Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 8.467
Filtrer
1.
Life Sci Alliance ; 7(10)2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39009411

RÉSUMÉ

In humans, a neomorphic isocitrate dehydrogenase mutation (idh-1neo) causes increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a Caenorhabditis elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to ∆dhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen, we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. In addition, supplementation with alternate sources of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding of how this oncogenic mutation rewires cellular metabolism.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Isocitrate dehydrogenases , Mutation , Vitamine B12 , Animaux , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Isocitrate dehydrogenases/génétique , Isocitrate dehydrogenases/métabolisme , Vitamine B12/métabolisme , Vitamine B12/pharmacologie , Protéines de Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Phénotype , Glutarates/métabolisme
2.
J Cell Biol ; 223(10)2024 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-39007804

RÉSUMÉ

To breach the basement membrane, cells in development and cancer use large, transient, specialized lipid-rich membrane protrusions. Using live imaging, endogenous protein tagging, and cell-specific RNAi during Caenorhabditis elegans anchor cell (AC) invasion, we demonstrate that the lipogenic SREBP transcription factor SBP-1 drives the expression of the fatty acid synthesis enzymes POD-2 and FASN-1 prior to invasion. We show that phospholipid-producing LPIN-1 and sphingomyelin synthase SMS-1, which use fatty acids as substrates, produce lysosome stores that build the AC's invasive protrusion, and that SMS-1 also promotes protrusion localization of the lipid raft partitioning ZMP-1 matrix metalloproteinase. Finally, we discover that HMG-CoA reductase HMGR-1, which generates isoprenoids for prenylation, localizes to the ER and enriches in peroxisomes at the AC invasive front, and that the final transmembrane prenylation enzyme, ICMT-1, localizes to endoplasmic reticulum exit sites that dynamically polarize to deliver prenylated GTPases for protrusion formation. Together, these results reveal a collaboration between lipogenesis and a polarized lipid prenylation system that drives invasive protrusion formation.


Sujet(s)
Membrane basale , Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Réticulum endoplasmique , Lipogenèse , Animaux , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/génétique , Membrane basale/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Réticulum endoplasmique/métabolisme , Lipogenèse/génétique , Prénylation , Péroxysomes/métabolisme , Mouvement cellulaire , Lysosomes/métabolisme
3.
Proc Natl Acad Sci U S A ; 121(30): e2401830121, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39012826

RÉSUMÉ

As cells age, they undergo a remarkable global change: In transcriptional drift, hundreds of genes become overexpressed while hundreds of others become underexpressed. Using archetype modeling and Gene Ontology analysis on data from aging Caenorhabditis elegans worms, we find that the up-regulated genes code for sensory proteins upstream of stress responses and down-regulated genes are growth- and metabolism-related. We observe similar trends within human fibroblasts, suggesting that this process is conserved in higher organisms. We propose a simple mechanistic model for how such global coordination of multiprotein expression levels may be achieved by the binding of a single factor that concentrates with age in C. elegans. A key implication is that a cell's own responses are part of its aging process, so unlike wear-and-tear processes, intervention might be able to modulate these effects.


Sujet(s)
Caenorhabditis elegans , Vieillissement de la cellule , Caenorhabditis elegans/génétique , Animaux , Humains , Vieillissement de la cellule/génétique , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Transcription génétique , Vieillissement/génétique , Régulation de l'expression des gènes , Fibroblastes/métabolisme
4.
Proc Natl Acad Sci U S A ; 121(28): e2320796121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38959036

RÉSUMÉ

Phoresy is an interspecies interaction that facilitates spatial dispersal by attaching to a more mobile species. Hitchhiking species have evolved specific traits for physical contact and successful phoresy, but the regulatory mechanisms involved in such traits and their evolution are largely unexplored. The nematode Caenorhabditis elegans displays a hitchhiking behavior known as nictation during its stress-induced developmental stage. Dauer-specific nictation behavior has an important role in natural C. elegans populations, which experience boom-and-bust population dynamics. In this study, we investigated the nictation behavior of 137 wild C. elegans strains sampled throughout the world. We identified species-wide natural variation in nictation and performed a genome-wide association mapping. We show that the variants in the promoter of nta-1, encoding a putative steroidogenic enzyme, underlie differences in nictation. This difference is due to the changes in nta-1 expression in glial cells, which implies that glial steroid metabolism regulates phoretic behavior. Population genetic analysis and geographic distribution patterns suggest that balancing selection maintained two nta-1 haplotypes that existed in ancestral C. elegans populations. Our findings contribute to further understanding of the molecular mechanism of species interaction and the maintenance of genetic diversity within natural populations.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Névroglie , Animaux , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Névroglie/métabolisme , Étude d'association pangénomique , Comportement animal/physiologie , Variation génétique , Régions promotrices (génétique)/génétique , Stéroïdes/métabolisme , Stéroïdes/biosynthèse
5.
PLoS One ; 19(7): e0305396, 2024.
Article de Anglais | MEDLINE | ID: mdl-38980840

RÉSUMÉ

The ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family metalloprotease MIG-17 plays a crucial role in the migration of gonadal distal tip cells (DTCs) in Caenorhabditis elegans. MIG-17 is secreted from the body wall muscle cells and localizes to the basement membranes (BMs) of various tissues including the gonadal BM where it regulates DTC migration through its catalytic activity. Missense mutations in the BM protein genes, let-2/collagen IV a2 and fbl-1/fibulin-1, have been identified as suppressors of the gonadal defects observed in mig-17 mutants. Genetic analyses indicate that LET-2 and FBL-1 act downstream of MIG-17 to regulate DTC migration. In addition to the control of DTC migration, MIG-17 also plays a role in healthspan, but not in lifespan. Here, we examined whether let-2 and fbl-1 alleles can suppress the age-related phenotypes of mig-17 mutants. let-2(k196) fully and fbl-1(k201) partly, but not let-2(k193) and fbl-1(k206), suppressed the senescence defects of mig-17. Interestingly, fbl-1(k206), but not fbl-1(k201) or let-2 alleles, exhibited an extended lifespan compared to the wild type when combined with mig-17. These results reveal allele specific interactions between let-2 or fbl-1 and mig-17 in age-related phenotypes, indicating that basement membrane physiology plays an important role in organismal aging.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Collagène de type IV , Mutation , Animaux , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Collagène de type IV/métabolisme , Collagène de type IV/génétique , Longévité/génétique , Protéines de liaison au calcium/génétique , Protéines de liaison au calcium/métabolisme , Membrane basale/métabolisme , Phénotype , Mouvement cellulaire/génétique , Gonades/métabolisme , Metalloendopeptidases/génétique , Metalloendopeptidases/métabolisme , Désintégrines
6.
Proc Natl Acad Sci U S A ; 121(29): e2402126121, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38980902

RÉSUMÉ

Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, the Caenorhabditis elegans RLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation in C. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling in C. elegans, highlighting unexpected parallels in RLR signaling between C. elegans and mammals.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Transduction du signal , Animaux , Caenorhabditis elegans/immunologie , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/immunologie , Transduction du signal/immunologie , Intestins/immunologie , Intestins/virologie , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/génétique , ARN double brin/métabolisme , ARN double brin/immunologie , Immunité innée , Muqueuse intestinale/immunologie , Muqueuse intestinale/métabolisme , ARN viral/immunologie , ARN viral/métabolisme , ARN viral/génétique
7.
Development ; 151(13)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38984542

RÉSUMÉ

In animals with germ plasm, embryonic germline precursors inherit germ granules, condensates proposed to regulate mRNAs coding for germ cell fate determinants. In Caenorhabditis elegans, mRNAs are recruited to germ granules by MEG-3, a sequence non-specific RNA-binding protein that forms stabilizing interfacial clusters on germ granules. Using fluorescence in situ hybridization, we confirmed that 441 MEG-3-bound transcripts are distributed in a pattern consistent with enrichment in germ granules. Thirteen are related to transcripts reported in germ granules in Drosophila or Nasonia. The majority, however, are low-translation maternal transcripts required for embryogenesis that are not maintained preferentially in the nascent germline. Granule enrichment raises the concentration of certain transcripts in germ plasm but is not essential to regulate mRNA translation or stability. Our findings suggest that only a minority of germ granule-associated transcripts contribute to germ cell fate in C. elegans and that the vast majority function as non-specific scaffolds for MEG-3.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Cellules germinales , Biosynthèse des protéines , ARN messager , Protéines de liaison à l'ARN , Animaux , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Cellules germinales/métabolisme , Cellules germinales/cytologie , ARN messager/métabolisme , ARN messager/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Granulations cytoplasmiques/métabolisme , Régulation de l'expression des gènes au cours du développement , Hybridation fluorescente in situ
8.
Development ; 151(13)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38984540

RÉSUMÉ

Germ granules have been hypothesized to deliver mRNAs of germ cell fate determinants to primordial germ cells. Now, a new study in Development finds that many mRNAs enriched in germ granules are not involved in germline development in Caenorhabditis elegans. To find out more about the story behind the paper, we caught up with first author Alyshia Scholl, second author Yihong Liu and corresponding author Geraldine Seydoux, Professor at Johns Hopkins University School of Medicine.


Sujet(s)
Caenorhabditis elegans , Animaux , Caenorhabditis elegans/génétique , Cellules germinales/métabolisme , Biologie du développement/histoire , Histoire du 21ème siècle , Histoire du 20ème siècle , Humains , ARN messager/génétique , ARN messager/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique
9.
Elife ; 122024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38994733

RÉSUMÉ

Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD's asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Vacuolar Proton-Translocating ATPases , Caenorhabditis elegans/génétique , Animaux , Vacuolar Proton-Translocating ATPases/métabolisme , Vacuolar Proton-Translocating ATPases/génétique , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Complexe Mi-2/NuRD/métabolisme , Complexe Mi-2/NuRD/génétique , Division cellulaire asymétrique , Apoptose , Épigenèse génétique , Nucléosomes/métabolisme
10.
Life Sci Alliance ; 7(9)2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38960623

RÉSUMÉ

In many animal species, the oocyte meiotic spindle, which is required for chromosome segregation, forms without centrosomes. In some systems, Ran-GEF on chromatin initiates spindle assembly. We found that in Caenorhabditis elegans oocytes, endogenously-tagged Ran-GEF dissociates from chromatin during spindle assembly but re-associates during meiotic anaphase. Meiotic spindle assembly occurred after auxin-induced degradation of Ran-GEF, but anaphase I was faster than controls and extrusion of the first polar body frequently failed. In search of a possible alternative pathway for spindle assembly, we found that soluble tubulin concentrates in the nuclear volume during germinal vesicle breakdown. We found that the concentration of soluble tubulin in the metaphase spindle region is enclosed by ER sheets which exclude cytoplasmic organelles including mitochondria and yolk granules. Measurement of the volume occupied by yolk granules and mitochondria indicated that volume exclusion would be sufficient to explain the concentration of tubulin in the spindle volume. We suggest that this concentration of soluble tubulin may be a redundant mechanism promoting spindle assembly near chromosomes.


Sujet(s)
Anaphase , Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Ovocytes , Appareil du fuseau , Tubuline , Animaux , Caenorhabditis elegans/métabolisme , Tubuline/métabolisme , Appareil du fuseau/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Ovocytes/métabolisme , Prométaphase , Méiose/physiologie , Protéine G ran/métabolisme , Guanosine triphosphate/métabolisme , Chromatine/métabolisme , Ségrégation des chromosomes
11.
Nutrients ; 16(13)2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38999870

RÉSUMÉ

Investigations into human longevity are increasingly focusing on healthspan enhancement, not just lifespan extension. Lifestyle modifications and nutritional choices, including food supplements, can significantly affect aging and general health. Phytochemicals in centenarians' diets, such as those found in Timut pepper, a Nepalese spice with various medicinal properties, may contribute to their longevity. Similarly, Sichuan pepper, a related species, has demonstrated anti-inflammatory and neuroprotective activities. With the broader purpose of uncovering a novel treatment to address aging and its comorbidities, this study aims to investigate the potential lifespan- and healthspan-promoting effects of Timut pepper using the model organism Caenorhabditis elegans. We show that Timut pepper extract extends C. elegans' lifespan at different maintenance temperatures and increases the proportion of active nematodes in their early adulthood. In addition, we show that Timut pepper extract enhances speed and distance moved as the nematodes age. Finally, Timut pepper extract assures extracellular matrix homeostasis by slowing the age-dependent decline of collagen expression.


Sujet(s)
Caenorhabditis elegans , Capsicum , Collagène , Longévité , Extraits de plantes , Caenorhabditis elegans/effets des médicaments et des substances chimiques , Longévité/effets des médicaments et des substances chimiques , Animaux , Extraits de plantes/pharmacologie , Collagène/métabolisme , Capsicum/composition chimique , Vieillissement/effets des médicaments et des substances chimiques , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Matrice extracellulaire/effets des médicaments et des substances chimiques , Matrice extracellulaire/métabolisme
12.
Elife ; 132024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38949652

RÉSUMÉ

Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of ß-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.


Sujet(s)
Caenorhabditis elegans , Microtubules , Maturation post-traductionnelle des protéines , Tubuline , Animaux , Tubuline/métabolisme , Tubuline/génétique , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/génétique , Microtubules/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Acétylation , Axones/métabolisme , Axones/physiologie , Phosphorylation , Régénération nerveuse , Kinésine/métabolisme , Kinésine/génétique
13.
Nat Commun ; 15(1): 5795, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987250

RÉSUMÉ

Animals protect themself from microbial attacks by robust skins or a cuticle as in Caenorhabditis elegans. Nematode-trapping fungi, like Arthrobotrys flagrans, overcome the cuticle barrier and colonize the nematode body. While lytic enzymes are important for infection, small-secreted proteins (SSPs) without enzymatic activity, emerge as crucial virulence factors. Here, we characterized NipA (nematode induced protein) which A. flagrans secretes at the penetration site. In the absence of NipA, A. flagrans required more time to penetrate C. elegans. Heterologous expression of the fungal protein in the epidermis of C. elegans led to blister formation. NipA contains 13 cysteines, 12 of which are likely to form disulfide bridges, and the remaining cysteine was crucial for blister formation. We hypothesize that NipA interferes with cuticle integrity to facilitate fungal entry. Genome-wide expression analyses of C. elegans expressing NipA revealed mis-regulation of genes associated with extracellular matrix (ECM) maintenance and innate immunity.


Sujet(s)
Ascomycota , Caenorhabditis elegans , Cystéine , Protéines fongiques , Facteurs de virulence , Animaux , Caenorhabditis elegans/microbiologie , Facteurs de virulence/métabolisme , Facteurs de virulence/génétique , Cystéine/métabolisme , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Ascomycota/pathogénicité , Ascomycota/génétique , Ascomycota/métabolisme , Immunité innée , Matrice extracellulaire/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Épiderme/métabolisme , Épiderme/microbiologie
14.
Nat Commun ; 15(1): 5793, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987256

RÉSUMÉ

Temperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C. Furthermore, both wild-type and hsf-1(sy441) mutant animals undergoing CID can survive for weeks, and resume growth at 20 °C. Using epistasis analysis, we demonstrate that neural signalling pathways, namely tyraminergic and neuromedin U signalling, regulate entry into CID of the hsf-1 mutant. Overexpression of anti-ageing genes, such as hsf-1, XBP1/xbp-1, FOXO/daf-16, Nrf2/skn-1, and TFEB/hlh-30, also inhibits CID entry of the hsf-1 mutant. Based on these findings, we hypothesise that regulators of the hsf-1 mutant CID may impact longevity, and successfully isolate 16 long-lived mutants among 49 non-CID mutants via genetic screening. Furthermore, we demonstrate that the nonsense mutation of MED23/sur-2 prevents CID entry of the hsf-1(sy441) mutant and extends lifespan. Thus, CID is a powerful model to investigate neural networks involving cold acclimation and to explore new ageing mechanisms.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Basse température , Protéines de liaison à l'ADN , Diapause , Longévité , Facteurs de transcription , Animaux , Caenorhabditis elegans/génétique , Caenorhabditis elegans/physiologie , Protéines de Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Diapause/génétique , Diapause/physiologie , Longévité/génétique , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Mutation , Transduction du signal , Facteurs de transcription Forkhead/métabolisme , Facteurs de transcription Forkhead/génétique , Codon non-sens/génétique , Neuropeptides/métabolisme , Neuropeptides/génétique , Protéines de transport , Facteurs de transcription à motif basique hélice-boucle-hélice
15.
Nat Commun ; 15(1): 5799, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987544

RÉSUMÉ

Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Granulations cytoplasmiques , Cellules germinales , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Animaux , Cellules germinales/métabolisme , Granulations cytoplasmiques/métabolisme , ARN messager/métabolisme , ARN messager/génétique , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/génétique , RNA replicase/métabolisme , RNA replicase/génétique , Protéines intrinsèquement désordonnées/métabolisme , Protéines intrinsèquement désordonnées/génétique
16.
Elife ; 122024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38963411

RÉSUMÉ

Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Régulation de l'expression des gènes au cours du développement , microARN , Facteurs de transcription , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/croissance et développement , Animaux , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , microARN/métabolisme , microARN/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Régions promotrices (génétique) , Transcription génétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Noyau de la cellule/métabolisme
17.
Nat Commun ; 15(1): 4904, 2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38851828

RÉSUMÉ

Age-related depletion of stem cells causes tissue degeneration and failure to tissue regeneration, driving aging at the organismal level. Previously we reported a cell-non-autonomous DAF-16/FOXO activity in antagonizing the age-related loss of germline stem/progenitor cells (GSPCs) in C. elegans, indicating that regulation of stem cell aging occurs at the organ system level. Here we discover the molecular effector that links the cell-non-autonomous DAF-16/FOXO activity to GSPC maintenance over time by performing a tissue-specific DAF-16/FOXO transcriptome analysis. Our data show that dos-3, which encodes a non-canonical Notch ligand, is a direct transcriptional target of DAF-16/FOXO and mediates the effect of the cell-non-autonomous DAF-16/FOXO activity on GSPC maintenance through activating Notch signaling in the germ line. Importantly, expression of a human homologous protein can functionally substitute for DOS-3 in this scenario. As Notch signaling controls the specification of many tissue stem cells, similar mechanisms may exist in other aging stem cell systems.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Facteurs de transcription Forkhead , Cellules germinales , Récepteurs Notch , Transduction du signal , Cellules souches , Animaux , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Facteurs de transcription Forkhead/métabolisme , Facteurs de transcription Forkhead/génétique , Cellules germinales/métabolisme , Récepteurs Notch/métabolisme , Récepteurs Notch/génétique , Cellules souches/métabolisme , Cellules souches/cytologie , Vieillissement/métabolisme , Vieillissement/génétique , Humains
18.
Sci Adv ; 10(25): eadn0014, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38905346

RÉSUMÉ

The central nervous system coordinates peripheral cellular stress responses, including the unfolded protein response of the mitochondria (UPRMT); however, the contexts for which this regulatory capability evolved are unknown. UPRMT is up-regulated upon pathogenic infection and in metabolic flux, and the olfactory nervous system has been shown to regulate pathogen resistance and peripheral metabolic activity. Therefore, we asked whether the olfactory nervous system in Caenorhabditis elegans controls the UPRMT cell nonautonomously. We found that silencing a single inhibitory olfactory neuron pair, AWC, led to robust induction of UPRMT and reduction of oxidative phosphorylation dependent on serotonin signaling and parkin-mediated mitophagy. Further, AWC ablation confers resistance to the pathogenic bacteria Pseudomonas aeruginosa partially dependent on the UPRMT transcription factor atfs-1 and fully dependent on mitophagy machinery. These data illustrate a role for the olfactory nervous system in regulating whole-organism mitochondrial dynamics, perhaps in preparation for postprandial metabolic stress or pathogenic infection.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Mitochondries , Mitophagie , Odorat , Animaux , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/physiologie , Mitochondries/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Odorat/physiologie , Réponse aux protéines mal repliées , Pseudomonas aeruginosa/physiologie , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Phosphorylation oxydative , Transduction du signal , Sérotonine/métabolisme , Facteurs de transcription
19.
Curr Biol ; 34(12): 2756-2763.e2, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38838665

RÉSUMÉ

Extracellular vesicles (EVs) are submicron membranous structures and key mediators of intercellular communication.1,2 Recent research has highlighted roles for cilia-derived EVs in signal transduction, underscoring their importance as bioactive extracellular organelles containing conserved ciliary signaling proteins.3,4 Members of the transient receptor potential (TRP) channel polycystin-2 (PKD-2) family are found in ciliary EVs of the green algae Chlamydomonas and the nematode Caenorhabditis elegans5,6 and in EVs in the mouse embryonic node and isolated from human urine.7,8 In C. elegans, PKD-2 is expressed in male-specific EV-releasing sensory neurons, which extend ciliary tips to ciliary pore and directly release EVs into the environment.6,9 Males release EVs in a mechanically stimulated manner, regulate EV cargo content in response to mating partners, and deposit PKD-2::GFP-labeled EVs on the vulval cuticle of hermaphrodites during mating.9,10 Combined, our findings suggest that ciliary EV release is a dynamic process. Herein, we identify mechanisms controlling dynamic EV shedding using time-lapse imaging. Cilia can sustain the release of PKD-2-labeled EVs for 2 h. This extended release doesn't require neuronal transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The kinesin-3 motor kinesin-like protein 6 (KLP-6) is necessary for initial and extended EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dynamic replenishment of PKD-2 at the ciliary tip is key to sustained EV release. Our study provides a comprehensive portrait of real-time ciliary EV release and mechanisms supporting cilia as proficient EV release platforms.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Cils vibratiles , Vésicules extracellulaires , Cellules réceptrices sensorielles , Canaux cationiques TRPP , Animaux , Cils vibratiles/métabolisme , Cils vibratiles/physiologie , Vésicules extracellulaires/métabolisme , Vésicules extracellulaires/physiologie , Cellules réceptrices sensorielles/métabolisme , Cellules réceptrices sensorielles/physiologie , Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/physiologie , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Canaux cationiques TRPP/métabolisme , Canaux cationiques TRPP/génétique , Mâle
20.
J Agric Food Chem ; 72(25): 14315-14325, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38847877

RÉSUMÉ

This study aimed to investigate the mitigation effect of epigallocatechin gallate (EGCG) on aging induced by 3-monochloropropane-1,2-diol (3-MCPD) in Caenorhabditis elegans, evaluate health indicators during the process, and reveal the underlying mechanism through transcriptomics and identification of mutants. The results showed that EGCG alleviated the declined fertility, shortened lifespan, reduced body size, weakened movement, increased reactive oxygen species and lipofuscin, and damaged antioxidative stress response and excessive heat shock proteins caused by 3-MCPD. Transcriptomics study indicated that treatment with 3-MCPD and EGCG altered gene expression, and gene mutants confirmed the involvement of insulin/IGF-1 signaling pathway in mediating the process that EGCG alleviated the aging toxicity induced by 3-MCPD. The study showed that EGCG alleviated the aging toxicity induced by 3-MCPD.


Sujet(s)
Vieillissement , Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Catéchine , Protéines du choc thermique , Reproduction , alpha-Chlorohydrine , Animaux , Caenorhabditis elegans/effets des médicaments et des substances chimiques , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Catéchine/analogues et dérivés , Catéchine/pharmacologie , Reproduction/effets des médicaments et des substances chimiques , Protéines de Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Protéines du choc thermique/génétique , Protéines du choc thermique/métabolisme , Vieillissement/effets des médicaments et des substances chimiques , alpha-Chlorohydrine/toxicité , Transduction du signal/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Longévité/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...