique/génétique , Phosphorylation , Suidae , Lignée cellulaire , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/génétique , Chlorocebus aethiops
5.
Vet Microbiol ; 294: 110127, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38797057

RÉSUMÉ

Glaesserella parasuis (G. parasuis) is a common Gram-negative commensal bacterium in the upper respiratory tract of swine that can cause Glässer's disease under stress conditions. Pyroptosis is an important immune defence mechanism of the body that plays a crucial role in clearing pathogen infections and endogenous danger signals. This study aimed to investigate the mechanism of G. parasuis serotype 5 SQ (GPS5-SQ)-induced pyroptosis in swine tracheal epithelial cells (STECs). The results of the present study demonstrated that GPS5-SQ infection induces pyroptosis in STECs by enhancing the protein level of the N-terminal domain of gasdermin D (GSDMD-N) and activating the NOD-like receptor protein 3 (NLRP3) inflammasome. Furthermore, the levels of pyroptosis-related proteins, including GSDMD-N and cleaved caspase-1 were considerably decreased in STECs after the knockdown of retinoic acid inducible gene-I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). These results indicated that GPS5-SQ might trigger pyroptosis through the activation of the RIG-I/MAVS/NLRP3 signaling pathway. More importantly, the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) repressed the activation of the RIG-I/MAVS/NLRP3 signaling and rescued the decrease in Occludin and zonula occludens-1 (ZO-1) after GPS5-SQ infection. Overall, our findings show that GPS5-SQ can activate RIG-I/MAVS/NLRP3 signaling and destroy the integrity of the epithelial barrier by inducing ROS generation in STECs, shedding new light on G. parasuis pathogenesis.


Sujet(s)
Cellules épithéliales , Protéine-3 de la famille des NLR contenant un domaine pyrine , Pyroptose , Transduction du signal , Animaux , Cellules épithéliales/microbiologie , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/génétique , Suidae , Haemophilus parasuis/pathogénicité , Haemophilus parasuis/génétique , Trachée/microbiologie , Trachée/cytologie , Maladies des porcs/microbiologie , Sérogroupe , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Inflammasomes/métabolisme , Inflammasomes/génétique , Protéine-58 à domaine DEAD/génétique , Protéine-58 à domaine DEAD/métabolisme , Infections à Haemophilus/médecine vétérinaire , Infections à Haemophilus/microbiologie
6.
mSphere ; 9(6): e0023624, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38757961

RÉSUMÉ

Mammalian orthoreovirus (MRV) outer capsid protein σ3 is a multifunctional protein containing a double-stranded RNA-binding domain, which facilitates viral entry and assembly. We reasoned that σ3 has an innate immune evasion function. Here, we show that σ3 protein localizes in the mitochondria and interacts with mitochondrial antiviral signaling protein (MAVS) to activate the intrinsic mitochondria-mediated apoptotic pathway. Consequently, σ3 protein promotes the degradation of MAVS through the intrinsic caspase-9/caspase-3 apoptotic pathway. Moreover, σ3 protein can also inhibit the expression of the components of the RNA-sensing retinoic acid-inducible gene (RIG)-like receptor (RLR) signaling pathway to block antiviral type I interferon responses. Mechanistically, σ3 inhibits RIG-I and melanoma differentiation-associated gene 5 expression is independent of its inhibitory effect on MAVS. Overall, we demonstrate that the MRV σ3 protein plays a vital role in negatively regulating the RLR signaling pathway to inhibit antiviral responses. This enables MRV to evade host defenses to facilitate its own replication providing a target for the development of effective antiviral drugs against MRV. IMPORTANCE: Mammalian orthoreovirus (MRV) is an important zoonotic pathogen, but the regulatory role of its viral proteins in retinoic acid-inducible gene-like receptor (RLR)-mediated antiviral responses is still poorly understood. Herein, we show that MRV σ3 protein co-localizes with mitochondrial antiviral signaling protein (MAVS) in the mitochondria and promotes the mitochondria-mediated intrinsic apoptotic pathway to cleave and consequently degrade MAVS. Furthermore, tryptophan at position 133 of σ3 protein plays a key role in the degradation of MAVS. Importantly, we show that MRV outer capsid protein σ3 is a key factor in antagonizing RLR-mediated antiviral responses, providing evidence to better unravel the infection and transmission mechanisms of MRV.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Protéines de capside , Orthoréovirus mammalien , Transduction du signal , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Protéines de capside/métabolisme , Protéines de capside/génétique , Humains , Orthoréovirus mammalien/génétique , Animaux , Apoptose , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/génétique , Mitochondries/métabolisme , Immunité innée , Souris , Échappement immunitaire , Cellules HEK293 , Récepteurs immunologiques/métabolisme , Hélicase IFIH1 inductrice de l'interféron/métabolisme , Hélicase IFIH1 inductrice de l'interféron/génétique , Lignée cellulaire , Interactions hôte-pathogène
7.
Redox Biol ; 73: 103196, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38772149

RÉSUMÉ

Hippocampal neural stem/progenitor cells (NSPCs) are highly vulnerable to different stress stimuli, resulting in adult neurogenesis decline and eventual cognitive defects. Our previous study demonstrated that NOD-like receptor family pyrin domain-containing 6 (Nlrp6) highly expressed in NSPCs played a critical role in sustaining hippocampal neurogenesis to resist stress-induced depression, but the underlying mechnistms are still unclear. Here, we found that Nlrp6 depletion led to cognitive defects and hippocampal NSPC loss in mice. RNA-sequencing analysis of the primary NSPCs revealed that Nlrp6 deficiency altered gene expression profiles of mitochondrial energy generation and ferroptotic process. Upon siNlrp6 transfection, as well as corticosterone (CORT) exposure, downregulation of Nlrp6 suppressed retinoic acid-inducible gene I (RIG-1)/mitochondrial antiviral signaling proteins (MAVS)-mediated autophagy, but drove NSPC ferroptotic death. More interesting, short chain fatty acids (SCFAs) upregulated Nlrp6 expression and promoted RIG-1/MAVS-mediated mitophagy, preventing CORT-induced NSPC ferroptosis. Our study further demonstrates that Nlrp6 should be a sensor for RIG-1/MAVS-mediated mitophagy and play a critical role in maintain mitochondrial homeostasis of hippocampal NSPCs. These results suggests that Nlrp6 should be a potential drug target to combat neurodegenerative diseases relative with chronic stress.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Corticostérone , Protéine-58 à domaine DEAD , Ferroptose , Mitophagie , Cellules souches neurales , Animaux , Souris , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/génétique , Corticostérone/métabolisme , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Cellules souches neurales/métabolisme , Hippocampe/métabolisme , Mitochondries/métabolisme , Transduction du signal , Récepteurs de surface cellulaire
8.
Nat Commun ; 15(1): 4127, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38750080

RÉSUMÉ

Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.


Sujet(s)
Helicase , Protéines liant le poly-adp-ribose , RNA helicases , Protéines à motif de reconnaissance de l'ARN , Transduction du signal , Granules de stress , Protéines à motif tripartite , Ubiquitin-protein ligases , Ubiquitination , Humains , Protéines liant le poly-adp-ribose/métabolisme , Protéines liant le poly-adp-ribose/génétique , Protéines à motif tripartite/métabolisme , Protéines à motif tripartite/génétique , Protéines à motif de reconnaissance de l'ARN/métabolisme , Protéines à motif de reconnaissance de l'ARN/génétique , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Granules de stress/métabolisme , RNA helicases/métabolisme , Helicase/métabolisme , Protéine-58 à domaine DEAD/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Immunité innée , ARN double brin/métabolisme , Cellules HEK293 , Cellules HeLa , Granulations cytoplasmiques/métabolisme , Infections à virus à ARN/virologie , Infections à virus à ARN/métabolisme , Infections à virus à ARN/immunologie , Récepteurs immunologiques/métabolisme
9.
PLoS Pathog ; 20(5): e1012230, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38776321

RÉSUMÉ

While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-ß and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-ß transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Protéine-58 à domaine DEAD , Interféron de type I , Macrophages , Souris knockout , Infections à virus à ARN , Ubiquitines , Animaux , Macrophages/virologie , Macrophages/métabolisme , Macrophages/immunologie , Souris , Infections à virus à ARN/immunologie , Infections à virus à ARN/métabolisme , Ubiquitines/métabolisme , Ubiquitines/génétique , Protéine-58 à domaine DEAD/métabolisme , Interféron de type I/métabolisme , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Cytokines/métabolisme , Souris de lignée C57BL , Humains , Récepteurs immunologiques/métabolisme , Interféron bêta/métabolisme , Virus à ARN/immunologie , Facteur-3 de régulation d'interféron/métabolisme
10.
Elife ; 132024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38747717

RÉSUMÉ

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , ARN double brin , Ribonuclease III , Animaux , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/composition chimique , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , ARN double brin/métabolisme , Ribonuclease III/métabolisme , Ribonuclease III/composition chimique , Ribonuclease III/génétique , Cryomicroscopie électronique , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/composition chimique , DEAD-box RNA helicases/génétique , RNA helicases/métabolisme , RNA helicases/génétique , RNA helicases/composition chimique , Liaison aux protéines , Adénosine triphosphate/métabolisme , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/génétique , Protéine-58 à domaine DEAD/composition chimique
11.
FASEB J ; 38(10): e23651, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38752537

RÉSUMÉ

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Sujet(s)
Autophagie , Interféron bêta , Pression intraoculaire , Réseau trabéculaire de la sclère , Autophagie/effets des médicaments et des substances chimiques , Réseau trabéculaire de la sclère/métabolisme , Réseau trabéculaire de la sclère/effets des médicaments et des substances chimiques , Humains , Animaux , Souris , Pression intraoculaire/physiologie , Interféron bêta/métabolisme , Mâle , Femelle , Glaucome/anatomopathologie , Glaucome/métabolisme , Glaucome/génétique , Surdité neurosensorielle/génétique , Surdité neurosensorielle/anatomopathologie , Surdité neurosensorielle/métabolisme , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/génétique , Souris de lignée C57BL , Mutation , Atrophie optique/génétique , Atrophie optique/métabolisme , Atrophie optique/anatomopathologie , Pedigree , Odontodysplasie , Calcification vasculaire , Hypoplasie de l'émail dentaire , Métacarpe/malformations , Ostéoporose , Maladies musculaires , Maladies de l'aorte , Récepteurs immunologiques
12.
J Transl Med ; 22(1): 395, 2024 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-38685028

RÉSUMÉ

BACKGROUND: Current cancer therapies often fall short in addressing the complexities of malignancies, underscoring the urgent need for innovative treatment strategies. RNA interference technology, which specifically suppresses gene expression, offers a promising new approach in the fight against tumors. Recent studies have identified a novel immunostimulatory small-interfering RNA (siRNA) with a unique sequence (sense strand, 5'-C; antisense strand, 3'-GGG) capable of activating the RIG-I/IRF3 signaling pathway. This activation induces the release of type I and III interferons, leading to an effective antiviral immune response. However, this class of immunostimulatory siRNA has not yet been explored in cancer therapy. METHODS: IsiBCL-2, an innovative immunostimulatory siRNA designed to suppress the levels of B-cell lymphoma 2 (BCL-2), contains a distinctive motif (sense strand, 5'-C; antisense strand, 3'-GGG). Glioblastoma cells were subjected to 100 nM isiBCL-2 treatment in vitro for 48 h. Morphological changes, cell viability (CCK-8 assay), proliferation (colony formation assay), migration/invasion (scratch test and Transwell assay), apoptosis rate, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were evaluated. Western blotting and immunofluorescence analyses were performed to assess RIG-I and MHC-I molecule levels, and ELISA was utilized to measure the levels of cytokines (IFN-ß and CXCL10). In vivo heterogeneous tumor models were established, and the anti-tumor effect of isiBCL-2 was confirmed through intratumoral injection. RESULTS: IsiBCL-2 exhibited significant inhibitory effects on glioblastoma cell growth and induced apoptosis. BCL-2 mRNA levels were significantly decreased by 67.52%. IsiBCL-2 treatment resulted in an apoptotic rate of approximately 51.96%, accompanied by a 71.76% reduction in MMP and a 41.87% increase in ROS accumulation. Western blotting and immunofluorescence analyses demonstrated increased levels of RIG-I, MAVS, and MHC-I following isiBCL-2 treatment. ELISA tests indicated a significant increase in IFN-ß and CXCL10 levels. In vivo studies using nude mice confirmed that isiBCL-2 effectively impeded the growth and progression of glioblastoma tumors. CONCLUSIONS: This study introduces an innovative method to induce innate signaling by incorporating an immunostimulatory sequence (sense strand, 5'-C; antisense strand, 3'-GGG) into siRNA, resulting in the formation of RNA dimers through Hoogsteen base-pairing. This activation triggers the RIG-I signaling pathway in tumor cells, causing further damage and inducing a potent immune response. This inventive design and application of immunostimulatory siRNA offer a novel perspective on tumor immunotherapy, holding significant implications for the field.


Sujet(s)
Apoptose , Gliome , Petit ARN interférent , Humains , Animaux , Lignée cellulaire tumorale , Gliome/thérapie , Gliome/anatomopathologie , Gliome/génétique , Petit ARN interférent/métabolisme , Souris nude , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/génétique , Prolifération cellulaire , Mouvement cellulaire , Tests d'activité antitumorale sur modèle de xénogreffe , Souris , Récepteurs immunologiques/métabolisme , Récepteurs immunologiques/génétique , Espèces réactives de l'oxygène/métabolisme , Invasion tumorale , Survie cellulaire
13.
J Agric Food Chem ; 72(17): 9782-9794, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38597360

RÉSUMÉ

Uncontrolled inflammation contributes significantly to the mortality in acute respiratory infections. Our previous research has demonstrated that maize bran feruloylated oligosaccharides (FOs) possess notable anti-inflammatory properties linked to the NF-kB pathway regulation. In this study, we clarified that the oral administration of FOs moderately inhibited H1N1 virus infection and reduced lung inflammation in influenza-infected mice by decreasing a wide spectrum of cytokines (IFN-α, IFN-ß, IL-6, IL-10, and IL-23) in the lungs. The mechanism involves FOs suppressing the transduction of the RIG-I/MAVS/TRAF3 signaling pathway, subsequently lowering the expression of NF-κB. In silico analysis suggests that FOs have a greater binding affinity for the RIG-I/MAVS signaling complex. This indicates that FOs have potential as promising targets for immune modulation. Moreover, in MAVS knockout mice, we confirmed that the anti-inflammatory function of FOs against influenza depends on MAVS. Comprehensive analysis using 16S rRNA gene sequencing and metabolite profiling techniques showed that FOs have the potential to restore immunity by modulating the gut microbiota. In conclusion, our study demonstrates that FOs are effective anti-inflammatory phytochemicals in inhibiting lung inflammation caused by influenza. This suggests that FOs could serve as a potential nutritional strategy for preventing the H1N1 virus infection and associated lung inflammation.


Sujet(s)
Protéine-58 à domaine DEAD , Sous-type H1N1 du virus de la grippe A , Grippe humaine , Souris knockout , Oligosaccharides , Infections à Orthomyxoviridae , Transduction du signal , Facteur-3 associé aux récepteurs de TNF , Animaux , Souris , Oligosaccharides/administration et posologie , Oligosaccharides/composition chimique , Oligosaccharides/pharmacologie , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/prévention et contrôle , Infections à Orthomyxoviridae/métabolisme , Sous-type H1N1 du virus de la grippe A/immunologie , Humains , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/immunologie , Grippe humaine/immunologie , Grippe humaine/prévention et contrôle , Grippe humaine/métabolisme , Facteur-3 associé aux récepteurs de TNF/génétique , Facteur-3 associé aux récepteurs de TNF/métabolisme , Facteur-3 associé aux récepteurs de TNF/immunologie , Protéine-58 à domaine DEAD/génétique , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/immunologie , Pneumopathie infectieuse/immunologie , Pneumopathie infectieuse/prévention et contrôle , Pneumopathie infectieuse/métabolisme , Pneumopathie infectieuse/virologie , Souris de lignée C57BL , Poumon/immunologie , Poumon/métabolisme , Poumon/effets des médicaments et des substances chimiques , Poumon/virologie , Cytokines/métabolisme , Cytokines/immunologie , Cytokines/génétique , Femelle , Facteur de transcription NF-kappa B/immunologie , Facteur de transcription NF-kappa B/génétique , Facteur de transcription NF-kappa B/métabolisme , Anti-inflammatoires/administration et posologie , Anti-inflammatoires/pharmacologie
14.
Biochem Biophys Res Commun ; 712-713: 149915, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38663038

RÉSUMÉ

Viral infections pose a significant threat to public health, and the production of interferons represents one of the most critical antiviral innate immune responses of the host. Consequently, the screening and identification of compounds or reagents that induce interferon production are of paramount importance. This study commenced with the cultivation of host bacterium 15,597, followed by the infection of Escherichia coli with the MS2 bacteriophage. Utilizing the J2 capture technique, a class of dsRNA mixtures (MS2+15,597) was isolated from the E. coli infected with the MS2 bacteriophage. Subsequent investigations were conducted on the immunostimulatory activity of the MS2+15,597 mixture. The results indicated that the dsRNA mixtures (MS2+15,597) extracted from E. coli infected with the MS2 bacteriophage possess the capability to activate innate immunity, thereby inducing the production of interferon-ß. These dsRNA mixtures can activate the RIG-I and TLR3 pattern recognition receptors, stimulating the expression of interferon stimulatory factors 3/7, which in turn triggers the NF-κB signaling pathway, culminating in the cellular production of interferon-ß to achieve antiviral effects. This study offers novel insights and strategies for the development of broad-spectrum antiviral drugs, potentially providing new modalities for future antiviral therapies.


Sujet(s)
Escherichia coli , Levivirus , ARN double brin , Escherichia coli/virologie , Escherichia coli/génétique , Escherichia coli/métabolisme , ARN double brin/métabolisme , Humains , Levivirus/génétique , Récepteur de type Toll-3/métabolisme , Récepteur de type Toll-3/génétique , Immunité innée , Interféron bêta/métabolisme , Interféron bêta/génétique , Facteur de transcription NF-kappa B/métabolisme , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/génétique , Transduction du signal , Facteur-7 de régulation d'interféron/métabolisme , Facteur-7 de régulation d'interféron/génétique , Récepteurs immunologiques , Facteur-3 de régulation d'interféron/métabolisme , Facteur-3 de régulation d'interféron/génétique
15.
Mol Immunol ; 170: 131-143, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38663254

RÉSUMÉ

Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous µ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV µ1 protein expression by shRNA could impair MRV proliferation. Specifically, µ1 protein inhibited MRV or poly(I:C)-induced IFN-ß expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that µ1 protein significantly decreased IFN-ß mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that µ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein µ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.


Sujet(s)
Protéines de capside , Protéine-58 à domaine DEAD , Facteur-3 de régulation d'interféron , Hélicase IFIH1 inductrice de l'interféron , Orthoréovirus mammalien , Récepteurs immunologiques , Transduction du signal , Animaux , Humains , Transport nucléaire actif , Noyau de la cellule/métabolisme , Protéine-58 à domaine DEAD/métabolisme , Cellules HEK293 , Immunité innée/immunologie , Facteur-3 de régulation d'interféron/métabolisme , Interféron bêta/métabolisme , Interféron bêta/immunologie , Hélicase IFIH1 inductrice de l'interféron/métabolisme , Hélicase IFIH1 inductrice de l'interféron/génétique , Orthoréovirus mammalien/immunologie , Orthoréovirus mammalien/physiologie , Phosphorylation , Protein-Serine-Threonine Kinases , Infections à Reoviridae/immunologie , Transduction du signal/immunologie , Protéines virales/métabolisme , Protéines de capside/métabolisme
16.
J Virol ; 98(5): e0157323, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38572974

RÉSUMÉ

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterized by dysregulated immune response. Studies have shown that the SARS-CoV-2 accessory protein ORF7b induces host cell apoptosis through the tumor necrosis factor alpha (TNF-α) pathway and blocks the production of interferon beta (IFN-ß). The underlying mechanism remains to be investigated. In this study, we found that ORF7b facilitated viral infection and production, and inhibited the RIG-I-like receptor (RLR) signaling pathway through selectively interacting with mitochondrial antiviral-signaling protein (MAVS). MAVS439-466 region and MAVS Lys461 were essential for the physical association between MAVS and ORF7b, and the inhibition of the RLR signaling pathway by ORF7b. MAVSK461/K63 ubiquitination was essential for the RLR signaling regulated by the MAVS-ORF7b complex. ORF7b interfered with the recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) and the activation of the RLR signaling pathway by MAVS. Furthermore, interfering peptides targeting the ORF7b complex reversed the ORF7b-suppressed MAVS-RLR signaling pathway. The most potent interfering peptide V disrupts the formation of ORF7b tetramers, reverses the levels of the ORF7b-inhibited physical association between MAVS and TRAF6, leading to the suppression of viral growth and infection. Overall, this study provides a mechanism for the suppression of innate immunity by SARS-CoV-2 infection and the mechanism-based approach via interfering peptides to potentially prevent SARS-CoV-2 infection.IMPORTANCEThe pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and continues to be a threat to public health. It is imperative to understand the biology of SARS-CoV-2 infection and find approaches to prevent SARS-CoV-2 infection and ameliorate COVID-19. Multiple SARS-CoV-2 proteins are known to function on the innate immune response, but the underlying mechanism remains unknown. This study shows that ORF7b inhibits the RIG-I-like receptor (RLR) signaling pathway through the physical association between ORF7b and mitochondrial antiviral-signaling protein (MAVS), impairing the K63-linked MAVS polyubiquitination and its recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) to MAVS. The most potent interfering peptide V targeting the ORF7b-MAVS complex may reverse the suppression of the MAVS-mediated RLR signaling pathway by ORF7b and prevent viral infection and production. This study may provide new insights into the pathogenic mechanism of SARS-CoV-2 and a strategy to develop new drugs to prevent SARS-CoV-2 infection.


Sujet(s)
Protéines adaptatrices de la transduction du signal , COVID-19 , SARS-CoV-2 , Transduction du signal , Animaux , Humains , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Apoptose , COVID-19/virologie , COVID-19/immunologie , COVID-19/métabolisme , Protéine-58 à domaine DEAD/métabolisme , Cellules HEK293 , Immunité innée , Interféron bêta/métabolisme , Récepteurs immunologiques/métabolisme , SARS-CoV-2/immunologie , SARS-CoV-2/métabolisme , Facteur-6 associé aux récepteurs de TNF/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Ubiquitination , Protéines virales régulatrices ou accessoires/métabolisme , Protéines virales régulatrices ou accessoires/génétique
17.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38673764

RÉSUMÉ

The exacerbation of pneumonia in children with human adenovirus type 3 (HAdV-3E) is secondary to a Staphylococcus aureus (S. aureus) infection. The influence of host-pathogen interactions on disease progression remains unclear. It is important to note that S. aureus infections following an HAdV-3E infection are frequently observed in clinical settings, yet the underlying susceptibility mechanisms are not fully understood. This study utilized an A549 cell model to investigate secondary infection with S. aureus following an HAdV-3E infection. The findings suggest that HAdV-3E exacerbates the S. aureus infection by intensifying lung epithelial cell damage. The results highlight the role of HAdV-3E in enhancing the interferon signaling pathway through RIG-I (DDX58), resulting in the increased expression of interferon-stimulating factors like MX1, RSAD2, and USP18. The increase in interferon-stimulating factors inhibits the NF-κB and MAPK/P38 pro-inflammatory signaling pathways. These findings reveal new mechanisms of action for HAdV-3E and S. aureus in secondary infections, enhancing our comprehension of pathogenesis.


Sujet(s)
Infections humaines à adénovirus , Adénovirus humains , Protéine-58 à domaine DEAD , Transduction du signal , Infections à staphylocoques , Staphylococcus aureus , Humains , Cellules A549 , Protéines adaptatrices de la transduction du signal/métabolisme , Infections humaines à adénovirus/métabolisme , Infections humaines à adénovirus/immunologie , Infections humaines à adénovirus/virologie , Adénovirus humains/physiologie , Adénovirus humains/immunologie , Co-infection/microbiologie , Protéine-58 à domaine DEAD/métabolisme , Interactions hôte-pathogène/immunologie , Inflammation/métabolisme , Facteur de transcription NF-kappa B/métabolisme , Récepteurs immunologiques/métabolisme , Infections à staphylocoques/immunologie , Infections à staphylocoques/métabolisme , Infections à staphylocoques/microbiologie , Staphylococcus aureus/pathogénicité , Ubiquitin thiolesterase
18.
Vet Res ; 55(1): 44, 2024 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-38589930

RÉSUMÉ

Swine acute diarrhea syndrome coronavirus (SADS-CoV), an emerging Alpha-coronavirus, brings huge economic loss in swine industry. Interferons (IFNs) participate in a frontline antiviral defense mechanism triggering the activation of numerous downstream antiviral genes. Here, we demonstrated that TRIM25 overexpression significantly inhibited SADS-CoV replication, whereas TRIM25 deficiency markedly increased viral yield. We found that SADS-CoV N protein suppressed interferon-beta (IFN-ß) production induced by Sendai virus (SeV) or poly(I:C). Moreover, we determined that SADS-CoV N protein interacted with RIG-I N-terminal two caspase activation and recruitment domains (2CARDs) and TRIM25 coiled-coil dimerization (CCD) domain. The interaction of SADS-CoV N protein with RIG-I and TRIM25 caused TRIM25 multimerization inhibition, the RIG-I-TRIM25 interaction disruption, and consequent the IRF3 and TBK1 phosphorylation impediment. Overexpression of SADS-CoV N protein facilitated the replication of VSV-GFP by suppressing IFN-ß production. Our results demonstrate that SADS-CoV N suppresses the host IFN response, thus highlighting the significant involvement of TRIM25 in regulating antiviral immune defenses.


Sujet(s)
Alphacoronavirus , Protéines nucléocapside , Animaux , Suidae , Alphacoronavirus/métabolisme , Interférons/génétique , Protéine-58 à domaine DEAD/métabolisme
19.
J Virol ; 98(4): e0014624, 2024 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-38440983

RÉSUMÉ

Peste des petits ruminants is an acute and highly contagious disease caused by the Peste des petits ruminants virus (PPRV). Host proteins play a crucial role in viral replication. However, the effect of fusion (F) protein-interacting partners on PPRV infection is poorly understood. In this study, we found that the expression of goat plasminogen activator urokinase (PLAU) gradually decreased in a time- and dose-dependent manner in PPRV-infected goat alveolar macrophages (GAMs). Goat PLAU was subsequently identified using co-immunoprecipitation and confocal microscopy as an F protein binding partner. The overexpression of goat PLAU inhibited PPRV growth and replication, whereas silencing goat PLAU promoted viral growth and replication. Additionally, we confirmed that goat PLAU interacted with a virus-induced signaling adapter (VISA) to antagonize F-mediated VISA degradation, increasing the production of type I interferon. We also found that goat PLAU reduced the inhibition of PPRV replication in VISA-knockdown GAMs. Our results show that the host protein PLAU inhibits the growth and replication of PPRV by VISA-triggering RIG-I-like receptors and provides insight into the host protein that antagonizes PPRV immunosuppression.IMPORTANCEThe role of host proteins that interact with Peste des petits ruminants virus (PPRV) fusion (F) protein in PPRV replication is poorly understood. This study confirmed that goat plasminogen activator urokinase (PLAU) interacts with the PPRV F protein. We further discovered that goat PLAU inhibited PPRV replication by enhancing virus-induced signaling adapter (VISA) expression and reducing the ability of the F protein to degrade VISA. These findings offer insights into host resistance to viral invasion and suggest new strategies and directions for developing PPR vaccines.


Sujet(s)
Maladies des chèvres , Capra , Interactions hôte-pathogène , Peste des petits ruminants , Virus de la peste des petits ruminants , Activateur du plasminogène de type urokinase , Protéines de fusion virale , Animaux , Protéines adaptatrices de la transduction du signal/métabolisme , Protéine-58 à domaine DEAD/métabolisme , Maladies des chèvres/immunologie , Maladies des chèvres/métabolisme , Maladies des chèvres/virologie , Capra/immunologie , Capra/virologie , Macrophages alvéolaires , Peste des petits ruminants/immunologie , Peste des petits ruminants/métabolisme , Peste des petits ruminants/virologie , Virus de la peste des petits ruminants/croissance et développement , Virus de la peste des petits ruminants/immunologie , Virus de la peste des petits ruminants/métabolisme , Liaison aux protéines , Activateur du plasminogène de type urokinase/génétique , Activateur du plasminogène de type urokinase/métabolisme , Protéines de fusion virale/métabolisme
20.
Microbes Infect ; 26(4): 105321, 2024.
Article de Anglais | MEDLINE | ID: mdl-38461968

RÉSUMÉ

Rabies virus (RABV) is a lethal neurotropic virus that causes 60,000 human deaths every year globally. RABV infection is characterized by the suppression of the interferon (IFN)-mediated antiviral response. However, molecular mechanisms leading to RABV sensing by RIG-I-like receptors (RLR) that initiates IFN signaling currently remain elusive. Here, we showed that RABV RNAs are primarily recognized by the RIG-I RLR, resulting in an IFN response in the infected cells, but this response varied according to the type of RABV used. Pathogenic RABV strain RNAs, Tha, were poorly detected in the cytosol by RIG-I and therefore caused a weak antiviral response. However, we revealed a strong IFN activity triggered by the attenuated RABV vaccine strain RNAs, SAD, mediated by RIG-I. We characterized two major 5' copy-back defective interfering (5'cb DI) genomes generated during SAD replication. Furthermore, we identified an interaction between 5'cb DI genomes, and RIG-I correlated with a high stimulation of the type I IFN signaling. This study indicates that wild-type RABV RNAs poorly activate the RIG-I pathway, while the presence of 5'cb DIs in the live-attenuated vaccine strain serves as an intrinsic adjuvant that strengthens its efficiency by enhancing RIG-I detection thus strongly stimulates the IFN response.


Sujet(s)
Protéine-58 à domaine DEAD , Virus de la rage , Humains , Lignée cellulaire , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/génétique , Protéine-58 à domaine DEAD/immunologie , Interféron de type I/métabolisme , Interféron de type I/immunologie , Rage (maladie)/immunologie , Rage (maladie)/virologie , Vaccins antirabiques/immunologie , Virus de la rage/immunologie , Virus de la rage/génétique , Virus de la rage/pathogénicité , Récepteurs immunologiques/métabolisme , ARN viral/génétique , Transduction du signal , Réplication virale
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...