Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 753
Filtrer
1.
EMBO J ; 43(1): 1-13, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38177311

RÉSUMÉ

The Sec translocon is a highly conserved membrane assembly for polypeptide transport across, or into, lipid bilayers. In bacteria, secretion through the core channel complex-SecYEG in the inner membrane-is powered by the cytosolic ATPase SecA. Here, we use single-molecule fluorescence to interrogate the conformational state of SecYEG throughout the ATP hydrolysis cycle of SecA. We show that the SecYEG channel fluctuations between open and closed states are much faster (~20-fold during translocation) than ATP turnover, and that the nucleotide status of SecA modulates the rates of opening and closure. The SecY variant PrlA4, which exhibits faster transport but unaffected ATPase rates, increases the dwell time in the open state, facilitating pre-protein diffusion through the pore and thereby enhancing translocation efficiency. Thus, rapid SecYEG channel dynamics are allosterically coupled to SecA via modulation of the energy landscape, and play an integral part in protein transport. Loose coupling of ATP-turnover by SecA to the dynamic properties of SecYEG is compatible with a Brownian-rachet mechanism of translocation, rather than strict nucleotide-dependent interconversion between different static states of a power stroke.


Sujet(s)
Protéines bactériennes , Protéines Escherichia coli , Canaux de translocation SEC/composition chimique , Protéines SecA/métabolisme , Protéines bactériennes/métabolisme , Adenosine triphosphatases/génétique , Adenosine triphosphatases/métabolisme , Transport des protéines , Nucléotides/métabolisme , Adénosine triphosphate/métabolisme , Protéines Escherichia coli/métabolisme
2.
Proc Natl Acad Sci U S A ; 120(2): e2208070120, 2023 01 10.
Article de Anglais | MEDLINE | ID: mdl-36598944

RÉSUMÉ

Secretory proteins are cotranslationally or posttranslationally translocated across lipid membranes via a protein-conducting channel named SecY in prokaryotes and Sec61 in eukaryotes. The vast majority of secretory proteins in bacteria are driven through the channel posttranslationally by SecA, a highly conserved ATPase. How a polypeptide chain is moved by SecA through the SecY channel is poorly understood. Here, we report electron cryomicroscopy structures of the active SecA-SecY translocon with a polypeptide substrate. The substrate is captured in different translocation states when clamped by SecA with different nucleotides. Upon binding of an ATP analog, SecA undergoes global conformational changes to push the polypeptide substrate toward the channel in a way similar to how the RecA-like helicases translocate their nucleic acid substrates. The movements of the polypeptide substrates in the SecA-SecY translocon share a similar structural basis to those in the ribosome-SecY complex during cotranslational translocation.


Sujet(s)
Protéines bactériennes , Protéines Escherichia coli , Protéines SecA/métabolisme , Protéines bactériennes/métabolisme , Canaux de translocation SEC/métabolisme , Modèles moléculaires , Transport des protéines , Peptides/métabolisme , Protéines Escherichia coli/métabolisme
3.
Biochim Biophys Acta Proteins Proteom ; 1871(1): 140865, 2023 01 01.
Article de Anglais | MEDLINE | ID: mdl-36272538

RÉSUMÉ

A large number of nascent polypeptides have to get across a membrane in targeting to the proper subcellular locations. The SecYEG protein complex, a homolog of the Sec61 complex in eukaryotic cells, has been viewed as the common translocon at the inner membrane for targeting proteins to three extracytoplasmic locations in Gram-negative bacteria, despite the lack of direct verification in living cells. Here, via unnatural amino acid-mediated protein-protein interaction analyses in living cells, in combination with genetic studies, we unveiled a hitherto unreported SecAN protein that seems to be directly involved in translocationg nascent outer membrane proteins across the plasma membrane; it consists of the N-terminal 375 residues of the SecA protein and exists as a membrane-integrated homooligomer. Our new findings place multiple previous observations related to bacterial protein targeting in proper biochemical and evolutionary contexts.


Sujet(s)
Protéines Escherichia coli , Protéines membranaires , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Protéines Escherichia coli/métabolisme , Protéines SecA , Canaux de translocation SEC/génétique , Canaux de translocation SEC/composition chimique , Canaux de translocation SEC/métabolisme , Transport des protéines
4.
Nat Commun ; 13(1): 3393, 2022 06 13.
Article de Anglais | MEDLINE | ID: mdl-35697696

RÉSUMÉ

SecA, an ATPase known to posttranslationally translocate secretory proteins across the bacterial plasma membrane, also binds ribosomes, but the role of SecA's ribosome interaction has been unclear. Here, we used a combination of ribosome profiling methods to investigate the cotranslational actions of SecA. Our data reveal the widespread accumulation of large periplasmic loops of inner membrane proteins in the cytoplasm during their cotranslational translocation, which are specifically recognized and resolved by SecA in coordination with the proton motive force (PMF). Furthermore, SecA associates with 25% of secretory proteins with highly hydrophobic signal sequences at an early stage of translation and mediates their cotranslational transport. In contrast, the chaperone trigger factor (TF) delays SecA engagement on secretory proteins with weakly hydrophobic signal sequences, thus enforcing a posttranslational mode of their translocation. Our results elucidate the principles of SecA-driven cotranslational protein translocation and reveal a hierarchical network of protein export pathways in bacteria.


Sujet(s)
Protéines Escherichia coli , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Protéines Escherichia coli/métabolisme , Signaux de triage des protéines/génétique , Transport des protéines , Ribosomes/génétique , Ribosomes/métabolisme , Canaux de translocation SEC/génétique , Canaux de translocation SEC/métabolisme , Protéines SecA
5.
J Mol Biol ; 434(12): 167607, 2022 06 30.
Article de Anglais | MEDLINE | ID: mdl-35489383

RÉSUMÉ

The soluble cytoplasmic ATPase motor protein SecA powers protein transport across the Escherichia coli inner membrane via the SecYEG translocon. Although dimeric in solution, SecA associates monomerically with SecYEG during secretion according to several crystallographic and cryo-EM structural studies. The steps SecA follows from its dimeric cytoplasmic state to its active SecYEG monomeric state are largely unknown. We have previously shown that dimeric SecA in solution dissociates into monomers upon electrostatic binding to negatively charged lipid vesicles formed from E. coli lipids. Here we address the question of the disposition of SecA on the membrane prior to binding to membrane embedded SecYEG. We mutated to cysteine, one at a time, 25 surface-exposed residues of a Cys-free SecA. To each of these we covalently linked the polarity-sensitive fluorophore NBD whose intensity and fluorescence wavelength-shift change upon vesicle binding report on the the local membrane polarity. We established from these measurements the disposition of SecA bound to the membrane in the absence of SecYEG. Our results confirmed that SecA is anchored in the membrane interface primarily by the positive charges of the N terminus domain. But we found that a region of the nucleotide binding domain II is also important for binding. Both domains are rich in positively charged residues, consistent with electrostatic interactions playing the major role in membrane binding. Selective replacement of positively charged residues in these domains with alanine resulted in weaker binding to the membrane, which allowed us to quantitate the relative importance of the domains in stabilizing SecA on membranes. Fluorescence quenchers inside the vesicles had little effect on NBD fluorescence, indicating that SecA does not penetrate significantly across the membrane. Overall, the topology of SecA on the membrane is consistent with the conformation of SecA observed in crystallographic and cryo-EM structures of SecA-SecYEG complexes, suggesting that SecA can switch between the membrane-associated and the translocon-associated states without significant changes in conformation.


Sujet(s)
Protéines Escherichia coli , Escherichia coli , Protéines SecA , Liposomes unilamellaires , Cryomicroscopie électronique , Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Liaison aux protéines , Domaines protéiques , Multimérisation de protéines , Transport des protéines , Canaux de translocation SEC/composition chimique , Protéines SecA/composition chimique , Liposomes unilamellaires/composition chimique
6.
Cell Rep ; 38(6): 110346, 2022 02 08.
Article de Anglais | MEDLINE | ID: mdl-35139375

RÉSUMÉ

Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly "catch and release" trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted.


Sujet(s)
Adenosine triphosphatases/métabolisme , Transport biologique/physiologie , Protéines Escherichia coli/métabolisme , Protéines de transport membranaire/métabolisme , Protéines SecA/métabolisme , Protéines bactériennes/métabolisme , Membrane cellulaire/métabolisme , Escherichia coli/métabolisme , Conformation des protéines , Signaux de triage des protéines/physiologie , Canaux de translocation SEC/métabolisme
7.
Int J Mol Sci ; 24(1)2022 Dec 20.
Article de Anglais | MEDLINE | ID: mdl-36613499

RÉSUMÉ

The translocation of specific polypeptide chains across membranes is an essential activity for all life forms. The main components of the general secretory (Sec) system of E. coli include integral membrane translocon SecYEG, peripheral ATPase SecA, and SecDF, an ancillary complex that enhances polypeptide secretion by coupling translocation to proton motive force. Atomic force microscopy (AFM), a single-molecule imaging technique, is well suited to unmask complex, asynchronous molecular activities of membrane-associated proteins including those comprising the Sec apparatus. Using AFM, the dynamic structure of membrane-external protein topography of Sec system components can be directly visualized with high spatial-temporal precision. This mini-review is focused on AFM imaging of the Sec system in near-native fluid conditions where activity can be maintained and biochemically verified. Angstrom-scale conformational changes of SecYEG are reported on 100 ms timescales in fluid lipid bilayers. The association of SecA with SecYEG, forming membrane-bound SecYEG/SecA translocases, is directly visualized. Recent work showing topographical aspects of the translocation process that vary with precursor species is also discussed. The data suggests that the Sec system does not employ a single translocation mechanism. We posit that differences in the spatial frequency distribution of hydrophobic content within precursor sequences may be a determining factor in mechanism selection. Precise AFM investigations of active translocases are poised to advance our currently vague understanding of the complicated macromolecular movements underlying protein export across membranes.


Sujet(s)
Protéines Escherichia coli , Escherichia coli , Escherichia coli/métabolisme , Protéines Escherichia coli/métabolisme , Protéines bactériennes/métabolisme , Protéines SecA/métabolisme , Microscopie à force atomique , Canaux de translocation SEC/métabolisme , Transport des protéines , Protéines membranaires/métabolisme
8.
FEBS J ; 289(1): 140-162, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34312977

RÉSUMÉ

The translocon SecYEG and the associated ATPase SecA form the primary protein secretion system in the cytoplasmic membrane of bacteria. The secretion is essentially dependent on the surrounding lipids, but the mechanistic understanding of their role in SecA : SecYEG activity is sparse. Here, we reveal that the unsaturated fatty acids (UFAs) of the membrane phospholipids, including tetraoleoyl-cardiolipin, stimulate SecA : SecYEG-mediated protein translocation up to ten-fold. Biophysical analysis and molecular dynamics simulations show that UFAs increase the area per lipid and cause loose packing of lipid head groups, where the N-terminal amphipathic helix of SecA docks. While UFAs do not affect the translocon folding, they promote SecA binding to the membrane, and the effect is enhanced up to fivefold at elevated ionic strength. Tight SecA : lipid interactions convert into the augmented translocation. Our results identify the fatty acid structure as a notable factor in SecA : SecYEG activity, which may be crucial for protein secretion in bacteria, which actively change their membrane composition in response to their habitat.


Sujet(s)
Adenosine triphosphatases/génétique , Protéines Escherichia coli/génétique , Acides gras insaturés/métabolisme , Canaux de translocation SEC/génétique , Protéines SecA/génétique , Cardiolipides/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Acides gras insaturés/génétique , Double couche lipidique/métabolisme , Protéines membranaires/génétique , Oléandomycine/métabolisme , Phospholipides/génétique , Transport des protéines/génétique , Tétracycline/métabolisme
9.
Acta Biochim Pol ; 68(3): 427-436, 2021 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-34463460

RÉSUMÉ

Most bacterial secretory proteins destined to the extracytoplasmic space are secreted posttranslationally by the Sec translocase. SecA, a key component of the Sec system, is the ATPase motor protein, directly responsible for transferring the preprotein across the cytoplasmic membrane. SecA is a large protein, composed of several domains, capable of binding client preproteins and a variety of partners, including the SecYEG inner membrane channel complex, membrane phospholipids and ribosomes. SecA-mediated translocation can be divided into two major steps: (1) targeting of the preproteins to the membrane translocation apparatus and (2) transport across the membrane through the SecYEG channel. In this review we present current knowledge regarding SecA structure and function of this protein in both translocation steps. The most recent model of the SecA-dependent preprotein mechanical translocation across the bacterial cytoplasmic membrane is described. A possibility of targeting SecA with inhibitory compounds as a strategy to combat pathogenic bacteria will be discussed as well.


Sujet(s)
Protéines Escherichia coli/métabolisme , Canaux de translocation SEC/métabolisme , Protéines SecA/métabolisme , Adenosine triphosphatases/métabolisme , Antibactériens/pharmacologie , Transport biologique , Membrane cellulaire/métabolisme , Survie cellulaire/effets des médicaments et des substances chimiques , Escherichia coli/métabolisme , Liaison aux protéines , Domaines protéiques , Transport des protéines
10.
Structure ; 29(8): 781-782, 2021 08 05.
Article de Anglais | MEDLINE | ID: mdl-34358463

RÉSUMÉ

The bacterial Sec translocase transports unfolded proteins across membranes. In this issue of Structure, Krishnamurthy et al. (2021) report a nexus of conformational dynamics in the translocase motor protein, SecA. Their findings shed light on the Sec activation mechanism and suggest a general role for multi-level dynamics in protein functions.


Sujet(s)
Protéines bactériennes , Protéines de transport membranaire , Adenosine triphosphatases/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Protéines de transport membranaire/génétique , Protéines de transport membranaire/métabolisme , Transport des protéines , Canaux de translocation SEC/génétique , Protéines SecA
11.
Chem Biol Drug Des ; 98(3): 395-404, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-33963664

RÉSUMÉ

"Candidatus Liberibacter asiaticus" (Ca. L. asiaticus) is the causal agent of Huanglongbing disease of citrus and current study focuses on the discovery of novel small-molecule inhibitors against SecA protein of Ca. L. asiaticus. In this study, homologous modeling was used to construct the three-dimensional structure of SecA. Then, molecular docking-based virtual screening and two rounds of in vitro bacteriostatic experiments were utilized to identify novel small-molecule inhibitors of SecA. Encouragingly, 93 compounds were obtained and two of them (P684-2850, P684-3808) showed strong antimicrobial activities against Liberibacter crescens BT-1 in bacteriostatic experiments. Finally, molecular dynamics simulations were employed to explore the binding modes of the receptor-ligand complexes. Results in MD simulations showed that compound P684-3808 was relatively stable during simulation, while compound P684-2850 left the binding pocket. Compound P684-3808 might be suitable as a lead compound for further development of antimicrobial compounds against SecA of Ca. L. asiaticus.


Sujet(s)
Protéines bactériennes/antagonistes et inhibiteurs , Liberibacter (genre)/métabolisme , Protéines SecA/antagonistes et inhibiteurs , Bibliothèques de petites molécules/composition chimique , Protéines bactériennes/métabolisme , Sites de fixation , Évaluation préclinique de médicament , Concentration inhibitrice 50 , Liberibacter (genre)/effets des médicaments et des substances chimiques , Tests de sensibilité microbienne , Simulation de docking moléculaire , Simulation de dynamique moléculaire , Protéines SecA/métabolisme , Bibliothèques de petites molécules/métabolisme , Bibliothèques de petites molécules/pharmacologie
12.
Structure ; 29(8): 846-858.e7, 2021 08 05.
Article de Anglais | MEDLINE | ID: mdl-33852897

RÉSUMÉ

The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA. Using atomistic simulations, smFRET, and HDX-MS, we reveal multiple dynamic islands that cross-talk with domain and quaternary motions. These dynamic elements are functionally important and conserved. Central to the nexus is a slender stem through which rotation of the preprotein clamp of SecA is biased by ATPase domain motions between open and closed clamping states. An H-bonded framework covering most of SecA enables multi-tier dynamics and conformational alterations with minimal energy input. As a result, cognate ligands select preexisting conformations and alter local dynamics to regulate catalytic activity and clamp motions. These events prime the translocase for high-affinity reception of non-folded preprotein clients. Dynamics nexuses are likely universal and essential in multi-liganded proteins.


Sujet(s)
Bacillus subtilis/enzymologie , Canaux de translocation SEC/métabolisme , Protéines SecA/composition chimique , Protéines SecA/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Domaine catalytique , Liaison hydrogène , Modèles moléculaires , Simulation de dynamique moléculaire , Complexes multiprotéiques/composition chimique , Liaison aux protéines , Conformation des protéines , Domaines protéiques
13.
Sci Rep ; 11(1): 1433, 2021 01 14.
Article de Anglais | MEDLINE | ID: mdl-33446830

RÉSUMÉ

In bacteria, the SecA ATPase provides the driving force for protein secretion via the SecYEG translocon. While the dynamic interplay between SecA and SecYEG in translocation is widely appreciated, it is not clear how SecA associates with the translocon in the crowded cellular environment. We use super-resolution microscopy to directly visualize the dynamics of SecA in Escherichia coli at the single-molecule level. We find that SecA is predominantly associated with and evenly distributed along the cytoplasmic membrane as a homodimer, with only a minor cytosolic fraction. SecA moves along the cell membrane as three distinct but interconvertible diffusional populations: (1) A state loosely associated with the membrane, (2) an integral membrane form, and (3) a temporarily immobile form. Disruption of the proton-motive-force, which is essential for protein secretion, re-localizes a significant portion of SecA to the cytoplasm and results in the transient location of SecA at specific locations at the membrane. The data support a model in which SecA diffuses along the membrane surface to gain access to the SecYEG translocon.


Sujet(s)
Membrane cellulaire/métabolisme , Escherichia coli K12/métabolisme , Protéines Escherichia coli/métabolisme , Imagerie moléculaire , Multimérisation de protéines , Protéines SecA/métabolisme , Membrane cellulaire/génétique , Escherichia coli K12/génétique , Protéines Escherichia coli/génétique , Transport des protéines/physiologie , Protéines SecA/génétique
14.
FEBS J ; 288(7): 2203-2221, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-33058437

RÉSUMÉ

Protein translocation and insertion into the bacterial cytoplasmic membrane are the essential processes mediated by the Sec machinery. The core machinery is composed of the membrane-embedded translocon SecYEG that interacts with the secretion-dedicated ATPase SecA and translating ribosomes. Despite the simplicity and the available structural insights on the system, diverse molecular mechanisms and functional dynamics have been proposed. Here, we employ total internal reflection fluorescence microscopy to study the oligomeric state and diffusion of SecYEG translocons in supported lipid bilayers at the single-molecule level. Silane-based coating ensured the mobility of lipids and reconstituted translocons within the bilayer. Brightness analysis suggested that approx. 70% of the translocons were monomeric. The translocons remained in a monomeric form upon ribosome binding, but partial oligomerization occurred in the presence of nucleotide-free SecA. Individual trajectories of SecYEG in the lipid bilayer revealed dynamic heterogeneity of diffusion, as translocons commonly switched between slow and fast mobility modes with corresponding diffusion coefficients of 0.03 and 0.7 µm2 ·s-1 . Interactions with SecA ATPase had a minor effect on the lateral mobility, while bound ribosome:nascent chain complexes substantially hindered the diffusion of single translocons. Notably, the mobility of the translocon:ribosome complexes was not affected by the solvent viscosity or macromolecular crowding modulated by Ficoll PM 70, so it was largely determined by interactions within the lipid bilayer and at the interface. We suggest that the complex mobility of SecYEG arises from the conformational dynamics of the translocon and protein:lipid interactions.


Sujet(s)
Membrane cellulaire/génétique , Protéines Escherichia coli/génétique , Canaux de translocation SEC/génétique , Protéines SecA/génétique , Imagerie de molécules uniques , Adenosine triphosphatases/génétique , Membrane cellulaire/composition chimique , Escherichia coli/composition chimique , Escherichia coli/génétique , Humains , Double couche lipidique/composition chimique , Double couche lipidique/métabolisme , Microscopie de fluorescence , Liaison aux protéines/génétique , Transport des protéines/génétique , Canaux de translocation SEC/composition chimique
15.
Proc Natl Acad Sci U S A ; 117(50): 31808-31816, 2020 12 15.
Article de Anglais | MEDLINE | ID: mdl-33257538

RÉSUMÉ

The universally conserved Sec system is the primary method cells utilize to transport proteins across membranes. Until recently, measuring the activity-a prerequisite for understanding how biological systems work-has been limited to discontinuous protein transport assays with poor time resolution or reported by large, nonnatural tags that perturb the process. The development of an assay based on a split superbright luciferase (NanoLuc) changed this. Here, we exploit this technology to unpick the steps that constitute posttranslational protein transport in bacteria. Under the conditions deployed, the transport of a model preprotein substrate (proSpy) occurs at 200 amino acids (aa) per minute, with SecA able to dissociate and rebind during transport. Prior to that, there is no evidence for a distinct, rate-limiting initiation event. Kinetic modeling suggests that SecA-driven transport activity is best described by a series of large (∼30 aa) steps, each coupled to hundreds of ATP hydrolysis events. The features we describe are consistent with a nondeterministic motor mechanism, such as a Brownian ratchet.


Sujet(s)
Adénosine triphosphate/métabolisme , Bactéries/métabolisme , Protéines bactériennes/métabolisme , Modèles biologiques , Protéines SecA/métabolisme , Bactéries/cytologie , Dosage biologique/méthodes , Hydrolyse , Cinétique , Double couche lipidique/métabolisme , Luciferases/composition chimique
16.
EMBO Rep ; 21(11): e50905, 2020 11 05.
Article de Anglais | MEDLINE | ID: mdl-32969592

RÉSUMÉ

Bacterial secretory proteins are translocated post-translationally by the SecA ATPase through the protein-conducting SecY channel in the plasma membrane. During the ATP hydrolysis cycle, SecA undergoes large conformational changes of its two-helix finger and clamp domains, but how these changes result in polypeptide movement is unclear. Here, we use a reconstituted purified system and protease protection assays to show that ATP binding to SecA results in a segment of the translocation substrate being pushed into the channel. This motion is prevented by mutation of conserved residues at the finger's tip. Mutation of SecA's clamp causes backsliding of the substrate in the ATP-bound state. Together, these data support a power stroke model of translocation in which, upon ATP binding, the two-helix finger pushes the substrate into the channel, where it is held by the clamp until nucleotide hydrolysis has occurred.


Sujet(s)
Adenosine triphosphatases , Protéines Escherichia coli , Adenosine triphosphatases/génétique , Adenosine triphosphatases/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Protéines Escherichia coli/métabolisme , Protéines de transport membranaire/génétique , Modèles moléculaires , Peptide hydrolases , Peptides/métabolisme , Transport des protéines , Canaux de translocation SEC/génétique , Canaux de translocation SEC/métabolisme , Protéines SecA
17.
Nat Commun ; 11(1): 3802, 2020 07 30.
Article de Anglais | MEDLINE | ID: mdl-32732903

RÉSUMÉ

The Sec translocon moves proteins across lipid bilayers in all cells. The Sec channel enables passage of unfolded proteins through the bacterial plasma membrane, driven by the cytosolic ATPase SecA. Whether SecA generates mechanical force to overcome barriers to translocation posed by structured substrate proteins is unknown. Here, we kinetically dissect Sec-dependent translocation by monitoring translocation of a folded substrate protein with tunable stability at high time resolution. We find that substrate unfolding constitutes the rate-limiting step during translocation. Using single-molecule force spectroscopy, we also define the response of the protein to mechanical force. Relating the kinetic and force measurements reveals that SecA generates at least 10 piconewtons of mechanical force to actively unfold translocating proteins, comparable to cellular unfoldases. Combining biochemical and single-molecule measurements thus allows us to define how the SecA motor ensures efficient and robust export of proteins that contain stable structure.


Sujet(s)
Protéines Escherichia coli/métabolisme , Escherichia coli/métabolisme , Dépliement des protéines , Canaux de translocation SEC/métabolisme , Protéines SecA/métabolisme , Contrainte mécanique , Membrane cellulaire/métabolisme , Escherichia coli/génétique , Protéines Escherichia coli/génétique , Double couche lipidique/métabolisme , Protéines de transport membranaire/métabolisme , Méthotrexate/métabolisme , NADP/métabolisme , Transport des protéines , Protéines SecA/génétique , Dihydrofolate reductase/métabolisme
18.
Biochim Biophys Acta Gen Subj ; 1864(10): 129654, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32512170

RÉSUMÉ

BACKGROUND: The SecA DEAD (Asp-Glu-Ala-Asp) motor protein uses binding and hydrolysis of adenosine triphosphate (ATP) to push secretory proteins across the plasma membrane of bacteria. The reaction coordinate of nucleotide exchange is unclear at the atomic level of detail. METHODS: We performed multiple atomistic computations of the DEAD motor domain of SecA with different occupancies of the nucleotide and magnesium ion sites, for a total of ~1.7 µs simulation time. To characterize dynamics at the active site we analyzed hydrogen-bond networks. RESULTS: ATP and ADP can bind spontaneously at the interface between the nucleotide binding domains, albeit at an intermediate binding site distinct from the native site. Binding of the nucleotide is facilitated by the presence of a magnesium ion close to the glutamic group of the conserved DEAD motif. In the absence of the magnesium ion, protein interactions of the ADP molecule are perturbed. CONCLUSIONS: A protein hydrogen-bond network whose dynamics couples to the occupancy of the magnesium ion site helps guide the nucleotide along the nucleotide exchange path. In SecA, release of magnesium might be required to destabilize the ADP binding site prior to release of the nucleotide. GENERAL SIGNIFICANCE: We identified dynamic hydrogen-bond networks that help control nucleotide exchange in SecA, and stabilize ADP at an intermediate site that could explain slow release. The reaction coordinate of the protein motor involves complex rearrangements of a hydrogen-bond network at the active site, with perturbation of the magnesium ion site likely occurring prior to the release of ADP.


Sujet(s)
Adenosine triphosphatases/métabolisme , Adénosine triphosphate/métabolisme , Protéines Escherichia coli/métabolisme , Escherichia coli/métabolisme , Protéines SecA/métabolisme , Sites de fixation , Cations divalents/métabolisme , Escherichia coli/composition chimique , Protéines Escherichia coli/composition chimique , Liaison hydrogène , Magnésium/métabolisme , Simulation de dynamique moléculaire , Liaison aux protéines , Conformation des protéines , Domaines protéiques , Protéines SecA/composition chimique
19.
Biochim Biophys Acta Biomembr ; 1862(9): 183358, 2020 09 01.
Article de Anglais | MEDLINE | ID: mdl-32416191

RÉSUMÉ

The essential SecA motor ATPase acts in concert with the SecYEG translocon to secrete proteins into the periplasmic space of Escherichia coli. In aqueous solutions, SecA exists largely as dimers, but the oligomeric state on membranes is less certain. Crystallographic studies have suggested several possible solution dimeric states, but its oligomeric state when bound to membranes directly or indirectly via the translocon is controversial. We have shown using disulfide crosslinking that the principal solution dimer, corresponding to a crystallographic dimer (PDB 1M6N), binds only weakly to large unilamellar vesicles (LUV) formed from E. coli lipids. We report here that other soluble crosslinked crystallographic dimers also bind weakly, if at all, to LUV. Furthermore, using a simple glutaraldehyde crosslinking scheme, we show that SecA is always monomeric when bound to LUV formed from E. coli lipids.


Sujet(s)
Membrane cellulaire/composition chimique , Protéines Escherichia coli/composition chimique , Escherichia coli/composition chimique , Protéines SecA/composition chimique , Membrane cellulaire/métabolisme , Escherichia coli/métabolisme , Protéines Escherichia coli/métabolisme , Liposomes , Liaison aux protéines , Multimérisation de protéines , Protéines SecA/métabolisme
20.
Sci Rep ; 10(1): 6296, 2020 04 14.
Article de Anglais | MEDLINE | ID: mdl-32286407

RÉSUMÉ

Translocation of preproteins across the Escherichia coli inner membrane requires anionic lipids by virtue of their negative head-group charge either in vivo or in situ. However, available results do not differentiate between the roles of monoanionic phosphatidylglycerol and dianionic cardiolipin (CL) in this essential membrane-related process. To define in vivo the molecular steps affected by the absence of CL in protein translocation and insertion, we analyzed translocon activity, SecYEG stability and its interaction with SecA in an E. coli mutant devoid of CL. Although no growth defects were observed, co- and post-translational translocation of α-helical proteins across inner membrane and the assembly of outer membrane ß-barrel precursors were severely compromised in CL-lacking cells. Components of proton-motive force which could impair protein insertion into and translocation across the inner membrane, were unaffected. However, stability of the dimeric SecYEG complex and oligomerization properties of SecA were strongly compromised while the levels of individual SecYEG translocon components, SecA and insertase YidC were largely unaffected. These results demonstrate that CL is required in vivo for the stability of the bacterial translocon and its efficient function in co-translational insertion into and translocation across the inner membrane of E. coli.


Sujet(s)
Cardiolipides/métabolisme , Membrane cellulaire/métabolisme , Escherichia coli/métabolisme , Canaux de translocation SEC/métabolisme , Cardiolipides/génétique , Escherichia coli/cytologie , Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Protéines de transport membranaire/métabolisme , Mutation , Stabilité protéique , Transport des protéines , Protéines SecA/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE