Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 11.554
Filtrer
1.
Proc Natl Acad Sci U S A ; 121(28): e2402543121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38959031

RÉSUMÉ

The outer membrane (OM) of gram-negative bacteria serves as a vital organelle that is densely populated with OM proteins (OMPs) and plays pivotal roles in cellular functions and virulence. The assembly and insertion of these OMPs into the OM represent a fundamental process requiring specialized molecular chaperones. One example is the translocation and assembly module (TAM), which functions as a transenvelope chaperone promoting the folding of specific autotransporters, adhesins, and secretion systems. The catalytic unit of TAM, TamA, comprises a catalytic ß-barrel domain anchored within the OM and three periplasmic polypeptide-transport-associated (POTRA) domains that recruit the TamB subunit. The latter acts as a periplasmic ladder that facilitates the transport of unfolded OMPs across the periplasm. In addition to their role in recruiting the auxiliary protein TamB, our data demonstrate that the POTRA domains mediate interactions with the inner surface of the OM, ultimately modulating the membrane properties. Through the integration of X-ray crystallography, molecular dynamic simulations, and biomolecular interaction methodologies, we located the membrane-binding site on the first and second POTRA domains. Our data highlight a binding preference for phosphatidylglycerol, a minor lipid constituent present in the OM, which has been previously reported to facilitate OMP assembly. In the context of the densely OMP-populated membrane, this association may serve as a mechanism to secure lipid accessibility for nascent OMPs through steric interactions with existing OMPs, in addition to creating favorable conditions for OMP biogenesis.


Sujet(s)
Protéines de la membrane externe bactérienne , Protéines Escherichia coli , Protéines de la membrane externe bactérienne/métabolisme , Protéines de la membrane externe bactérienne/composition chimique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , Domaines protéiques , Membrane bactérienne externe/métabolisme , Escherichia coli/métabolisme , Escherichia coli/génétique , Chaperons moléculaires/métabolisme , Chaperons moléculaires/composition chimique , Pliage des protéines , Périplasme/métabolisme , Modèles moléculaires
2.
Subcell Biochem ; 104: 1-16, 2024.
Article de Anglais | MEDLINE | ID: mdl-38963480

RÉSUMÉ

The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.


Sujet(s)
Antibactériens , Antibactériens/pharmacologie , Antibactériens/métabolisme , Multirésistance bactérienne aux médicaments , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines de transport/métabolisme , Protéines de transport/composition chimique , Protéines de la membrane externe bactérienne/métabolisme , Protéines de la membrane externe bactérienne/composition chimique , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/composition chimique , Cryomicroscopie électronique , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique
3.
Subcell Biochem ; 104: 17-31, 2024.
Article de Anglais | MEDLINE | ID: mdl-38963481

RÉSUMÉ

The copper efflux regulator (CueR) is a classical member of the MerR family of metalloregulators and is common in gram-negative bacteria. Through its C-terminal effector-binding domain, CueR senses cytoplasmic copper ions to regulate the transcription of genes contributing to copper homeostasis, an essential process for survival of all cells. In this chapter, we review the regulatory roles of CueR in the model organism Escherichia coli and the mechanisms for CueR in copper binding, DNA recognition, and interplay with RNA polymerase in regulating transcription. In light of biochemical and structural analyses, we provide molecular details for how CueR represses transcription in the absence of copper ions, how copper ions mediate CueR conformational change to form holo CueR, and how CueR bends and twists promoter DNA to activate transcription. We also characterize the functional domains and key residues involved in these processes. Since CueR is a representative member of the MerR family, elucidating its regulatory mechanisms could help to understand the CueR-like regulators in other organisms and facilitate the understanding of other metalloregulators in the same family.


Sujet(s)
Cuivre , Protéines Escherichia coli , Escherichia coli , Régulation de l'expression des gènes bactériens , Cuivre/métabolisme , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/composition chimique , Escherichia coli/génétique , Escherichia coli/métabolisme , Transcription génétique , Régions promotrices (génétique) , Transactivateurs
4.
PLoS One ; 19(6): e0305823, 2024.
Article de Anglais | MEDLINE | ID: mdl-38917203

RÉSUMÉ

SlyD is a widely-occurring prokaryotic FKBP-family prolyl isomerase with an additional chaperone domain. Often, such as in Escherichia coli, a third domain is found at its C-terminus that binds nickel and provides it for nickel-enzyme biogenesis. SlyD has been found to bind signal peptides of proteins that are translocated by the Tat pathway, a system for the transport of folded proteins across membranes. Using peptide arrays to analyze these signal peptide interactions, we found that SlyD interacted only with positively charged peptides, with a preference for arginines over lysines, and large hydrophobic residues enhanced binding. Especially a twin-arginine motif was recognized, a pair of highly conserved arginines adjacent to a stretch of hydrophobic residues. Using isothermal titration calorimetry (ITC) with purified SlyD and a signal peptide-containing model Tat substrate, we could show that the wild type twin-arginine signal peptide was bound with higher affinity than an RR>KK mutated variant, confirming that positive charges are recognized by SlyD, with a preference of arginines over lysines. The specific role of negative charges of the chaperone domain surface and of hydrophobic residues in the chaperone active site was further analyzed by ITC of mutated SlyD variants. Our data show that the supposed key hydrophobic residues of the active site are indeed crucial for binding, and that binding is influenced by negative charges on the chaperone domain. Recognition of positive charges is likely achieved by a large negatively charged surface region of the chaperone domain, which is highly conserved although individual positions are variable.


Sujet(s)
Protéines Escherichia coli , Escherichia coli , Chaperons moléculaires , Peptidylpropyl isomerase , Liaison aux protéines , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/composition chimique , Peptidylpropyl isomerase/métabolisme , Peptidylpropyl isomerase/génétique , Escherichia coli/métabolisme , Escherichia coli/génétique , Chaperons moléculaires/métabolisme , Chaperons moléculaires/génétique , Chaperons moléculaires/composition chimique , Signaux de triage des protéines , Interactions hydrophobes et hydrophiles , Calorimétrie , Arginine/métabolisme , Séquence d'acides aminés
5.
Nucleic Acids Res ; 52(12): 7354-7366, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38832628

RÉSUMÉ

Nucleoid-associated proteins (NAPs) play central roles in bacterial chromosome organization and DNA processes. The Escherichia coli YejK protein is a highly abundant, yet poorly understood NAP. YejK proteins are conserved among Gram-negative bacteria but show no homology to any previously characterized DNA-binding protein. Hence, how YejK binds DNA is unknown. To gain insight into YejK structure and its DNA binding mechanism we performed biochemical and structural analyses on the E. coli YejK protein. Biochemical assays demonstrate that, unlike many NAPs, YejK does not show a preference for AT-rich DNA and binds non-sequence specifically. A crystal structure revealed YejK adopts a novel fold comprised of two domains. Strikingly, each of the domains harbors an extended arm that mediates dimerization, creating an asymmetric clamp with a 30 Å diameter pore. The lining of the pore is electropositive and mutagenesis combined with fluorescence polarization assays support DNA binding within the pore. Finally, our biochemical analyses on truncated YejK proteins suggest a mechanism for YejK clamp loading. Thus, these data reveal YejK contains a newly described DNA-binding motif that functions as a novel clamp.


Sujet(s)
Protéines de liaison à l'ADN , Protéines Escherichia coli , Escherichia coli , Modèles moléculaires , Liaison aux protéines , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/composition chimique , Escherichia coli/génétique , Escherichia coli/métabolisme , Cristallographie aux rayons X , ADN bactérien/métabolisme , ADN bactérien/composition chimique , Sites de fixation , Domaines protéiques , Multimérisation de protéines , ADN/métabolisme , ADN/composition chimique , Séquence d'acides aminés
6.
Nat Commun ; 15(1): 5073, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38871714

RÉSUMÉ

Methyl-TROSY nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for characterising large biomolecules in solution. However, preparing samples for these experiments is demanding and entails deuteration, limiting its use. Here we demonstrate that NMR spectra recorded on protonated, uniformly 13C labelled samples can be processed using deep neural networks to yield spectra that are of similar quality to typical deuterated methyl-TROSY spectra, potentially providing information for proteins that cannot be produced in bacterial systems. We validate the methodology experimentally on three proteins with molecular weights in the range 42-360 kDa. We further demonstrate the applicability of our methodology to 3D NOESY spectra of Escherichia coli Malate Synthase G (81 kDa), where observed NOE cross-peaks are in good agreement with the available structure. The method represents an advance in the field of using deep learning to analyse complex magnetic resonance data and could have an impact on the study of large biomolecules in years to come.


Sujet(s)
Escherichia coli , Escherichia coli/métabolisme , Résonance magnétique nucléaire biomoléculaire/méthodes , Apprentissage profond , Malate synthase/composition chimique , Malate synthase/métabolisme , , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/métabolisme , Spectroscopie par résonance magnétique/méthodes , Isotopes du carbone/composition chimique , Protéines/composition chimique , Protéines/métabolisme
7.
Sci Rep ; 14(1): 13754, 2024 06 14.
Article de Anglais | MEDLINE | ID: mdl-38877109

RÉSUMÉ

The twin-arginine translocation (Tat) system transports folded proteins across energized biological membranes in bacteria, plastids, and plant mitochondria. In Escherichia coli, the three membrane proteins TatA, TatB and TatC associate to enable Tat transport. While TatB and TatC together form complexes that bind Tat-dependently transported proteins, the TatA component is responsible for the permeabilization of the membrane during transport. With wild type Tat systems, the TatB- and TatC-containing Tat complexes TC1 and TC2 can be differentiated. Their TatA content has not been resolved, nor could they be assigned to any step of the translocation mechanism. It is therefore a key question of current Tat research to understand how TatA associates with Tat systems during transport. By analyzing affinity-purified Tat complexes with mutations in TatC that selectively enrich either TC1 or TC2, we now for the first time demonstrate that both Tat complexes associate with TatA, but the larger TC2 recruits significantly more TatA than the smaller TC1. Most TatA co-purified as multimeric clusters. Using site-specific photo cross-linking, we could detect TatA-TatC interactions only near TatC transmembrane helices 5 and 6. Substrate-binding did not change the interacting positions but affected the stability of the interaction, pointing to a substrate-induced conformational transition. Together, our findings indicate that TatA clusters associate with TatBC without being integrated into the complex by major rearrangements. The increased TatA affinity of the larger Tat complex TC2 suggests that functional assembly is advanced in this complex.


Sujet(s)
Membrane cellulaire , Protéines Escherichia coli , Escherichia coli , Protéines de transport membranaire , Transport des protéines , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/composition chimique , Escherichia coli/métabolisme , Escherichia coli/génétique , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/génétique , Protéines de transport membranaire/composition chimique , Membrane cellulaire/métabolisme , Pliage des protéines , Liaison aux protéines , Mutation
8.
Protein Sci ; 33(7): e5068, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38864739

RÉSUMÉ

Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.


Sujet(s)
Protéines Escherichia coli , Protéines du choc thermique HSP40 , Protéines du choc thermique HSP70 , Protéines du choc thermique , Protéines du choc thermique HSP40/métabolisme , Protéines du choc thermique HSP40/composition chimique , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP70/métabolisme , Protéines du choc thermique HSP70/composition chimique , Protéines du choc thermique HSP70/génétique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , Protéines du choc thermique/métabolisme , Protéines du choc thermique/composition chimique , Protéines du choc thermique/génétique , Pliage des protéines , Escherichia coli/génétique , Escherichia coli/métabolisme , Chaperonne BiP du réticulum endoplasmique/métabolisme , Chaperons moléculaires/métabolisme , Chaperons moléculaires/composition chimique , Chaperons moléculaires/génétique
9.
Nat Commun ; 15(1): 4751, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38834573

RÉSUMÉ

Intracellular potassium (K+) homeostasis is fundamental to cell viability. In addition to channels, K+ levels are maintained by various ion transporters. One major family is the proton-driven K+ efflux transporters, which in gram-negative bacteria is important for detoxification and in plants is critical for efficient photosynthesis and growth. Despite their importance, the structure and molecular basis for K+-selectivity is poorly understood. Here, we report ~3.1 Å resolution cryo-EM structures of the Escherichia coli glutathione (GSH)-gated K+ efflux transporter KefC in complex with AMP, AMP/GSH and an ion-binding variant. KefC forms a homodimer similar to the inward-facing conformation of Na+/H+ antiporter NapA. By structural assignment of a coordinated K+ ion, MD simulations, and SSM-based electrophysiology, we demonstrate how ion-binding in KefC is adapted for binding a dehydrated K+ ion. KefC harbors C-terminal regulator of K+ conductance (RCK) domains, as present in some bacterial K+-ion channels. The domain-swapped helices in the RCK domains bind AMP and GSH and they inhibit transport by directly interacting with the ion-transporter module. Taken together, we propose that KefC is activated by detachment of the RCK domains and that ion selectivity exploits the biophysical properties likewise adapted by K+-ion-channels.


Sujet(s)
Cryomicroscopie électronique , Protéines Escherichia coli , Escherichia coli , Potassium , Escherichia coli/métabolisme , Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , Glutathion/métabolisme , Simulation de dynamique moléculaire , Potassium/métabolisme , Antiports des ions potassium-hydrogène/métabolisme , Antiports des ions potassium-hydrogène/composition chimique , Antiports des ions potassium-hydrogène/génétique , Domaines protéiques
10.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38928299

RÉSUMÉ

Bacterial nitroreductase enzymes capable of activating imaging probes and prodrugs are valuable tools for gene-directed enzyme prodrug therapies and targeted cell ablation models. We recently engineered a nitroreductase (E. coli NfsB F70A/F108Y) for the substantially enhanced reduction of the 5-nitroimidazole PET-capable probe, SN33623, which permits the theranostic imaging of vectors labeled with oxygen-insensitive bacterial nitroreductases. This mutant enzyme also shows improved activation of the DNA-alkylation prodrugs CB1954 and metronidazole. To elucidate the mechanism behind these enhancements, we resolved the crystal structure of the mutant enzyme to 1.98 Å and compared it to the wild-type enzyme. Structural analysis revealed an expanded substrate access channel and new hydrogen bonding interactions. Additionally, computational modeling of SN33623, CB1954, and metronidazole binding in the active sites of both the mutant and wild-type enzymes revealed key differences in substrate orientations and interactions, with improvements in activity being mirrored by reduced distances between the N5-H of isoalloxazine and the substrate nitro group oxygen in the mutant models. These findings deepen our understanding of nitroreductase substrate specificity and catalytic mechanisms and have potential implications for developing more effective theranostic imaging strategies in cancer treatment.


Sujet(s)
Métronidazole , Nitroimidazoles , Nitroréductases , Nitroréductases/métabolisme , Nitroréductases/composition chimique , Nitroréductases/génétique , Nitroimidazoles/composition chimique , Nitroimidazoles/métabolisme , Métronidazole/composition chimique , Métronidazole/métabolisme , Métronidazole/pharmacologie , Promédicaments/métabolisme , Promédicaments/composition chimique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , Tomographie par émission de positons/méthodes , Escherichia coli/génétique , Escherichia coli/métabolisme , Domaine catalytique , Ingénierie des protéines , Modèles moléculaires , Aziridines/composition chimique , Aziridines/métabolisme
11.
Biochemistry ; 63(13): 1608-1620, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38864595

RÉSUMÉ

Riboswitches are RNA-regulating elements that mostly rely on structural changes to modulate gene expression at various levels. Recent studies have revealed that riboswitches may control several regulatory mechanisms cotranscriptionally, i.e., during the transcription elongation of the riboswitch or early in the coding region of the regulated gene. Here, we study the structure of the nascent thiamin pyrophosphate (TPP)-sensing thiC riboswitch in Escherichia coli by using biochemical and enzymatic conventional probing approaches. Our chemical (in-line and lead probing) and enzymatic (nucleases S1, A, T1, and RNase H) probing data provide a comprehensive model of how TPP binding modulates the structure of the thiC riboswitch. Furthermore, by using transcriptional roadblocks along the riboswitch sequence, we find that a certain portion of nascent RNA is needed to sense TPP that coincides with the formation of the P5 stem loop. Together, our data suggest that conventional techniques may readily be used to study cotranscriptional folding of nascent RNAs.


Sujet(s)
Escherichia coli , Conformation d'acide nucléique , Pliage de l'ARN , Riborégulateur , Diphosphate de thiamine , Riborégulateur/génétique , Diphosphate de thiamine/métabolisme , Diphosphate de thiamine/composition chimique , Escherichia coli/génétique , Escherichia coli/métabolisme , Transcription génétique , ARN bactérien/composition chimique , ARN bactérien/métabolisme , ARN bactérien/génétique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/composition chimique , Régulation de l'expression des gènes bactériens , Protéines bactériennes
12.
Biochemistry ; 63(13): 1647-1662, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38869079

RÉSUMÉ

In growing E. coli cells, the transcription-translation complexes (TTCs) form characteristic foci; however, the exact molecular composition of these superstructures is not known with certainty. Herein, we report that, during our recently developed "fast" procedures for purification of E. coli RNA polymerase (RP), a fraction of the RP's α/RpoA subunits is displaced from the core RP complexes and copurifies with multiprotein superstructures carrying the nucleic acid-binding protein Hfq and the ribosomal protein S6. We show that the main components of these large multiprotein assemblies are fixed protein copy-number (Hfq6)n≥8 complexes; these complexes have a high level of structural uniformity and are distinctly unlike the previously described (Hfq6)n "head-to-tail" polymers. We describe purification of these novel, structurally uniform (Hfq6)n≥8 complexes to near homogeneity and show that they also contain small nonprotein molecules and accessory S6. We demonstrate that Hfq, S6, and RP have similar solubility profiles and present evidence pointing to a role of the Hfq C-termini in superstructure formation. Taken together, our data offer new insights into the composition of the macromolecular assemblies likely acting as scaffolds for transcription complexes and ribosomes during bacterial cells' active growth.


Sujet(s)
DNA-directed RNA polymerases , Protéines Escherichia coli , Escherichia coli , Transcription génétique , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/isolement et purification , Escherichia coli/génétique , Escherichia coli/métabolisme , DNA-directed RNA polymerases/métabolisme , DNA-directed RNA polymerases/composition chimique , DNA-directed RNA polymerases/génétique , Protéine IHF-1/métabolisme , Protéine IHF-1/composition chimique , Protéine IHF-1/génétique , Biosynthèse des protéines , Complexes multiprotéiques/composition chimique , Complexes multiprotéiques/génétique , Complexes multiprotéiques/isolement et purification , Complexes multiprotéiques/métabolisme
13.
Crit Rev Biochem Mol Biol ; 59(1-2): 99-127, 2024.
Article de Anglais | MEDLINE | ID: mdl-38770626

RÉSUMÉ

The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.


Sujet(s)
ADN simple brin , Protéines de liaison à l'ADN , Protéines Escherichia coli , Escherichia coli , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/génétique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , Escherichia coli/métabolisme , Escherichia coli/génétique , ADN simple brin/métabolisme , ADN simple brin/composition chimique , ADN simple brin/génétique , Liaison aux protéines , ADN bactérien/métabolisme , ADN bactérien/génétique
14.
J Biol Chem ; 300(6): 107360, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38735477

RÉSUMÉ

The nascent polypeptide chains passing through the ribosome tunnel not only serve as an intermediate of protein synthesis but also, in some cases, act as dynamic genetic information, controlling translation through interaction with the ribosome. One notable example is Escherichia coli SecM, in which translation of the ribosome arresting peptide (RAP) sequence in SecM leads to robust elongation arrest. Translation regulations, including the SecM-induced translation arrest, play regulatory roles such as gene expression control. Recent investigations have indicated that the insertion of a peptide sequence, SKIK (or MSKIK), into the adjacent N-terminus of the RAP sequence of SecM behaves as an "arrest canceler". As the study did not provide a direct assessment of the strength of translation arrest, we conducted detailed biochemical analyses. The results revealed that the effect of SKIK insertion on weakening SecM-induced translation arrest was not specific to the SKIK sequence, that is, other tetrapeptide sequences inserted just before the RAP sequence also attenuated the arrest. Our data suggest that SKIK or other tetrapeptide insertions disrupt the context of the RAP sequence rather than canceling or preventing the translation arrest.


Sujet(s)
Protéines Escherichia coli , Escherichia coli , Biosynthèse des protéines , Ribosomes , Ribosomes/métabolisme , Escherichia coli/métabolisme , Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/composition chimique , Biosynthèse des protéines/effets des médicaments et des substances chimiques , Peptides/composition chimique , Peptides/métabolisme , Peptides/pharmacologie , Séquence d'acides aminés , Oligopeptides/composition chimique , Oligopeptides/pharmacologie , Oligopeptides/métabolisme , Facteurs de transcription
15.
J Biol Chem ; 300(6): 107383, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38762182

RÉSUMÉ

Disulfide bond formation has a central role in protein folding of both eukaryotes and prokaryotes. In bacteria, disulfide bonds are catalyzed by DsbA and DsbB/VKOR enzymes. First, DsbA, a periplasmic disulfide oxidoreductase, introduces disulfide bonds into substrate proteins. Then, the membrane enzyme, either DsbB or VKOR, regenerate DsbA's activity by the formation of de novo disulfide bonds which reduce quinone. We have previously performed a high-throughput chemical screen and identified a family of warfarin analogs that target either bacterial DsbB or VKOR. In this work, we expressed functional human VKORc1 in Escherichia coli and performed a structure-activity-relationship analysis to study drug selectivity between bacterial and mammalian enzymes. We found that human VKORc1 can function in E. coli by removing two positive residues, allowing the search for novel anticoagulants using bacteria. We also found one warfarin analog capable of inhibiting both bacterial DsbB and VKOR and a second one antagonized only the mammalian enzymes when expressed in E. coli. The difference in the warfarin structure suggests that substituents at positions three and six in the coumarin ring can provide selectivity between the bacterial and mammalian enzymes. Finally, we identified the two amino acid residues responsible for drug binding. One of these is also essential for de novo disulfide bond formation in both DsbB and VKOR enzymes. Our studies highlight a conserved role of this residue in de novo disulfide-generating enzymes and enable the design of novel anticoagulants or antibacterials using coumarin as a scaffold.


Sujet(s)
Protéines bactériennes , Protéines Escherichia coli , Escherichia coli , Vitamin K epoxide reductases , Warfarine , Warfarine/métabolisme , Warfarine/composition chimique , Vitamin K epoxide reductases/métabolisme , Vitamin K epoxide reductases/composition chimique , Vitamin K epoxide reductases/génétique , Humains , Escherichia coli/métabolisme , Escherichia coli/génétique , Escherichia coli/enzymologie , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Disulfures/composition chimique , Disulfures/métabolisme , Coumarines/métabolisme , Coumarines/composition chimique , Protein Disulfide-Isomerases/métabolisme , Protein Disulfide-Isomerases/composition chimique , Protein Disulfide-Isomerases/génétique , Anticoagulants/composition chimique , Anticoagulants/métabolisme , Benzoquinones/métabolisme , Benzoquinones/composition chimique , Relation structure-activité , Liaison aux protéines , Protéines membranaires
16.
J Phys Chem B ; 128(23): 5642-5657, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38812070

RÉSUMÉ

The integration host factor (IHF) in Escherichia coli is a nucleoid-associated protein with multifaceted roles that encompass DNA packaging, viral DNA integration, and recombination. IHF binds to double-stranded DNA featuring a 13-base pair (bp) consensus sequence with high affinity, causing a substantial bend of approximately 160° upon binding. Although wild-type IHF (WtIHF) is principally involved in DNA bending to facilitate foreign DNA integration into the host genome, its engineered counterpart, single-chain IHF (ScIHF), was specifically designed for genetic engineering and biotechnological applications. Our study delves into the interactions of both IHF variants with Holliday junctions (HJs), pivotal intermediates in DNA repair, and homologous recombination. HJs are dynamic structures capable of adopting open or stacked conformations, with the open conformation facilitating processes such as branch migration and strand exchange. Using microscale thermophoresis, we quantitatively assessed the binding of IHF to four-way DNA junctions that harbor specific binding sequences H' and H1. Our findings demonstrate that both IHF variants exhibit a strong affinity for HJs, signifying a structure-based recognition mechanism. Circular dichroism (CD) experiments unveiled the impact of the protein on the junction's conformation. Furthermore, single-molecule Förster resonance energy transfer (smFRET) confirmed the influence of IHF on the junction's dynamicity. Intriguingly, our results revealed that WtIHF and ScIHF binding shifts the population toward the open conformation of the junction and stabilizes it in that state. In summary, our findings underscore the robust affinity of the IHF for HJs and its capacity to stabilize the open conformation of these junctions.


Sujet(s)
ADN cruciforme , Facteurs d'intégration de l'hôte , ADN cruciforme/composition chimique , ADN cruciforme/métabolisme , Facteurs d'intégration de l'hôte/métabolisme , Facteurs d'intégration de l'hôte/composition chimique , Escherichia coli/métabolisme , Conformation d'acide nucléique , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/métabolisme , Liaison aux protéines
17.
J Chem Inf Model ; 64(13): 5175-5193, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38710096

RÉSUMÉ

Ubiquinone (UQ) is a redox polyisoprenoid lipid found in the membranes of bacteria and eukaryotes that has important roles, notably one in respiratory metabolism, which sustains cellular bioenergetics. In Escherichia coli, several steps of the UQ biosynthesis take place in the cytosol. To perform these reactions, a supramolecular assembly called Ubi metabolon is involved. This latter is composed of seven proteins (UbiE, UbiG, UbiF, UbiH, UbiI, UbiJ, and UbiK), and its structural organization is unknown as well as its protein stoichiometry. In this study, a computational framework has been designed to predict the structure of this macromolecular assembly. In several successive steps, we explored the possible protein interactions as well as the protein stoichiometry, to finally obtain a structural organization of the complex. The use of AlphaFold2-based methods combined with evolutionary information enabled us to predict several models whose quality and confidence were further analyzed using different metrics and scores. Our work led to the identification of a "core assembly" that will guide functional and structural characterization of the Ubi metabolon.


Sujet(s)
Protéines Escherichia coli , Escherichia coli , Modèles moléculaires , Escherichia coli/métabolisme , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Ubiquinones/métabolisme , Ubiquinones/composition chimique , Ubiquinones/analogues et dérivés , Conformation des protéines , Biologie informatique/méthodes
18.
Methods Enzymol ; 697: 345-422, 2024.
Article de Anglais | MEDLINE | ID: mdl-38816129

RÉSUMÉ

This chapter describes how to test different amyloid preparations for catalytic properties. We describe how to express, purify, prepare and test two types of pathological amyloid (tau and α-synuclein) and two functional amyloid proteins, namely CsgA from Escherichia coli and FapC from Pseudomonas. We therefore preface the methods section with an introduction to these two examples of functional amyloid and their remarkable structural and kinetic properties and high physical stability, which renders them very attractive for a range of nanotechnological designs, both for structural, medical and catalytic purposes. The simplicity and high surface exposure of the CsgA amyloid is particularly useful for the introduction of new functional properties and we therefore provide a computational protocol to graft active sites from an enzyme of interest into the amyloid structure. We hope that the methods described will inspire other researchers to explore the remarkable opportunities provided by bacterial functional amyloid in biotechnology.


Sujet(s)
Amyloïde , Protéines Escherichia coli , Escherichia coli , Ingénierie des protéines , alpha-Synucléine , Protéines tau , Amyloïde/composition chimique , Amyloïde/métabolisme , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , alpha-Synucléine/composition chimique , alpha-Synucléine/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Ingénierie des protéines/méthodes , Protéines tau/métabolisme , Protéines tau/composition chimique , Humains , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Pseudomonas/métabolisme , Pseudomonas/composition chimique , Catalyse , Domaine catalytique
19.
DNA Repair (Amst) ; 139: 103693, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38776712

RÉSUMÉ

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg2+ requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E. coli MutT (EcoMutT) and mycobacterial MutT1 (MsmMutT1) belong to the Nudix hydrolase superfamily that utilize 8-oxo-(d)GTP (referring to both 8-oxo-GTP or 8-oxo-dGTP). However, predominant products of their activities are different. While EcoMutT produces 8-oxo-(d)GMP, MsmMutT1 gives rise to 8-oxo-(d)GDP. Here, we show that the altered cleavage specificities of the two proteins are largely a consequence of the variation at the equivalent of Gly37 (G37) in EcoMutT to Lys (K65) in the MsmMutT1. Remarkably, mutations of G37K (EcoMutT) and K65G (MsmMutT1) switch their cleavage specificities to produce 8-oxo-(d)GDP, and 8-oxo-(d)GMP, respectively. Further, a time course analysis using 8-oxo-GTP suggests that MsmMutT1(K65G) hydrolyses 8-oxo-(d)GTP to 8-oxo-(d)GMP in a two-step reaction via 8-oxo-(d)GDP intermediate. Expectedly, unlike EcoMutT (G37K) and MsmMutT1, EcoMutT and MsmMutT1 (K65G) rescue an E. coli ΔmutT strain, better by decreasing A to C mutations.


Sujet(s)
Nucléotide désoxyguanylique , Protéines Escherichia coli , Escherichia coli , Mycobacterium smegmatis , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/composition chimique , Mycobacterium smegmatis/enzymologie , Mycobacterium smegmatis/métabolisme , Mycobacterium smegmatis/génétique , Spécificité du substrat , Nucléotide désoxyguanylique/métabolisme , Escherichia coli/métabolisme , Escherichia coli/génétique , Escherichia coli/enzymologie , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Substitution d'acide aminé , Pyrophosphatases/métabolisme , Pyrophosphatases/génétique , Phosphoric monoester hydrolases/métabolisme , Phosphoric monoester hydrolases/génétique , Guanosine triphosphate/métabolisme , Guanosine triphosphate/analogues et dérivés
20.
Nat Commun ; 15(1): 4537, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38806470

RÉSUMÉ

The multidrug efflux transporter EmrE from Escherichia coli requires anionic residues in the substrate binding pocket for coupling drug transport with the proton motive force. Here, we show how protonation of a single membrane embedded glutamate residue (Glu14) within the homodimer of EmrE modulates the structure and dynamics in an allosteric manner using NMR spectroscopy. The structure of EmrE in the Glu14 protonated state displays a partially occluded conformation that is inaccessible for drug binding by the presence of aromatic residues in the binding pocket. Deprotonation of a single Glu14 residue in one monomer induces an equilibrium shift toward the open state by altering its side chain position and that of a nearby tryptophan residue. This structural change promotes an open conformation that facilitates drug binding through a conformational selection mechanism and increases the binding affinity by approximately 2000-fold. The prevalence of proton-coupled exchange in efflux systems suggests a mechanism that may be shared in other antiporters where acid/base chemistry modulates access of drugs to the substrate binding pocket.


Sujet(s)
Antiports , Protéines Escherichia coli , Escherichia coli , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , Escherichia coli/métabolisme , Escherichia coli/génétique , Antiports/métabolisme , Antiports/composition chimique , Antiports/génétique , Sites de fixation , Liaison aux protéines , Protons , Conformation des protéines , Spectroscopie par résonance magnétique , Acide glutamique/métabolisme , Acide glutamique/composition chimique , Modèles moléculaires
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...